Reviews (Peer Reviewed)
36. Reticular Chemistry for Highly Porous Metal–Organic Frameworks: The Chemistry and Applications
Chen, Z.; Kirlikovali, K.O.; Li, P.; Farha, O.K.; Acc. Chem. Res., 2022, Just Accepted Article doi.org/10.1021/acs.accounts.1c00707
![ar1c00707_0010](https://sites.northwestern.edu/omarkfarha/files/2017/11/ar1c00707_0010.gif)
35. A historical perspective on porphyrin-based metal–organic frameworks and their applications
Zhang, X.; Wasson, M.C.; Shayan, M.; Berdichevsky, E.K.; Ricardo-Noordberg, J.; Singh, Z.; Papazyan, E.K.; Castro, A.J.; Marino, P.; Ajoyan, Z.; Chen, Z.; Islamoglu, T.; Howarth, A.J.; Liu, Y.; Majewski, M.B.; Katz, M.J.; Mondloch, J.E.; Farha, O.K.; Coord. Chem. Rev., 2021, 429, 213615 doi.org/10.1016/j.ccr.2020.213615
![Screenshot 10-24-2020 14.53.11 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-10-24-2020-14.53.11-2-1024x630.png)
![1-s2.0-S0010854520X00245-cov200h](https://sites.northwestern.edu/omarkfarha/files/2017/11/1-s2.0-S0010854520X00245-cov200h.gif)
34. A historical overview of the activation and porosity of metal-organic frameworks
Zhang, X.; Chen, Z.; Liu, X.; Hanna, S.L.; Wang, X.; Taheri-Ledari, R.; Maleki, A.; Li, P.; Farha, O.K.; Chem. Soc. Rev., 2020, 49, pp. 7406-7427 doi.org/10.1039/D0CS00997K
![Zhang_X_Chem_soc_rev](https://sites.northwestern.edu/omarkfarha/files/2017/11/Zhang_X_Chem_soc_rev.png)
![Screenshot 09-06-2021 14.07.33 (3)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-09-06-2021-14.07.33-3.png)
33. Fiber Composites of Metal-Organic Frameworks
Ma, K.; Idrees, K.B.; Son, F.A.; Maldonado, R.; Wasson, M.C.; Zhang, X.; Wang, X.; Shehayeb, E.; Merhi, A.; Kaafarani, B.R.; Islamoglu, T.; Xin, J.H.; Farha, O.K.; Chem. Mater., 2020, 32, pp. 7120-7140 doi.org/10.1021/acs.chemmater.0c02379
![cm0c02379_0029_Ma_K](https://sites.northwestern.edu/omarkfarha/files/2017/11/cm0c02379_0029_Ma_K.jpeg)
![Ma_K_acschemmater](https://sites.northwestern.edu/omarkfarha/files/2017/11/Ma_K_acschemmater.png)
32. Using nature’s blueprint to expand catalysis with Earth-abundant metals
Bullock, R.M.; Chen. J.G.; Gagliardi, L.; Chirik. P.J.; Farha, O.K.; Hendon, C.H.; Jones, C.W.; Keith, J.A.; Klosin, J.; Minteer, S.D.; Morris, R.H.; Radosevich, A.T.; Rauchfuss, T.B.; Strotman, N.A.; Vojvodic, A.; Ward, T.R.; Yang, J.Y.; Surendranath, Y.; Science, 2020, 369, 786 doi.org/10.1126/science.abc3183
![Science_toc](https://sites.northwestern.edu/omarkfarha/files/2017/11/Science_toc.png)
![Science_cover_Aug_2020](https://sites.northwestern.edu/omarkfarha/files/2017/11/Science_cover_Aug_2020.jpg)
31. Recent Electrochemical Applications of Metal-Organic Framework-Based Materials
Tajik, S.; Beitollahi, H.; Nejad, F.G.; Kirlikovali, K.O.; Le, Q.V.; Jang, H.W.; Varma, R.S.; Farha, O.K.; Shokouhimehr, M.; Cryst. Growth Des., 2020, 20, pp. 7034-7064 doi.org/10.1021/acs.cgd.0c00601
![MOF_Echem_Crystal Growth Design](https://sites.northwestern.edu/omarkfarha/files/2017/11/MOF_Echem_Crystal-Growth-Design-1024x534.jpg)
![Crystal Growth & Design](https://sites.northwestern.edu/omarkfarha/files/2017/11/cgdefu_v020i010.jpg)
30. Recent Advances in Rechargeable Aluminum-Ion Batteries and Considerations for Their Future Progress
Zhang, K.; Kirlikovali, K.O.; Suh, J.M.; Choi, J.-W.; Jang, H.W.; Varma, R.S.; Farha, O.K.; Shokouhimehr, M.; ACS Appl. Energy Mater., 2020, 3, pp. 6019-6035 doi.org/10.1021/acsaem.0c00957
![](https://sites.northwestern.edu/omarkfarha/files/2017/11/Zhang_K_ACS_Appl_Energy_Mater_Review-1024x418.jpg)
![aaemcq.2020.3.issue-7.largecover](https://sites.northwestern.edu/omarkfarha/files/2017/11/aaemcq.2020.3.issue-7.largecover.jpg)
29. Covalent Organic Frameworks: Emerging Organic Solid Materials for Energy and Electrochemical Applications
Zhang, K.; Kirlikovali, K.O.; Varma, R.S.; Jin, Z.; Jang, H.W.; Farha, O.K.; Shokouhimehr, M.; ACS Appl. Mater. Interfaces, 2020, 12, pp. 27821-27852 doi.org/10.1021/acsami.0c06267
![](https://sites.northwestern.edu/omarkfarha/files/2017/11/K_Zhang_et_al_ACS_Appl_-1024x561.jpg)
