View the full list of Yvette Wong’s publications below on:
- Mitochondria-Lysosome Contact Sites: Function and Misregulation in Disease
- Parkinson’s Disease: Cellular Mechanisms and Biomarkers
- Parkinson’s Disease: Reviews
- Frontotemporal Dementia: Cellular Mechanisms
- New Organelle Dynamics: Actin Cycling through Mitochondrial Subpopulations
- Autophagy/Mitochondria: Defects in Neurodegenerative Disorders (ALS, Optic Neuropathy, Huntington’s Disease)
~Mitochondria-Lysosome Contact Sites: Function and Misregulation in Disease ~
1. Super-resolution microscopy: Insights into mitochondria-lysosome crosstalk in health and disease.
Journal of Cell Biology. 2023 Dec 4;222(12):e202305032. PMID: 37917024
Leisten ED, Woods AC, Wong YC.
https://pubmed.ncbi.nlm.nih.gov/37917024/
2. Misregulation of mitochondria-lysosome contact dynamics in Charcot-Marie-Tooth Type 2B disease Rab7 mutant sensory peripheral neurons.
Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2313010120. PMID: 37878717
Wong YC*^, Jayaraj ND*, Belton TB, Shum GC, Ball HE, Ren D, Tadenev ALD, Krainc D, Burgess RW, Menichella DM^.
https://pubmed.ncbi.nlm.nih.gov/37878717/
3. Parkin regulates amino acid homeostasis at mitochondria-lysosome (M/L) contact sites in Parkinson’s disease.
Science Advances. 2023 Jul 21;9(29):eadh3347. PMID: 37467322
Peng W, Schröder LF, Song P, Wong YC, Krainc D.
https://pubmed.ncbi.nlm.nih.gov/37467322/
4. Mid51/Fis1 mitochondrial oligomerization complex drives lysosomal untethering and network dynamics.
Journal of Cell Biology. 2022 Oct 3;221(10):e202206140. PMID: 36044022
https://pubmed.ncbi.nlm.nih.gov/36044022/
5. Mitochondria-lysosome contact site dynamics and misregulation in neurodegenerative diseases.
Trends in Neurosciences. 2022 Apr;45(4):312-322. PMID: 35249745
Cisneros J, Belton TB, Shum GC, Molakal CG, Wong YC.
https://pubmed.ncbi.nlm.nih.gov/35249745/
6. Live cell microscopy of mitochondria-lysosome contact site formation and tethering dynamics.
STAR Protocols. 2022 Mar 18;3(2):101262. PMID: 35330964
Belton TB, Leisten ED, Cisneros J, Wong YC.
https://pubmed.ncbi.nlm.nih.gov/35330964/
7. Dysregulation of mitochondria-lysosome contacts by GBA1 dysfunction in dopaminergic neuronal models of Parkinson’s disease.
Nature Communications. 2021 Mar 22;12(1):1807. PMID: 33753743
Kim S, Wong YC, Gao F, Krainc D.
https://pubmed.ncbi.nlm.nih.gov/33753743/
8. Mitochondria-lysosome contacts regulate mitochondrial Ca2+ dynamics via lysosomal TRPML1.
Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):19266-19275. PMID: 32703809
Peng W, Wong YC, Krainc D.
https://pubmed.ncbi.nlm.nih.gov/32703809/
9. Regulation and Function of Mitochondria-Lysosome Membrane Contact Sites in Cellular Homeostasis.
Trends in Cell Biology. 2019 Jun;29(6):500-513. PMID: 3089842
Wong YC, Kim S, Peng W, Krainc D.
https://pubmed.ncbi.nlm.nih.gov/30898429
10. Lysosomal Regulation of Inter-mitochondrial Contact Fate and Motility in Charcot-Marie-Tooth Type 2.
Dev Cell. 2019 Aug 5;50(3):339-354.e4. PMID: 31231042
Wong YC*, Peng W*, Krainc D. *co-first author
https://pubmed.ncbi.nlm.nih.gov/31231042
11. Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis.
