2020 Publications

471. Isothermal Titration Calorimetry to Explore the Parameter Space of Organophosphorus Agrochemical Adsorption in MOFs

Drout, R.J.; Kato, S.; Chen, H.; Son, F.A.; Otake, K.; Islamoglu, T.; Snurr, R.Q.; Farha, O.K. J. Am. Chem. Soc., 2020, Just Accepted Article doi.org/10.1021/jacs.0c04668 

470. Process-level modelling and optimization to evaluate metal-organic frameworks for post-combustion capture of CO2

Yancy-Caballero, D.; Leperi, K.T.; Bucior, B.J.; Richardson, R.K.; Islamoglu, T.; Farha, O.K.; You, F.; Snurr, R.Q. Mol. Syst. Des. Eng., 2020, Just Accepted Article doi.org/10.1039/d0me00060d 

469. Cyclohexene Epoxidation with H2O2 in the Vapor and Liquid Phases over a Vanadium-based Metal-Organic Framework

Yoon, T.-U.; Ahn, S.; Kim, A.-R.; Notestein, J.M.; Farha, O.K.; Bae, Y.-S. Catal. Sci. Technol., 2020, Just Accepted Article doi.org/10.1039/D0CY00833H 

468. Time-Resolved in Situ Polymorphic Transformation from One 12-Connected Zr-MOF to Another

Lee, S.-J.; Mancuso, J.L.; Le, K.N.; Malliakas, C.D.; Bae, Y.-S.; Hendon, C.H.; Islamoglu, T.; Farha, O.K. ACS  Materials Lett., 2020, 2, pp. 499-504 doi.org/10.1021/acsmaterialslett.0c00012 

467. Enhancing Four-Carbon Olefin Production from Acetylene over Copper Nanoparticles in Metal-Organic Frameworks

Redfern, L.R.; Lo, W.-S.; Dillingham, I.J.; Eatman, J.G.; Mian, M.R.; Tsung, C.-K.; Farha, O.K.;  ACS Appl. Mater. Interfaces, 2020, Just Accepted Article doi.org/10.1021/acsami.0c08244

466. Stabilization of Photocatalytically Active Uranyl Species in a Uranyl–Organic Framework for Heterogeneous Alkane Fluorination Driven by Visible Light

Zhang, X.; Li, P.; Krzyaniak, M.; Knapp, J.; Wasielewski, M.R.; Farha, O.K.;  Inorg. Chem., 2020, Just Accepted Article doi.org/10.1021/acs.inorgchem.0c00850

465. Pd modified prussian blue frameworks: Multiple electron transfer pathways for improving catalytic activity toward hydrogenation of nitroaromatics

Zhang, K.; Cha, J.H.; Jeon, S.Y.; Kirlikovali, K.O.; Ostadhassn, M.; Rasouli, V.; Farha, O.K.; Jang, H.W.; Varma, R.S.; Shokouhimehr, M.; Mol. Catal., 2020, 492, pp. 110967 doi.org/10.1016/j.mcat.2020.110967

464. Control of the Porosity in Manganese Trimer-Based Metal−Organic Frameworks by Linker Functionalization

Mian, M.R.; Afrin, U.; Fataftah, M.S.; Idrees, K.B.; Islamoglu, T.; Freedman, D.E.; Farha, O.K.; Inorg. Chem., 2020, 59, pp. 8444-8450 dx.doi.org/10.1021/acs.inorgchem.0c00885

463. Uncovering the Role of Metal-Organic Framework Topology on the Capture and Reactivity of Chemical Warfare Agents

Son, F.A.; Wasson, M.C.; Islamoglu, T.; Chen, Z.; Gong, X.; Hanna, S.L.; Lyu, J.; Wang, X.; Idrees, K.B.; Mahle, J.J.; Peterson, G.W.; Farha, O.K.;  Chem. Mater., 2020, 32, pp. 4609-4617. doi.org/10.1021/acs.chemmater.0c00986

462. Vibrational Paddlewheel Cu-Cu Node in Metal-Organic Frameworks: Probe of Nonradiative Relaxation  

Song, H.I.; Bae, J.; Lee, E. J.; Kirlikovali, K.O.; Farha, O.K.; Jeong, N.C.; J. Phys. Chem. C, 2020, 124, pp. 13187-13195. doi.org/10.1021/acs.jpcc.0c02255