![aamick.2020.12.issue-25.largecover](https://sites.northwestern.edu/omarkfarha/files/2017/11/aamick.2020.12.issue-25.largecover.jpg)
28. Extended Metal-Organic Frameworks on Diverse Supports as Electrode Nanomaterials for Electrochemical Energy Storage
Zhang, K.; Kirlikovali, K.O.; Le, Q.V.; Jin, Z.; Varma, R.S.; Jang, H.W.; Farha, O.K.; Shokouhimehr, M.; ACS Appl. Nano Mater., 2020, 3, pp. 3964-3990 doi.org/10.1021/acsanm.0c00702
![](https://sites.northwestern.edu/omarkfarha/files/2017/11/Zhang-K_review-1024x630.jpg)
![aanmf6.2020.3.issue-5.largecover](https://sites.northwestern.edu/omarkfarha/files/2017/11/aanmf6.2020.3.issue-5.largecover.jpg)
27. Metal-Organic Frameworks against Toxic Chemicals
Islamoglu, T.; Chen, Z.; Wasson, M.C.; Buru, C.T.; Kirlikovali, K.O.; Afrin, U.; Mian, M.R.; Farha, O.K.; Chem. Rev., 2020, 120, pp. 8130-8160 doi.org/10.1021/acs.chemrev.9b00828
![](https://sites.northwestern.edu/omarkfarha/files/2017/11/Islamoglu_et-al.jpg)
![chreay.2020.120.issue-16.largecover](https://sites.northwestern.edu/omarkfarha/files/2017/11/chreay.2020.120.issue-16.largecover.jpg)
26. Zirconium-Based Metal-Organic Frameworks for the Catalytic Hydrolysis of Organophosphorus Nerve Agents
Kirlikovali, K.O.; Chen, Z.; Islamoglu, T.; Hupp, J.T.; Farha, O.K.; ACS Appl. Mater. Interfaces, 2020, 12, pp. 14702-14720 doi.org/10.1021/acsami.9b20154
![](https://sites.northwestern.edu/omarkfarha/files/2020/02/Kirlikovali_et-al_am9b20154_0007.jpg)
![](https://sites.northwestern.edu/omarkfarha/files/2017/11/aamick.2020.12.issue-13.largecover_Kirlikovali_cover.jpg)
25. Mechanical properties of metal-organic frameworks
Redfern, L.R.; Farha, O.K.; Chem. Sci., 2019, 10, 10666 doi.org/10.1039/c9sc04249k
Most Popular 2018-2019 materials chemistry articles
![](https://sites.northwestern.edu/omarkfarha/files/2019/12/Review_Redfern.jpg)
![](https://sites.northwestern.edu/omarkfarha/files/2019/12/Review_cover_Redfern-781x1024.jpg)
24. Metal–organic frameworks: A tunable platform to access single-site heterogeneous catalysts
Wasson, M.C.; Buru, C.T.; Chen, Z.; Islamoglu, T.; Farha, O.K.; Appl. Catal. A Gen., 2019, 586, Article 117214 doi.org/10.1016/j.apcata.2019.117214
![](https://sites.northwestern.edu/omarkfarha/files/2019/10/Metal–Organic-Frameworks-A-Tunable-Platform-to-Access-Single-Site-Heterogeneous-Catalysts.png)
![](https://sites.northwestern.edu/omarkfarha/files/2019/10/Metal–Organic-Frameworks-A-Tunable-Platform-to-Access-Single-Site-Heterogeneous-Catalysts-cover.jpg)
23. Zirconium Metal-Organic Frameworks for Organic Pollutant Adsorption
Drout, R.J.; Robison, L.; Chen, Z.; Islamoglu, T.; Farha, O.K.; Trends Chem., 2019, 3, pp. 304-317 doi.org/10.1016/j.trechm.2019.03.010
Featured on the cover
![](https://sites.northwestern.edu/omarkfarha/files/2019/05/Zirconium-Metal-Organic-Frameworks-for-Organic-Pollutant-Adsorption.jpg)
![](https://sites.northwestern.edu/omarkfarha/files/2019/06/Zirconium-Metal-Organic-Frameworks-for-Organic-Pollutant-Adsorption-cover.jpg)
22. Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs
Chen, Z.; Hanna, S.L.; Redfern, L.R.; Alezi, D.; Islamoglu, T.; Farha, O.K.; Coordin. Chem. Rev., 2019, 386, pp. 32-49 doi.org/10.1016/j.ccr.2019.01.017
Coordination Chemistry Reviews’ “most downloaded” from the last 90 days
![](https://sites.northwestern.edu/omarkfarha/files/2019/02/Reticular-chemistry-in-the-rational-synthesis-of-functional-zirconium-cluster-based-MOFs-2a381xg.jpg)
![](https://sites.northwestern.edu/omarkfarha/files/2019/02/Reticular-chemistry-in-the-rational-synthesis-of-functional-zirconium-cluster-based-MOFs-cover-28fk85r.jpg)
21. Catalytic applications of enzymes encapsulated in metal-organic frameworks
Drout, R.J.; Robison, L.; Farha, O.K.; Coord. Chem. Rev., 2019, 381, pp. 151-160 doi.org/10.1016/j.ccr.2018.11.009
![](https://sites.northwestern.edu/omarkfarha/files/2018/12/Catalytic-applications-of-enzymes-encapsulated-in-metal–organic-frameworks-1fwktjx.jpg)
![](https://sites.northwestern.edu/omarkfarha/files/2019/01/Catalytic-applications-of-enzymes-encapsulated-in-metal–organic-frameworks-cover-r157d0.jpg)