Nature. 2018 Feb 15;554(7692):382-386. PMID: 29364868
Wong YC, Ysselstein D, Krainc D.
https://pubmed.ncbi.nlm.nih.gov/29364868
~Parkinson’s Disease: Cellular Mechanisms and Biomarkers~
13. Parkinson’s disease-linked parkin mutation disrupts recycling of synaptic vesicles in human dopaminergic neurons.
Neuron. 2023 Sep 13:S0896-6273(23)00629-3. PMID: 37716354
Song P, Peng W, Sauve V, Fakih R, Xie Z, Ysselstein D, Krainc T, Wong YC, Mencacci NE, Savas JN, Surmeier DJ, Gehring K, Krainc D.
https://pubmed.ncbi.nlm.nih.gov/37716354/
14. Increased Lysosomal Exocytosis Induced by Lysosomal Ca2+ Channel Agonists Protects Human Dopaminergic Neurons from α-Synuclein Toxicity.
Journal of Neuroscience. 2019 Jul 17;39(29):5760-5772. PMID: 31097622
Tsunemi T, Perez-Rosello T, Ishiguro Y, Yoroisaka A, Jeon S, Hamada K, Rammonhan M, Wong YC, Xie Z, Akamatsu W, Mazzulli JR, Surmeier DJ, Hattori N, Krainc D.
https://pubmed.ncbi.nlm.nih.gov/31097622
15. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease.
Science. 2017 Sep 22;357(6357):1255-1261. PMID: 28882997
Burbulla LF, Song P, Mazzulli JR, Zampese E, Wong YC, Jeon S, Santos DP, Blanz J, Obermaier CD, Strojny C, Savas JN, Kiskinis E, Zhuang X, Krüger R, Surmeier DJ, Krainc D.
https://pubmed.ncbi.nlm.nih.gov/28882997
16. The Parkinson’s disease-linked protein TMEM230 is required for Rab8a-mediated secretory vesicle trafficking and retromer trafficking.
Hum Mol Genet. 2017 Feb 15;26(4):729-741. PMID: 28115417
Kim MJ, Deng HX, Wong YC, Siddique T, Krainc D.
https://pubmed.ncbi.nlm.nih.gov/28115417
17. Analysis of blood-based gene expression in idiopathic Parkinson disease.
Neurology. 2017 Oct 17;89(16):1676-1683. PMID: 28916538
Shamir R, Klein C, Amar D, Vollstedt EJ, Bonin M, Usenovic M, Wong YC, Maver A, Poths S, Safer H, Corvol JC, Lesage S, Lavi O, Deuschl G, Kuhlenbaeumer G, Pawlack H, Ulitsky I, Kasten M, Riess O, Brice A, Peterlin B, Krainc D.
https://pubmed.ncbi.nlm.nih.gov/28916538
18. Plasma apolipoprotein A1 as a biomarker for Parkinson disease.
Annals of Neurology. 2013 Jul;74(1):119-27. PMID: 23447138
Qiang JK*, Wong YC*, Siderowf A, Hurtig HI, Xie SX, Lee VM, Trojanowski JQ, Yearout D, B Leverenz J, Montine TJ, Stern M, Mendick S, Jennings D, Zabetian C, Marek K, Chen-Plotkin AS. *co-first author
https://pubmed.ncbi.nlm.nih.gov/23447138
~Parkinson’s Disease: Reviews~
19. Neuronal vulnerability in Parkinson disease: Should the focus be on axons and synaptic terminals?
Mov Disord. 2019 Oct;34(10):1406-1422. PMID: 31483900
Wong YC, Luk K, Purtell K, Burke Nanni S, Stoessl AJ, Trudeau LE, Yue Z, Krainc D, Oertel W, Obeso JA, Volpicelli-Daley LA.
https://pubmed.ncbi.nlm.nih.gov/31483900
20. α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies.