461. Colloidal crystal engineering with metal-organic framework nanoparticles and DNA 

Wang, S.; Park, S.S.; Buru, C.T.; Lin, H.; Chen, P.-C.; Roth, E.W.; Farha, O.K.; Mirkin, C.A.; Nature Commun., 2020, Just Accepted Article doi.org/10.1038/s41467-020-16339-w 

460. Isolating the Role of the Node-Linker Bond in the Compression of UiO-66 Metal-Organic Frameworks

Redfern, L.R.; Ducamp, M.; Wasson, M.C.; Robison, L.; Son, F.A.; Coudert, F.-X.; Farha, O.K.;  Chem. Mater, 2020, Just Accepted Article doi.org/10.1021/acs.chemmater.0c01922

Available on ChemRxiv

459. Charge Transport in Zirconium-Based Metal-Organic Frameworks

Kung, C.-W.; Goswami, S.; Hod, I.; Wang, T.C.; Duan, J.; Farha, O.K.; Hupp, J.T.; Acc. Chem. Res., 2020, 53, pp.1187-1195 doi.org/10.1021/acs.accounts.0c00106

458. Influence of Spin State and Electron Configuration on the Active Site and Mechanism for Catalytic Hydrogenation on Metal Cation Catalysts Supported on NU-1000: Insights from Experiments and Microkinetic Modeling

Shabbir, H.; Pellizzeri, S.; Ferrandon, M.; Kim, I.S.; Vermeulen, N. A.; Farha, O.K.; Delferro, M.; Martinson, A. B. F.; Getman, R. B.; Catal. Sci. Technol., 2020, Just Accepted Article doi.org/10.1039/D0CY00394H

457. Inverse Design of Nanoporous Crystaliine Reticular Materials with Deep Generative Models 

Yao, Z.; Sanchez-Lengeling, B.; Bobbitt, N.S.; Bucior, B. J.; Kumar, S.G.H.; Collins, S.P.; Burns, T.; Woo, T.K.; Farha, O.K.; Snurr, R.Q.; Aspuru-Guzik, A.; ChemRxiv, 2020, preprint. doi.org/10.26434/chemrxiv.12186681.v1

456. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy   

Chen, Z.; Li, P.; Anderson, R.; Wang, X.; Zhang, X.; Robison, L.; Redfern, L.R.; Moribe, S.; Islamoglu, T.; Gómez-Gualdrón, D.A.; Yildirim, T.; Stoddart, J.F.; Farha, O.K.; Science, 2020, 368, pp. 297-303 doi.org/10.1126/science.aaz8881

Featured in c&en article “Hydrogen and methane-adsorbing MOF boasts impressive combination of properties”

455. Designing Porous Materials to Resist Compression: Mechanical Reinforcement of a Zr-MOF with Structural Linkers   

Robison, L.; Drout, R.J.; Redfern, L.R.; Son, F.A.; Wasson, M.C.; Goswami, S.; Chen, Z.; Olszewski, A.; Idrees, K.B.; Islamoglu, T.; Farha, O.K.; Chem. Mater., 2020, 32, pp.3545-3552. doi.org/10.1021/acs.chemmater.0c00634

454. Structural Features of Zirconium-Based Metal-Organic Frameworks Affecting Radiolytic Stability   

Hanna, S.L.; Rademacher, D.X.; Hanson, D.J.; Islamoglu, T.; Olszewski, A.K.; Nenoff, T.M.; Farha, O.K.; Ind. Eng. Chem. Res., 2020, 59, pp. 7520-7526. doi.org/10.1021/acs.iecr.9b06820

453. Mechanistic Insights into C-H Borylation of Arenes with Organoiridium Catalysts Embedded in a Microporous Metal-Organic Framework   

Syed, Z.H.; Chen, Z.; Idrees, K.B.; Goetjen, T.A.; Wegener, E.C.; Zhang, X.; Chapman, K.W.; Kaphan, D.M.; Delferro, M.D.; Farha, O.K.; Organometallics, 2020, 39, pp. 1123-1133 doi.org/10.1021/acs.organomet.9b00874

452. Precise Control of Cu Nanoparticle Size and Catalytic Activity through Pore Templating in Zr Metal-Organic Frameworks

Mian, M.R.; Redfern, L.R.; Pratik, S.M.; Ray, D.; Liu, J.; Idrees, K.B.; Islamoglu, T.; Gagliardi, L.; Farha, O.K.; Chem. Mater., 2020, 32, pp. 3078-3086 doi.org/10.1021/acs.chemmater.0c00059