![](https://sites.northwestern.edu/omarkfarha/files/2019/08/Thermally-induced-migration-of-a-polyoxometalate-within-a-metal–organic-framework-and-its-catalytic-effects-cover.png)
![](https://sites.northwestern.edu/omarkfarha/files/2017/11/cover_303-vky98u.jpg)
![](https://sites.northwestern.edu/omarkfarha/files/2019/08/Enzyme-encapsulation-in-metal-organic-frameworks-for-applications-in-catalysis-cover.png)
![](https://sites.northwestern.edu/omarkfarha/files/2018/04/cover_291-2iofcma.jpg)
![](https://sites.northwestern.edu/omarkfarha/files/2017/11/cover_278-2dsmu04.jpg)
14. Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks
Howarth, A. J.; Peters, A. W.; Vermeulen, N. A.; Wang, T. C.; Hupp, J. T.; Farha, O. K.; Chem. Mater., 2017, 29, pp. 26-39 doi.org/10.1021/acs.chemmater.6b02626
Featured on the cover
Chemistry of Materials top 20 most downloaded papers in the previous 12 months from among more than 1,000 published papers, July 2018
Chemistry of Materials top 20 most downloaded papers in 2017
![](https://sites.northwestern.edu/omarkfarha/files/2017/11/cover_275-yv3wsw.jpg)
![](https://sites.northwestern.edu/omarkfarha/files/2019/08/Metal-organic-frameworks-for-the-removal-of-toxic-industrial-chemicals-and-chemical-warfare-agents-cover.png)
12. Chemical, thermal and mechanical stabilities of metal–organic frameworks
Howarth, A. J.; Liu, Y.; Li, P.; Li, Z.; Wang, T. C.; Hupp, J. T.; Farha, O. K.; Nat. Rev. Mater., 2016, 1, pp. 15018 doi.org/10.1038/natrevmats.2015.18
Featured on the cover
![](https://sites.northwestern.edu/omarkfarha/files/2019/08/Chemical-thermal-and-mechanical-stabilities-of-metal–organic-frameworks.jpg)
![](https://sites.northwestern.edu/omarkfarha/files/2019/08/Chemical-thermal-and-mechanical-stabilities-of-metal–organic-frameworks-cover.png)
11. Metal-organic framework materials for light-harvesting and energy transfer
So, M. C.; Wiederrecht, G. P.; Mondloch, J. E.; Hupp, J. T.; Farha, O. K.; Chem. Commun., 2015, 51, pp. 3501-3510 doi.org/10.1039/C4CC09596K
![](https://sites.northwestern.edu/omarkfarha/files/2019/09/Metal–organic-framework-materials-for-light-harvesting-and-energy-transfer.gif)
![](https://sites.northwestern.edu/omarkfarha/files/2019/09/Metal–organic-framework-materials-for-light-harvesting-and-energy-transfer-cover.png)
10. Introducing Perovskite Solar Cells to Undergraduates
Patwardhan, S.; Cao, D. H.; Hatch, S.; Farha, O. K.; Hupp, J. T.; Kanatzidis, M. G.; Schatz, G. C.; J. Phys. Chem. Lett., 2015, 6, pp. 251-255 doi.org/10.1021/jz502648y
![](https://sites.northwestern.edu/omarkfarha/files/2019/10/Introducing-Perovskite-Solar-Cells-to-Undergraduates.png)
![](https://sites.northwestern.edu/omarkfarha/files/2019/09/Introducing-Perovskite-Solar-Cells-to-Undergraduates-cover.jpg)
9. Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement
Deria, P.; Mondloch, J.E.; Karagiaridi, O.; Bury, W.; Hupp, J.T.; Farha, O. K.; Chem. Soc. Rev., 2014, 43, pp. 5896-5912 doi.org/10.1039/C4CS00067F
![](https://sites.northwestern.edu/omarkfarha/files/2019/10/Beyond-post-synthesis-modification-evolution-of-metal–organic-frameworks-via-building-block-replacement.png)
![](https://sites.northwestern.edu/omarkfarha/files/2019/10/Beyond-post-synthesis-modification-evolution-of-metal–organic-frameworks-via-building-block-replacement-cover.png)
8. Synthesis and Characterization of Functionalized Metal-organic Frameworks
Karagiaridi, O.; Bury, W.; Sarjeant, A. A.; Hupp, J. T.; Farha, O. K.; J. Vis. Exp., 2014, 91 doi.org/10.3791/52094
![](https://sites.northwestern.edu/omarkfarha/files/2019/09/Synthesis-and-characterization-of-functionalized-metal-organic-frameworks.png)
![](https://sites.northwestern.edu/omarkfarha/files/2019/09/Synthesis-and-characterization-of-functionalized-metal-organic-frameworks-cover.png)
7. Solvent-Assisted Linker Exchange: An Alternative to the De Novo Synthesis of Unattainable Metal–Organic Frameworks
Karagiaridi, O.; Bury, W.; Mondloch, J. E.; Hupp, J. T.; Farha, O. K., Angew. Chem. Int. Ed., 2014, 53, pp. 4530-4540 doi.org/10.1002/anie.201306923
