A Team

Organometallic Chemistry

2019 Publications

Chen, J.; Motta, A.; Zhang, J.; Gao, Y.; Marks, T.J.; Mechanisim of Organoscandium-Catalyzed Ethylene Copolymerization with Amino Olefins: A Quantum Chemical Analysis. ACS Catalysis, 2019, 9, 8810-8818. DOI: 10.1021/acscatal.9b02317.

Li, J.; Liu, S.; Lohr, T.L.; Marks, T.J.; Efficient Chemoselective Reduction of N-Oxides and Sulfoxides using a Carbon-Supported Molybdenum-Dioxo Catalyst and Alcohols, Chem.Cat.Chem. 2019, in press. DOI: 10.1002/cctc.201900436.

Gao, Y.; Christianson, M.D.; Wang, Y.; Chen, J.; Marshall, S.; Klosin, J.; Lohr, T.L.; Marks, T.J.;  Unusual Precatalyst σ-Ligand Effects on Phenoxyimine Zr-Catalyzed Ethylene/1-Octene Copolymerizations, J. Amer. Chem. Soc. 2019, 141, 7822–7830. DOI: 10.1021/jacs.9b01445.

Barger, C.J.; Motta, A.; Weidner, V.L.; Lohr, T.L.; Marks, T.J.; La[N(SiMe3)2]3 – Catalyzed Reduction of Esters with Pinacolborane – Scope and Mechanism of Ester Cleavage, ACS Catalysis, 2019, in press. DOI: 10.1021/acscatal.9b02605.

Chen, J.; Motta, A.; Wang, B.; Gao, Y.; Marks, T.J.; Facilitating Polar Comonomer Enchainment in Zirconacene-Catalyzed, Masking Reagent-Free, Ethylene Copolymerization, Angew. Chem. Int. Ed. 2019, 58, 7030-7034. DOI:10.1002/anie.201902042.

Littlewood, P.; Weitz, E.; Marks, T.J.; Stair, P.C.; Kinetic Isoconversion Loop Catalysis (KILCat): A Reactor Operation Mode to Investigate Slow Catalyst Deactivation Processes, with Ni/Al2O3 for the Dry Reforming of Methane, Indust. Eng. Chem. 2019, 58, 2481–2491. DOI: 10.1021/acs.iecr.8b04320.

Littlewood, P.; Liu, S.; Weitz, E.; Marks, T.J.; Stair, P.C.; Ni-Alumina Dry Reforming Catalysts: Atomic Layer Deposition and the Issue of Ni Aluminate, Catalysis Today, 2019, in press. DOI: 10.1016/j.cattod.2019.03.040.

Gao, Y.; Chen, J.; Wang, Y.; Pickens, D.B.; Motta, A.; Wang, Q.J.; Chung, Y.-W.; Lohr, T.L.; Marks, T.J.; Highly Branched Polyethylene Oligomers via Single-Site Polymerization in Very Nonpolar Media, Nature Catal. 2019, 2, 236-242.  DOI:10.1038/s41929-018-0224-0.

Barger, C.J.; Motta, A.; Weidner, V.L.; Lohr, T.L.; Marks, T.J.; La[N(SiMe3)2]3 – Catalyzed Ester Reductions with Pinacolborane.  Scope and Mechanism of Ester Cleavage, ACS Catalysis 2019, in press.

Chen, J.; Motta, A.; Zhang, J.; Gao, Y.; Marks, T.J.; Mechanisim of Organoscandium-Catalyzed Ethylene Copolymerization with Amino Olefins: A Quantum Chemical Analysis. ACS Catalysis, 2019, 9, 8810-8818. DOI: 10.1021/acscatal.9b02317.