Chemistry of Materials “most read articles” for April 2020

451. Single crystal structure and photocatalytic behavior of grafted uranyl on the Zr-node of a pyrene-based metal-organic framework 

Knapp, J.G.; Zhang, X.; Elkin, T.; Wolfsberg, L.E.; Hanna, S.L.; Son, F.A.; Scott, B.L.; Farha, O.K.; CrystEngComm., 2020, 22, pp. 2097-2102 doi.org/10.1039/C9CE02034A

450. Reticular exploration of uranium-based metal-organic frameworks with hexacarboxylate building units 

Chen, Z.; Li, P.; Zhang, X.; Mian, M.R.; Wang, X.; Li, P.; Liu, Z.; O’Keeffe, M.; Stoddart, J.F.; Farha, O.K.; Nano Res, 2020, 13, pp. 298-314 doi.org/10.1007/s12274-020-2690-3

449. Tailoring Pore Aperture and Structural Defects in Zirconium-Based Metal-Organic Frameworks for Krypton/Xenon Separation 

Idrees, K.B.; Chen, Z.; Zhang, X.; Mian, M.R.; Drout, R.J.; Islamoglu, T.; Farha, O.K.; Chem. Mater., 2020, 32, pp. 3776-3782 doi.org/10.1021/acs.chemmater.9b05048

448. Phase Transitions in Metal-Organic Frameworks Directly Monitored through In Situ Variable Temperature Liquid-Cell Transmission Electron Microscopy and In Situ X-Ray Diffraction  

Lyu, J.; Gong, X.; Lee, S.-J.; Gnanasekaran, K.; Zhang, X.; Wasson, M.C.; Wang, X.; Bai, P.; Guo, X.; Gianneschi, N.C.; Farha, O.K.; J. Am. Chem. Soc., 2020, 142, pp. 4609-4615 doi.org/10.1021/jacs.0c00542

447. A Flexible Interpenetrated Zirconium-Based Metal-Organic-Framework with High Affinity toward Ammonia 

Zhang, Y.; Zhang, X.; Chen, Z.; Otake, K.; Peterson, G.; Chen, Y.; Wang, X.; Redfern, L.; Goswami, S.; Li, P.; Islamoglu, T.; Wang, B.; Farha, O.K.; ChemSusChem, 2020, 13, pp. 1710-1714 doi.org/10.1002/cssc.202000306

446. Single-Crystal Polycationic Polymers Obtained by Single-Crystal-to-Single-Crystal Photopolymerization

Guo, Q.-H.; Jia, M.; Liu, Z.; Qiu, Y.; Chen, H.; Shen, D.; Zhang, X.; Tu, Q.; Ryder, M.R.; Chen, H.; Li, P.; Xu, Y.; Li, P.; Chen, Z.; Shekhawat, G.S.; Dravid, V.P.; Snurr, R.Q.; Philp, D.; Sue, A.C.-H.; Farha, O.K.; Rolandi, M.; Stoddart, J.F.; J. Am. Chem. Soc., 2020, 142, pp. 6180-6187 doi.org/10.1021/jacs.9b13790

445. Demonstrating the critical role of solvation in supported Ti and Nb epoxidation catalysts via vapor-phase kinetics

Ahn, S.; Nauert, S.L.; Hicks, K.E.; Ardagh, M.A.; Schweitzer, N.M.; Farha, O.K.; Notestein, J.M.; ACS Catal., 2020, 10, pp. 2817-2825 doi.org/10.1021/acscatal.9b04906

444. Strategies for Incorporating Catalytically Active Polyoxometalates in Metal-Organic Frameworks for Organic Transformations 

Buru, C.T.; Farha, O.K.; ACS Appl. Mater. Interfaces, 2020, 12, pp. 5345-5360 doi.org/10.1021/acsami.9b19785

443. Solvent-assisted linker exchange enabled preparation of cerium-based metal–organic frameworks constructed from redox active linkers

Son, F.A.; Atilgan, A.; Idrees, K.B.; Islamoglu, T.; Farha, O.K.; Inorg. Chem. Front., 2020, 7, pp. 984-990 doi.org/10.1039/c9qi01218d

442. Integration of Enzymes and Photosensitizers in a Hierarchical Mesoporous Metal–Organic Framework for Light-Driven CO2 Reduction