![](https://sites.northwestern.edu/omarkfarha/files/2019/09/Solvent‐Assisted-Linker-Exchange-An-Alternative-to-the-De Novo-Synthesis-of-Unattainable-Metal–Organic-Frameworks.jpg)
![](https://sites.northwestern.edu/omarkfarha/files/2019/09/Solvent‐Assisted-Linker-Exchange-An-Alternative-to-the-De Novo-Synthesis-of-Unattainable-Metal–Organic-Frameworks-cover.jpg)
6. Activation of metal-organic framework materials
Mondloch, J. E.; Karagiaridi, O.; Farha, O. K.; Hupp, J. T.; CrystEngComm, 2013, 15, pp. 9258-9264 doi.org/10.1039/C3CE41232F
![](https://sites.northwestern.edu/omarkfarha/files/2019/09/Activation-of-metal-organic-framework-materials.png)
![](https://sites.northwestern.edu/omarkfarha/files/2019/09/Activation-of-metal-organic-framework-materials-cover.png)
5. Transmetalation: routes to metal exchange within metal-organic frameworks
Lalonde, M.; Bury, W.; Karagiaridi, O.; Brown, Z.; Hupp, J. T.; Farha, O. K., J. Mater. Chem. A, 2013, 1, pp. 5453-5468 doi.org/10.1039/C3TA10784A
![](https://sites.northwestern.edu/omarkfarha/files/2019/10/Transmetalation-routes-to-metal-exchange-within-metal-organic-frameworks.png)
![](https://sites.northwestern.edu/omarkfarha/files/2019/10/Transmetalation-routes-to-metal-exchange-within-metal-organic-frameworks-cover-1.png)
4. Metal-organic framework materials as chemical sensors
Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Chem. Rev., 2012, 112, pp. 1105-25 doi.org/10.1021/cr200324t
![](https://sites.northwestern.edu/omarkfarha/files/2019/10/Metal-organic-framework-materials-as-chemical-sensors.jpeg)
![](https://sites.northwestern.edu/omarkfarha/files/2019/10/Metal-organic-framework-materials-as-chemical-sensors-cover.jpg)
3. Toward solar fuels: Water splitting with sunlight and “rust”
Katz, M. J.; Riha, S. C.; Jeong, N. C.; Martinson, A. B. F.; Farha, O. K.; Hupp, J. T., Coord. Chem. Rev., 2012, 256, pp. 2521-2529 doi.org/10.1016/j.ccr.2012.06.017
![](https://sites.northwestern.edu/omarkfarha/files/2019/10/Toward-solar-fuels-and-water-splitting.jpg)
![](https://sites.northwestern.edu/omarkfarha/files/2019/10/Toward-solar-fuels-and-water-splitting-cover.jpg)
2. Rational Design, Synthesis, Purification, and Activation of Metal−Organic Framework Materials
Farha, O. K.; Hupp, J. T., Acc. Chem. Res., 2010, 43, pp. 1166-1175 doi.org/10.1021/ar1000617
Featured on the cover
![](https://sites.northwestern.edu/omarkfarha/files/2019/10/Rational-Design-Synthesis-Purification-and-Activation-of-Metal−Organic-Framework-Materials.jpeg)
![](https://sites.northwestern.edu/omarkfarha/files/2019/10/Rational-Design-Synthesis-Purification-and-Activation-of-Metal−Organic-Framework-Materials-cover.jpg)
1. Metal-organic framework materials as catalysts
Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T., Chem. Soc. Rev., 2009, 38, pp. 1450-1459 doi.org/10.1039/B807080F
![](https://sites.northwestern.edu/omarkfarha/files/2019/10/Metal–organic-framework-materials-as-catalysts.png)
![](https://sites.northwestern.edu/omarkfarha/files/2019/10/Metal–organic-framework-materials-as-catalysts-cover.png)
Book Chapters and Marginally Refereed Publications
28. Nanomaterial Development, Characterization, and Integration Strategies for Chemical Warfare Defense
Peterson, G.W.; Whitfield, T.; Farha, O.K.; ACS Appl. Mater. Interfaces; 2020, 12, pp.14629-14630 doi.org/10.1021/acsami.0c03654
![Screenshot 10-03-2020 21.06.30 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-10-03-2020-21.06.30-2.png)
27. Illuminating a Practical Solution to Clothing Protection from Mustard Gas
Wasson, M.C.; Buru, C.T.; Kirlikovali, K.O.; Farha, O.K.; Matter; 2020, 2, pp. 286-287 doi.org/10.1016/j.matt.2020.01.009
![](https://sites.northwestern.edu/omarkfarha/files/2020/02/Wasson_et-al_2020_Matter.jpg)
![Screenshot 10-03-2020 21.59.41 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-10-03-2020-21.59.41-2.png)
26. Heterometallic Metal–Organic Frameworks (MOFs): The Advent of Improving the Energy Landscape
Rice, A.M.; Leith, G.A.; Ejegbavwo, O.A.; Dolgopolova, E.A.; Shustova, N.B.; ACS Energy Lett.; 2019, 4, pp.1938-1946 doi.org/10.1021/acsenergylett.9b00874