Selected Previous Publications

Gao, Y.; Chen, X.; Zhang, J.; Chen, J.; Motta, A.; Lohr, T.L.; Marks, T.J.  Catalyst Nuclearity Effects on Stereo- and Regio-Induction in Pyridylamido-Hafnium-Catalyzed Propylene and 1-Octene Polymerizations. Macromolecules 2018, 51, 2401-2410. DOI: 10.1021/acs.macromol.8b00181.

Stalzer, M.M.; Lohr, T.L.; Marks, T.J.; Synthesis, Characterization, and Volatility Properties of N-alkyl β-Diketiminate Manganese Complexes, Inorg. Chem.2018, 57,3017–3024. DOI: 10.1021/acs.inorgchem.7b02476

Zhang, J.; Motta, A.; Gao, Y.; Stalzer, M.; Delferro, M.; Liu, B.; Lohr, T.; Marks, T.J.; Cationic Pyridylamido Adsorbate on Brønsted Acidic Sulfated Zirconia: A Molecular Supported Organohafnium Catalyst for Olefin Homo- and Co-Polymerization, ACS Catalysis, 2018, 8, 4893–4901. DOI: 10.1021/acscatal.8b00611.

Desanker, M.; He, X.; Lu, J.; Johnson, B. A.; Liu, Z.; Delferro, M.; Ren, N.; Lockwood, F. E.; Greco, A.; Erdemir, A.; Marks, T. J.; Wang, Q. J.; Chung, Y.-W., High-Performance Heterocyclic Friction Modifiers for Boundary Lubrication. Tribol. Lett. 2018, 66, 1-13.

Mouat, A.R.; Whitford, C.; Chen, B.R.; Perras, F.A.; Pruski, M.; Bedzyk, M.J.; Delferro, M.; Stair, P.C.; Marks, T.J.; Synthesis of Supported Pd0 Nanoparticles from a Single-Site Palladium Surface Complex by Alkene Reduction, Chem. Mater. 2018, 30, 1032-1044. DOI: 10.1021/acs.chemmater.7b04909.

Chen, J.; Liao, Q.; Wang, G.; Yan, Z.; Wang, H.; Wang, Y.; Zhang, X.; Facchetti, A.; Marks, T.J.; Guo, X.; Improving Photovoltaic Performance of Polymer Semiconductors via Optimizing Intramolecular Noncovalent Sulfur-Oxygen Interactions, Macromolecules 2018, 51, 3874–3885. DOI: 10.1021/acs.macromol.8b00161.

Gili, A.; Schlicker, L.; Bekheet, M.; Görke, O.; Penner, S.; Grünbacher, M.; Götsch, T.; Littlewood, P.; Marks, T.J.; Stair, P.; Schomäcker, R.; Doran, A.; Selve, S.; Simon, U.; Gurlo1, A.; Surface carbon as chemical intermediate towards syngas on the Ni/MnO catalyst for the dry reforming of methane, ACS Catalysis, 2018, 8,  8739–8750. DOI: 10.1021/acscatal.8b01820.

Moody, M.J.; Henning, A.; Jurca, T.; Shang, J.Y.; Bergeron, H.; Balla, I.; Olding, J.N.; Weiss, E.A.; Hersam, M.C.; Lohr, T.L.; Marks, T.J.; Lauhon, L.J.; Atomic Layer Deposition of Molybdenum Oxides with Tunable Stoichiometry Enables Controllable Doping of MoS2 Chem. Mater. 2018, 30, 3628-3632. DOI: 10.1021/acs.chemmater.8b01171.

Invergo, A.M.; Liu, S.; Mouat, A.R.; Delferro, M.; Lohr, T.L.; Marks, T.J.  How Close is too Close?  Polymerization Behavior and Monomer Dependent Reorganization of a Bimetallic Salphen Organotitanium Catalyst, Organometallics 2018, 37, 2429–2436. DOI 10.1021/acs.organomet.8b00220.