Chen, Y.; Li, P.; Zhou, J.; Buru, C.T.; Đorđević, L.; Li, P.; Zhang, X.; Cetin, M.M.; Stoddart, J.F.; Stupp, S.I.; Wasielewski, M.R.; Farha, O.K.; J. Am. Chem. Soc., 2020, 142, pp. 1768-1773 doi.org/10.1021/jacs.9b12828

441. Organic Counteranion Co-assembly Strategy for the Formation of γ-Cyclodextrin-Containing Hybrid Frameworks

Shen, D.; Cooper, J.A.; Li, P.; Guo, Q.-H.; Cai, K.; Wang, X.; Wu, H.; Chen, H.; Zhang, L.; Jiao, Y.; Qiu, Y.; Stern, C.L.; Liu, Z.; Sue, A. C.-H.; Yang, Y.-W.; Alsubaie, F.M.; Farha, O.K.; Stoddart, J.F.; J. Am. Chem. Soc., 2020, 142, pp. 2042-2050 doi.org/10.1021/jacs.9b12527

440. Real-Time in Situ Monitoring of Particle and Structure Evolution in the Mechanochemical Synthesis of UiO-66 Metal–Organic Frameworks

Germann, L.S.; KatsenisIgor, A.D.; Huskić, I.; Julien, P.A.; Užarević, K.; Etter, M.; Farha, O.K.; Friščić, T.; Dinnebier, R.E.; Cryst. Growth Des., 2020, 20, pp. 49-54 doi.org/10.1021/acs.cgd.9b01477

Available on ChemRxiv

439. Single‐Site, Single‐Metal‐Atom, Heterogeneous Electrocatalyst: Metal−Organic‐Framework Supported Molybdenum Sulfide for Redox Mediator‐Assisted Hydrogen Evolution Reaction

Noh, H.; Yang, Y.; Zhang, X.; Goetjen, T.A.; Syed, Z.H.; Lu, Z.; Ahn, S.; Farha, O.K.; Hupp, J.T.; ChemElectroChem, 2020, 197, pp. 106189 doi.org/10.1002/celc.201901650

438. Effect of ionic liquid on sugar-aromatic separation selectivity by metal-organic framework NU-1000 in aqueous solution

Yabushita, M.; Papa, G.; Li, P.; Fukuoka, A.; Farha, O.K.; Simmons, B.A.; Katz, A.; Fuel Process. Technol., 2020, 197, pp. 1-6 doi.org/10.1016/j.fuproc.2019.106189

437. Isobutane Dehydrogenation over Bulk and Supported Molybdenum Sulfide Catalysts

Cheng, E.; McCullough, L.; Noh, H.; Farha, O.K.; Hupp, J.T.; Notestein, J.M.; Ind. Eng. Chem. Res., 2020, 59, pp. 1113-1122 doi.org/10.1021/acs.iecr.9b05844

436. H5PV2Mo10O40 Polyoxometalate Encapsulated in NU-1000 Metal–Organic Framework for Aerobic Oxidation of a Mustard Gas Simulant

Buru, C.T.; Wasson, M.C.; Farha, O.K.; ACS Appl. Nano Mater., 2020, 3, pp. 658-664 doi.org/10.1021/acsanm.9b02176

435. Computational Predictions and Experimental Validation of Alkane Oxidative Dehydrogenation by Fe2M MOF Nodes

Barona, M.; Ahn, S.; Morris, W.; Hoover, W.J.; Notestein, J.M.; Farha, O.K.; Snurr, R.Q.; ACS Catal., 2020, 10, pp. 1460-1469 doi.org/10.1021/acscatal.9b03932

434. The Synthesis Science of Targeted Vapor-Phase Metal–Organic Framework Postmodification

Kim, I.; Ahn, S.; Vermeulen, N.A.; Webber, T.E.; Gallington, L.C.; Chapman, K.W.; Penn, R.L.; Hupp, J.T.; Farha, O.K.; Notestein, J.M.; Martinson, A.B.F.; J. Am. Chem. Soc., 2020, 142, pp. 242-250 doi.org/10.1021/jacs.9b10034

433. Tuning the Redox Activity of Metal−Organic Frameworks for Enhanced, Selective O2 Binding: Design Rules and Ambient Temperature O2 Chemisorption in a Cobalt-Triazolate Framework

Rosen, A.S.; Mian, M.R.; Islamoglu, T.; Chen, H.; Farha, O.K.; Notestein, J.M.; Snurr, R.Q.; J. Am. Chem. Soc., 2020, 142, pp. 4317-4328 doi.org/10.1021/jacs.9b12401 

Available on ChemRxiv