![26](https://sites.northwestern.edu/omarkfarha/files/2017/11/26.gif)
![Screenshot 10-03-2020 21.00.03 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-10-03-2020-21.00.03-2.png)
25. Metal-organic frameworks for capture and detoxification of nerve agents
Howarth, A.J.; Majewski, M.B.; Farha, O.K.; 2019, Chapter 6, pp.179-202; Metal-Organic Frameworks (MOFs) for Environmental Applications; ISBN: 9780128146330, published 2019
![Screenshot 10-03-2020 22.02.44 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-10-03-2020-22.02.44-2.png)
24. Energy Selects: Energy Conversion with 2D-Architectures and Metal Organic Frameworks
Sivula, K.; Pradhan, N.; Christopher, P.; Wasson, M.C.; Farha, O.K.; Kamat, P.V.; ACS Energy Lett.; 2019, 4, pp. 2021-2023 doi.org/10.1021/acsenergylett.9b01594
![](https://sites.northwestern.edu/omarkfarha/files/2019/08/Energy-Selects-Energy-Conversion-with-2D-Architectures-and-Metal-Organic-Frameworks.png)
![](https://sites.northwestern.edu/omarkfarha/files/2019/09/Energy-Selects-Energy-Conversion-with-2D-Architectures-and-Metal-Organic-Frameworks-cover.jpg)
23. You’ve Probably Never Heard of MOFs, but…They could be as important to the 21st century as plastics were to the 20th
Wilmer, C.E.; Hernandez, B.; Farha, O.K.; Scientific American; Oct. 18, 2018
![Screenshot 10-03-2020 20.18.33 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-10-03-2020-20.18.33-2-1-300x289.png)
![](https://sites.northwestern.edu/omarkfarha/files/2018/04/cover_323-1eagi29.jpg)
21. Evaluation of ION-X® Hydride Dopant Gas Sources on a Varian VIISion High Current Implanter
Kerkel, K.; Arnó, J.; Reichl, G.; Feicht, J.; Winzig, H.; Farha, O.K.; Morris, W.; Siu, P.W.; Tom, G.M.; Weston, M.H.; Fuller, P.E. 22nd International Conference on Ion Implantation Technology (IIT); 2018, doi.org/10.1109/IIT.2018.8807928
![Screenshot 10-03-2020 20.06.13 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-10-03-2020-20.06.13-2-300x185.png)
![Screenshot 10-03-2020 20.13.11 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-10-03-2020-20.13.11-2.png)
20. Next Generation Dopant Gas Delivery System for Ion Implant Applications
Arnó, J.; Farha, O.K.; Morris, W.; Siu, P.; Tom, G.M.; Weston, M.; Fuller, P.; McCabe, J.; Ameen, M.; Solid State Technology; 2018, April/May, 27-30
![Screenshot 10-03-2020 21.16.16 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-10-03-2020-21.16.16-2-300x122.png)
19. New Talent 2018
Islamoglu, T.; Naumov, P.; Lu, T.-B.; Farha, O. K., CrystEngComm; 2018, 20, pp. 5870-5871 doi.org/10.1039/C8CE90135J
![](https://sites.northwestern.edu/omarkfarha/files/2019/10/New-Talent-2018-cover.png)
18. Experimentalists and theorists need to talk
Peters, A.W.; Howwarth, A.J.; Farha, O.K.; Nature; 2017, 551, pp.433-434 doi.org/10.1038/d41586-017-07207-7
![Screenshot 10-03-2020 19.52.20 (3)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-10-03-2020-19.52.20-3-300x208.png)
![18](https://sites.northwestern.edu/omarkfarha/files/2017/11/18.jpg)
17. Low-Dose and In-Painting Methods for (Near) Atomic Resolution STEM Imaging of Metal Organic Frameworks (MOFs)
Mehdi, B.L.; Stevens, A.J.; Moeck, P.; Dohnalkova, A.; Vjunov, A.; Fulton, J.L.; Camaioni, D.M.; Farha, O.K.; Hupp, J.T.; Gates, B.C.; Lercher, J.A.; Browning, N.D.; Microsc. Microanal.; 2017, 23, pp.1804-1805 doi.org/10.1017/S1431927617009680
![Screenshot 10-03-2020 19.40.17 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-10-03-2020-19.40.17-2-300x269.png)
![microscopy_and microanalysis](https://sites.northwestern.edu/omarkfarha/files/2017/11/microscopy_and-microanalysis.jpg)
16. Material and Interfaces for Energy-Related Applications: Hupp 60th Birthday Forum
Farha, O. K.; Hamann, T. W.; Martinson, A. B. F.; Mulfort, K.; ACS Appl Mater Interfaces; 2017, 9, pp. 33377-33378 doi.org/10.1021/acsami.7b04082
Featured on the cover
![](https://sites.northwestern.edu/omarkfarha/files/2017/11/cover_267-1tjmgg0.jpg)
15. Metal–Organic Frameworks: An Emerging Class of Solid-State Materials