Lohr, T.L.; Mouat, A.R.; Schweitzer, N.M.; Stair, P.C.; Delferro, M.; Marks, T.J.; Efficient Catalytic Greenhouse Gas-Free Hydrogen and Aldehyde Formation from Aqueous Alcohol Solutions, 2017, Energy Environ. Sci., 2017, 10, 1558-1562. DOI: 10.1039/C6EE03739A.

Chen, J.; Gao, Y.; Wang, B.; Lohr, T. L.; Marks, T. J., Scandium-Catalyzed Self-Assisted Polar Co-monomer Enchainment in Ethylene Polymerization. Angew. Chem., Int. Ed. 2017, 56, 15964-15968.

Chen, J.; Gao, Y.; Lohr, T.L.; Marks, T.J.; Functional Group-Assisted Copolymerization of Ethylene/Amino Olefins Catalyzed by Mono- and Binuclear Organoscandium Complexes, Angew. Chem. Int. Ed. 2017, 56, 1-6. DOI: 10.1002/anie.201708797.

Jurca, T.; Moody, M. J.; Henning, A.; Emery, J. D.; Wang, B.; Tan, J. M.; Lohr, T. L.; Lauhon, L. J.; Marks, T. J., Low-Temperature Atomic Layer Deposition of MoS2 Films. Angew. Chem., Int. Ed. 2017, 56, 4991-4995.

Weidner, V. L.; Barger, C. J.; Delferro, M.; Lohr, T. L.; Marks, T. J., Rapid, Mild, and Selective Ketone and Aldehyde Hydroboration/Reduction Mediated by a Simple Lanthanide Catalyst. ACS Catal. 2017, 7, 1244-1247.

Desanker, M.; He, X.; Lu, J.; Liu, P.; Pickens, D. B.; Delferro, M.; Marks, T. J.; Chung, Y.-W.; Wang, Q. J., Alkyl-Cyclens as Effective Sulfur- and Phosphorus-Free Friction Modifiers for Boundary Lubrication. ACS Appl. Mater. Interfaces 2017, 9, 9118-9125.

Chen, J.; Gao, Y.; Xiong, S.; Delferro, M.; Lohr, T.L.; Marks, T.J.; Metal and Counteranion Nuclearity Effects in Organoscandium Catalysis for Isoprene Polymerization and Copolymerization, ACS Catal. 2017, 7, 5214–5219. DOI: 10.1021/acscatal.7b01621.

Mouat, A.R.; Kobayashi, T.; Pruski, M.; Marks, T.J.; Stair, P.C.; Direct Spectroscopic Evidence for Isolated Silanols in SiOx/Al2O3 and Their Formation Mechanism in Atomic Layer Deposition, J. Phys. Chem. C., 2017, 121,6060–6064. DOI: 10.1021/acs.jpcc.6b11196.

Liu, S.; Li, J.; Jurca, T.; Lohr, T.L.; Stair, P.C.; Marks, T.J.; Efficient Carbon-Supported Heterogeneous Molybdenum-Dioxo Catalyst for Chemoselective Reductive Carbonyl Coupling, Catalysis Science & Technology, 2017, 7, 2165 – 2169. DOI: 10.1039/C7CY00336F.

Liu, S.; Invergo, A.M.; McInnis, J.P.; Mouat, A.R.; Motta, A.; Lohr, T.L.; Delferro, M.; Marks, T.J.; Distinctive Stereochemically-Linked Cooperative Effects in Bimetallic Titanium Olefin Polymerization Catalysts, Organometallics 2017, 36, 4403–4421. DOI:org/10.1021/acs.organomet.7b00641.

Lohr, T.L.; Li, Z.; Assary, R.S.; Curtiss, L.A.; Marks, T.J.; Mono- and Tri-Ester Hydrogenolysis Using Tandem Catalysis. Scope and Mechanism, Energy Environ. Sci., 2016, 9, 550 – 564. DOI: 10.1039/C5EE03256C.