Mondloch, J.E.; Howarth, A.J.; Klet, R.C.; Hupp, J.T.; Farha, O.K.; Peters, A. W.; Li, Z.; Farha, O. K.; 2017, 4, Chapter 8- Nano and Hybrid Materials; Metal-Organic Frameworks: An Emerging Class of Solid-State Materials, published September 6th
![Screenshot 09-27-2020 18.51.19 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-09-27-2020-18.51.19-2-1024x863.png)
![9783527691036.cover_15](https://sites.northwestern.edu/omarkfarha/files/2017/11/9783527691036.cover_15.jpg)
14. Enhancing the Catalytic Activity in the Solid State: Metal–Organic Frameworks to the Rescue
Peters, A. W.; Li, Z.; Farha, O. K.; ACS Central Science; 2017, 3, pp. 367-368 doi.org/10.1021/acscentsci.7b00161
![](https://sites.northwestern.edu/omarkfarha/files/2019/08/enhancing-catalytic-activity-mofs-to-the-rescue.jpeg)
![](https://sites.northwestern.edu/omarkfarha/files/2017/11/cover_296-1f4x7ke.jpg)
13. Organomimetic clusters: Precision in 3D
Majewski, M.B.; Howarth, A.J.; Farha, O. K.; Nat. Chem.; 2017, 9, pp. 299-301
![Screenshot 09-27-2020 18.43.52 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-09-27-2020-18.43.52-2-1024x635.png)
![13](https://sites.northwestern.edu/omarkfarha/files/2017/11/13.jpg)
12. MOFs move to market
Faust, T.; Hernandez, B.; Farha, O.K.; Nat. Chem.; 2016, 8, pp. 990-991
![Screenshot 09-27-2020 18.38.37 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-09-27-2020-18.38.37-2.png)
![Screenshot 10-03-2020 22.08.54 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-10-03-2020-22.08.54-2.png)
11. Author Profile
Farha, O. K.; Angew. Chem. Int. Ed.; 2016, doi.org/10.1002/anie.201608945
![Screenshot 09-27-2020 18.32.22 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-09-27-2020-18.32.22-2-1024x614.png)
![anie201701351-toc-0001-m_11](https://sites.northwestern.edu/omarkfarha/files/2017/11/anie201701351-toc-0001-m_11.jpg)
10. Low Temperature Atomic Layer Deposited TiO2 Compact Layers for Planar Perovskite Solar Cells
Kim, I.S.; Haasch, R.; Cao, D.; Farha, O. K.; Hupp, J.T.; Kanatzidis, M.; Martinson, A.B.F.; ECS Transactions; 2016, 75, pp. 111-116 doi.org/10.1149/07506.0111ecst
![Screenshot 09-27-2020 18.26.43 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-09-27-2020-18.26.43-2-1024x559.png)
9. A Precise and Scalable Post-Modification of Mesoporous Metal-Organic Framework NU-1000 Via Atomic Layer Deposition
Kim, I.S.; Farha, O. K.; Hupp, J.T.; Gagliardi, L.; Chapman, K.W.; Cramer, C.; Martinson, A.B.F.; ECS Transactions; 2016, 75, pp. 93-99 doi.org/10.1149/07506.0093ecst
![Screenshot 09-27-2020 18.22.19 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-09-27-2020-18.22.19-2-1024x326.png)
8. Adding to the Arsenal of Zirconium‐Based Metal–Organic Frameworks: the Topology as a Platform for Solvent‐Assisted Metal Incorporation
Liu, T.-F.; Vermeulen, N.A.; Howarth, A.J.; Li, P.; Sarjeant, A.A.; Hupp, J.T.; Farha, O. K.; Eur. J. Inorg. Chem.; 2016, pp. 4349-4352 doi.org/10.1002/ejic.201600627
![Screenshot 09-27-2020 18.12.08 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-09-27-2020-18.12.08-2-1024x934.png)
![ejic201670271-toc-0001-m_8](https://sites.northwestern.edu/omarkfarha/files/2017/11/ejic201670271-toc-0001-m_8.jpg)
7. Utilization of Metal-Organic Frameworks for the Management of Gases Used in Ion Implantation
Tom, G.M.; Morris, W.; Weston, M.H.; Fuller, P.E.; Siu, P.W.; Murdock, C.R.; Siegfried, J.P.; Farha, O. K.; International Conference on Ion Implantation Technology. 2016
![Screenshot 10-03-2020 21.30.02 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-10-03-2020-21.30.02-2.png)
![Screenshot 10-03-2020 21.31.34 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-10-03-2020-21.31.34-2.png)
6. Electrocatalysis: Powered by porphyrin packing
Hod, I.; Farha, O. K.; Hupp, J.T.; Nat. Mater., News and View; 2015, 14, pp.1192-1193
![Screenshot 10-03-2020 21.27.22 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-10-03-2020-21.27.22-2-300x182.png)
![Screenshot 10-03-2020 22.12.00 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-10-03-2020-22.12.00-2.png)
5. Metal-Organic Frameworks
Farha, O.K.; Wilmer, C.E.; American Crystallographic Association; 2013, Fall, 3.