Lohr, L.; Li, Z.; Marks, T.J.; Thermodynamic Strategies for C-O Bond Formation and Cleavage via Tandem Catalysis, Accts. Chem. Res., 2016, 49, 824–834. DOI:10.1021/acs.accounts.6b00069

Stalzer, M.M.; Nicholas, C.P.; Bhattacharyya, A.; Motta, A.; Delferro, M..; Marks, T.J.; Single-Face/All-cis Arene Hydrogenation by a Single-Site d0 Organozirconium Catalyst Supported on Sulfated Zirconia, Angew. Chem. Int. Ed. 2016, 55, 5263–5267. DOI: 10.1002/anie.201600345.

Liu, S.; Tan, J. M.; Gulec, A.; Schweitzer, N. M.; Delferro, M.; Marks, L. D.; Stair, P. C.; Marks, T. J., Direct Synthesis of Low-Coordinate Pd Catalysts Supported on SiO2 via Surface Organometallic Chemistry. ACS Catal. 2016, 6, 8380-8388.

Stalzer, M.M.; Telser, J.; Krzystek, J.; Motta, A.; Delferro, M.; Marks, T.J.; A Neutrally-Charged Trimethylmanganese(III) Complex: Synthesis, Characterization, and Disproportionation Chemistry, Organometallics, 2016, 35, 2683-2688. DOI: 10.1021/acs.organomet.6b00422.

Mouat, A.R.; Lohr, T.L.; Wegener, E.C.; Miller, J.T.; Delferro, M.; Stair, P.C.; Marks, T.J.; Reactivity of a Carbon-Supported Single-Site Dioxo-Molybdenum Catalyst for Biodiesel Synthesis, ACS Catalysis, 2016, 6,6762–6769.  DOI: 10.1021/acscatal.6b01717

Lohr, T.L.; Li, Z.; Marks, T.J.; Selective Ether/Ester C-O Cleavage of an Acetylated Lignin Model via Tandem Catalysis, ACS Catalysis  2015, 5, 7004–7007.  DOI: 10.1021/acscatal.5b01972.

Shu, D.; Mouat, A.R.; Stephenson, C.J.; Delferro, M.; Marks, T.J.; Ligand-Unsymmetrical Phenoxyiminato Dinickel Catalyst for High Molecular Weight Long-Chain Branched Polyethylenes, MacroLetters, 2015, 4, 1297–1301. DOI: 10.1021/acsmacrolett.5b00781.

Lohr, T. L.; Marks, T. J., Orthogonal tandem catalysis. Nat. Chem. 2015, 7, 477-482.

Gu, W.; Stalzer, M. M.; Nicholas, C. P.; Bhattacharyya, A.; Motta, A.; Gallagher, J. R.; Zhang, G.; Miller, J. T.; Kobayashi, T.; Pruski, M.; Delferro, M.; Marks, T. J., Benzene Selectivity in Competitive Arene Hydrogenation: Effects of Single-Site Catalyst···Acidic Oxide Surface Binding Geometry. J. Am. Chem. Soc. 2015, 137, 6770-6780.

Peter, M.; Marks, T.J.; Platinum Metal-Free Catalysts for Selective Soft Oxidative Methane → Ethylene Coupling. Scope and Mechanistic Observations, J.Am.Chem. Soc. 2015, 137, 15234–15240. DOI: 10.1021/jacs.5b09939.

Dudnik, A. S.; Weidner, V. L.; Motta, A.; Delferro, M.; Marks, T. J., Atom-efficient regioselective 1,2-dearomatization of functionalized pyridines by an earth-abundant organolanthanide catalyst. Nat. Chem. 2014, 6, 1100-1107.

Organo-f-element Hydroelementation

Lanthanides and actinides offer a new frontier in organometallic chemistry. Our interests include tuning electrophilic f-element centers to effect unusual types of transformations. Closely coordinated are computational and thermochemical investigations of bonding and bond energies. These offer deeper insight into bonding and aid in designing new reactions. With recent advances in lanthanide-mediated catalysis and bond-energy studies, we are developing f-element catalysts for hydrosilation, hydroalkoxylation, hydroamination, and hydrothiolation. Recently, we have focused on the hydroelementation of carbon-heteroelement bonds such as carbonyls and pyridines.