4. Metal-Organic Frameworks as Heterogeneous Catalysts
Mondloch, J.E.; Farha, O.K.; Hupp, J.T.; Chapter 9, Catalysis at the Organic Ligands, RSC Catalysis Series No. 12, Royal Society of Chemistry, 2013, pp.289-309.
3. Porous Coordination Polymers as H2 Storage Materials: Implications of Cation Doping on Uptake and Binding
Mulfort, K.L.; Farha, O.K.; Hupp, J.T.; Proc. ACS Div. Polym. Mat. Sci. Eng. 2009
2. Toward Conductive, High-Porosity Metal-Organic Framework Materials for Selective Chemical Sorption
Farha, O. K.; Mulfort, K.L.; Brown, S.E.; Hupp, J.T.; CBD PS&T Conference Proceedings, DTRA, September 2008
1. Polyhedral boranes in the nanoworld
Hawthorne, M.F.; Farha, O. K.; Julius, R.L.; Ma, L.; Jalisatgi, S.S.; Li, T.; Bayer, M.J.; Modern Aspects of Main Group Chemistry; America Chemical Society Symposium Series No. 917, Oxford University Press: Washington, DC, 2006, Chapter 22, pp. 312-324 DOI: 10.1021/bk-2005-0917.ch022
![Screenshot 10-03-2020 21.41.00 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-10-03-2020-21.41.00-2-1024x224.png)
![Screenshot 10-03-2020 22.14.17 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-10-03-2020-22.14.17-2-200x300.png)
Discussions
4. The State of the Field: From Inception to Commercialization of Metal–Organic Frameworks
Chen, Z.; Wasson, M.C.; Drout, R.J.; Robison, L.; Idrees, K.B.; Knapp, J.G.; Son, F.A.; Zhang, X.; Hierse, W.; Kühn, C.; Marx, S.; Hernandez, B.; Farha, O.K.; Faraday Discuss.; 2020, Just Accepted Article doi.org/10.1039/D0FD00103A
![Screenshot 10-18-2020 14.55.53 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-10-18-2020-14.55.53-2-1024x477.png)
![Screenshot 10-18-2020 15.09.45 (2)](https://sites.northwestern.edu/omarkfarha/files/2017/11/Screenshot-10-18-2020-15.09.45-2.png)
3. Catalysis in MOFs: general discussion
Carraro, F.; Chapman, K.; Chen, Z.; Dinca, M.; Easun, T.; Eddaoudi, M.; Farha, O.; Forgan, R.; Gagliardi, L.; Haase, F.; Harris, D.; Kitagawa, S.; Knichal, J.; Lamberti, C.; Lee, J.-S. M.; Leus, K.; Li, J.; Lin, W.; Lloyd, G.; Long, J. R.; Lu, C.; Ma, S.; McHugh, L.; Perez, J. P. H.; Ranocchiari, M.; Rosi, N.; Rosseinsky, M.; Ryder, M. R.; Ting, V.; van der Veen, M.; Van Der Voort, P.; Volkmer, D.; Walsh, A.; Woods, D.; Yaghi, O. M.; Faraday Discuss.; 2017, 201, pp. 369-394 doi.org/10.1039/C7FD90046E
![](https://sites.northwestern.edu/omarkfarha/files/2019/08/Tuning-the-properties-of-metal-organic-framework-nodes-as-supports-of-single-site-iridium-catalysts-node-modification-by-atomic-layer-deposition-of-aluminium-cover.png)
2. MOFs modeling and theory: general discussion
Addicoat, M.; Butler, K.; Farha, O.; Gagliardi, L.; Hajiahmadi Farmahini, A.; Hendon, C.; Jorge, M.; Kitagawa, S.; Lamberti, C.; Lee, J.-S. M.; Li, J.; Liu, X.; Moggach, S.; Ranocchiari, M.; Sarkisov, L.; Shevlin, S.; Stassen, I.; Svane, K.; Volkmer, D.; Walsh, A.; Wilmer, C.; Yaghi, O. M.; Faraday Discuss.; 2017, 201, pp. 233-245 doi.org/10.1039/C7FD90045G
![](https://sites.northwestern.edu/omarkfarha/files/2019/08/Tuning-the-properties-of-metal-organic-framework-nodes-as-supports-of-single-site-iridium-catalysts-node-modification-by-atomic-layer-deposition-of-aluminium-cover.png)
1. New directions in gas sorption and separation with MOFs: general discussion