Catalysis for Biomass Conversion (C-O cleavage)

To utilize biomass as an energy source, not only with current infrastructure, but for maximum energy return, the oxygen content must be reduced. One method to achieve this is to develop selective catalytic methods to cleave C–O bonds commonly found in biomass (aliphatic and aromatic ethers and esters) for the eventual removal of oxygen in the form of volatile H2O or carboxylic acids. This Laboratory previously reported that recyclable “green” lanthanide triflates are excellent catalysts for C–O bond-forming hydroalkoxylation reactions. Based on the virtues of microscopic reversibility, the same lanthanide triflate catalyst should catalyze the reverse C–O cleavage process, retrohydroalkoxylation, to yield an alcohol and an alkene. However, ether C–O bond-forming (retrohydroalkoxylation) to form an alcohol and alkene is endothermic. Guided by quantum chemical analysis, our strategy is to couple endothermic, in tandem, ether (and analogous) ester C–O bond cleavage with exothermic alkene hydrogenation, thereby leveraging the combined catalytic cycles thermodynamically to form an overall energetically favorable C–O cleavage reaction. This work has been Highlighted in Chemistry World Magazine (https://www.chemistryworld.com/research/glycerol-free-strategy-sweetens-biodiesel-synthesis/9269.article).

Bimetallic Olefin Polymerization Catalysis

We are synthesizing group 4 and group 10 bimetallic polymerization catalysts. A ligand system has been designed to keep two metal centers in close proximity. The resulting catalysts have high functional group tolerance and activity. Compared with monometallic analogues, the bimetallic systems have 2x the ethylene polymerization activity, 2x the branch density, and 3x greater selectivity for comonomer enchainment.

Supported Organometallics/Heterogeneous Catalysis

Our group is interested in the surface chemistry and reactivity of supported catalysts. Supporting molecular precursors onto supports can provide well-defined heterogeneous catalytic species. We are currently exploring single-site supported organo-zirconium catalysts that are highly active for ethylene polymerization and selective benzene hydrogenation, and single site molybdenum di-oxo catalysts for transesterification, alcohol oxidation, and carbonyl reductive coupling. In collaboration with Peter Stair’s group, we are also using supported organometallics and atomic layer deposition to produce well defined nanoparticles. We also have traditional heterogeneous projects focused on dry reforming and methane coupling. The molybdenum work has been highlighted by the Institute for Sustainability and Energy at Northwestern (ISEN) (http://isen.northwestern.edu/building-energy-neutral-processes-for-chemical-manufacturing).

Atomic Layer Deposition (ALD) Precursor Design

Atomic layer deposition is a method to produce conformal thin films. Through sequential A and B cycles, ALD is self-limiting, which allows for precise layer-by-layer growth. ALD requires volatile metallic precursors that are 1. Stable at high temperatures (up to 300 °C) and 2. Are highly reactive with the B cycle reagent (ex, H2O). Our group rationally designs new metallic, volatile ALD precursors for Mo, W, Mn, and Li for use in the preparation of Li/Mn batteries as well as in oxide and sulfide films for electronic applications. Work in this area is in collaboration with the Stair and Lauhon groups (NU), and Argonne National Laboratory.

Design of New Lubricant additives for Friction Reduction and Viscosity Modifications

In collaboration with the Wang and Chung groups (NU Mechanical Engineering), we are designing new lubrication additives for use in both fiction reduction and to modify viscosity. New silver additives prepared by our group show solid silver lubricant deposition at high temperatures, and amine based additives show a large reduction of friction in comparison to base oil in the boundary friction regime. The development of new viscosity modifiers is currently underway.