Addicoat, M.; Bennett, T.; Chapman, K.; Denysenko, D.; Dinca, M.; Doan, H.; Easun, T.; Eddaoudi, M.; Farha, O.; Gagliardi, L.; Haase, F.; Hajiahmadi Farmahini, A.; Hendon, C.; Jorge, M.; Kitagawa, S.; Lamberti, C.; Lee, J.-S. M.; Leus, K.; Li, J.; Lin, W.; Liu, X.; Lloyd, G.; Lu, C.; Ma, S.; Perez, J. P. H.; Ranocchiari, M.; Rosi, N.; Stassen, I.; Ting, V.; van der Veen, M.; Van Der Voort, P.; Vande Velde, C. M. L.; Volkmer, D.; Vornholt, S.; Walsh, A.; Yaghi, O. M.; Faraday Discuss.; 2017, 201, pp. 175-194 doi.org/10.1039/C7FD90044A
![](https://sites.northwestern.edu/omarkfarha/files/2019/08/Tuning-the-properties-of-metal-organic-framework-nodes-as-supports-of-single-site-iridium-catalysts-node-modification-by-atomic-layer-deposition-of-aluminium-cover.png)
Patents
17. O. K. Farha, J. T. Hupp, M. H. Beyzavi, C. J. Stephenson and Y. Liu, “Zirconium- and Hafniumbased Metal-organic Frameworks as epoxide ring-opening catalysts,” U.S. Patent 10,233,145
16. O. K. Farha, J. J. Gassensmith, J. F. Stoddart and N. C. Jeong, “Electrochemical Detection of Carbon Dioxide Using a Carbohydrate Based Coordination Polymer,” U.S. Patent 10,228,343
15. S. T Nguyen, J. T Hupp, O. K Farha and S. J. Garibay, “Catalyst composition and process for preparing olefin oxides,” 2018, U.S. Patent 9,943,839
14. O. K. Farha, J. T. Hupp J. E. Mondloch and M. J. Katz, “Catalytic Decomposition of Nerve Agents via Metal Oxide Cluster Containing Metal-Organic Frameworks,” 2017, U.S. Patent 9,623,404
13. O. K. Farha, J. T. Hupp J. E. Mondloch and W. Bury, “Gas-phase deposition by atomic layer deposition in metal-organic frameworks,” 2017, U.S. Patent 9,738,665
12. O. K. Farha, J. T. Hupp, R. C. Klet and M. Delferro, “Transition Metal Complexes Supported on Metal-Organic Framework for Heterogeneous Catalysts,” 2017, U.S. Patent 9,562,118
11. O. K. Farha, J. T. Hupp and P. Deria, “Interior Decoration of Metal-Organic Framework via Solvent Assisted Ligand Incorporation,” 2017, U.S. Patent 9,610,560
10. O. K. Farha, I. Eryazici, C. E. Wilmer, R. Q. Snurr and J. T. Hupp, “Metal-Organic Framework Materials with Ultrahigh Surface Areas,” 2016, U.S. Patent 9,216,939
9. K. A. Scheidt, J. M. Roberts, J. T. Hupp and O. K. Farha, “Azolium Metal-Organic Frameworks,” 2016, US Patent 9,512,146
8. C. E. Wilmer, O. K. Farha, J. T. Hupp, R. Q. Snurr and M. Leaf, “Optimal Metal-Organic Frameworks for Methane Storage,” 2014, US Patent 8,900,352
7. P. Ryan, O. K. Farha, L. Broadbelt, R. Q. Snurr and Y. S. Bae, “Metal-Organic Frameworks for Xenon/Krypton Separation,” 2013, US Patent 8,518,153
6. O. K. Farha and J. T. Hupp, “Activation of Porous MOF Materials,” 2013, US Patent 8,426,624
5. O. K. Farha and J. T. Hupp, “Tetratopic phenyl compounds, related metal-organic framework materials and postassembly elaboration,” 2013, US Patent 8,470,075 Composition is currently marketed by Aldrich
4. O. K. Farha and J. T. Hupp, “Purification of Metal-Organic Framework Materials,” 2012, US Patent 8,322,534
3. O. K. Farha and J. T. Hupp, “1,2,4,5-Tetratopic Building Blocks with a Phenyl Core,” 2012, US Patent 8,262,775
2. C. A. Mirkin, O. K. Farha, A. M. Spokoyny, K. L. Mulfort and J. T. Hupp, “Metal-Organic Framework Materials Based on Icosahedral Boranes and Carboranes,” 2010, US Patent 7,824,473
1. O. K. Farha, J. T. Hupp, Y. S. Bae, R. Snurr, A. M. Spokoyny and C. A. Mirkin, “Separation of CO2 from CH4 Employing Carborane-Based MOFs,” 2010, US Patent 7,744,842