Nature Medicine. 2017 Feb 7;23(2):1-13. PMID: 28170377
Wong YC, Krainc D.
https://pubmed.ncbi.nlm.nih.gov/28170377
21. Synaptic, Mitochondrial, and Lysosomal Dysfunction in Parkinson’s Disease.
Trends Neurosci. 2019 Feb;42(2):140-149. PMID: 30509690
Nguyen M, Wong YC, Ysselstein D, Severino A, Krainc D.
https://pubmed.ncbi.nlm.nih.gov/30509690
22. Lysosomal trafficking defects link Parkinson’s disease with Gaucher’s disease.
Mov Disord. 2016 Nov;31(11):1610-1618. PMID: 27619775
Wong YC, Krainc D.
https://pubmed.ncbi.nlm.nih.gov/27619775
~Frontotemporal Dementia: Cellular Mechanisms~
23. Progranulin-mediated deficiency of cathepsin D results in FTD and NCL-like phenotypes in neurons derived from FTD patients.
Hum Mol Genet. 2017 Dec 15;26(24):4861-4872. PMID: 29036611
Valdez C, Wong YC, Schwake M, Bu G, Wszolek ZK, Krainc D.
https://pubmed.ncbi.nlm.nih.gov/29036611
~New Organelle Dynamics: Actin Cycling~
24. Mitochondrially-associated actin waves maintain organelle homeostasis and equitable inheritance.
Current Opinion in Cell Biology. 2024 Apr 30;88:102364. PMID: 38692079
https://pubmed.ncbi.nlm.nih.gov/38692079/
25. Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission-fusion balance within mitochondrial networks.
Nature Communications. 2016 Sep 30;7:12886. PMID: 27686185
Moore AS*, Wong YC*, Simpson CL, Holzbaur EL. *co-first author
https://pubmed.ncbi.nlm.nih.gov/27686185
~Autophagy/Mitochondria: Defects in Neurodegenerative Disorders~
26. Insights into the mechanism of oligodendrocyte protection and remyelination enhancement by the integrated stress response.
Glia. 2023 Sep;71(9):2180-2195. PMID: 37203250
Chen Y, Quan S, Patil V, Kunjamma RB, Tokars HM, Leisten ED, Joy G, Wills S, Chan JR, Wong YC, Popko B.
https://pubmed.ncbi.nlm.nih.gov/37203250/
27. Neurons undergo pathogenic metabolic reprogramming in models of familial ALS.
Mol Metabolism. 2022 Mar 3;60:101468. PMID: 35248787
Riechers SP, Mojsilovic-Petrovic J, Belton TB, Chakrabarty RP, Garjani M, Medvedeva V, Dalton C, Wong YC, Chandel NS, Dienel G, Kalb RG.
https://pubmed.ncbi.nlm.nih.gov/35248787/
28. Dominant mutations in MIEF1 affect mitochondrial dynamics and cause a singular late onset optic neuropathy.
Mol Neurodegener. 2021 Feb 25;16(1):12. PMID: 33632269
Charif M*, Wong YC*, Kim S, Guichet A, Vignal C, Zanlonghi X, Bensaid P, Procaccio V, Bonneau D, Amati-Bonneau P, Reynier P, Krainc D, Lenaers G. *co-first author
https://pubmed.ncbi.nlm.nih.gov/33632269
29. Autophagosome dynamics in neurodegeneration at a glance.
J Cell Sci. 2015 Apr 1;128(7):1259-67. PMID: 25829512
Wong YC, Holzbaur EL.
https://pubmed.ncbi.nlm.nih.gov/25829512
30. Temporal dynamics of PARK2/parkin and OPTN/optineurin recruitment during the mitophagy of damaged mitochondria.
Autophagy. 2015;11(2):422-4. PMID: 25801386
Wong YC, Holzbaur EL.
https://pubmed.ncbi.nlm.nih.gov/25801386
31. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation.
Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):E4439-48. PMID: 25294927
Wong YC, Holzbaur EL.
https://pubmed.ncbi.nlm.nih.gov/25294927
32. The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation.
Journal of Neuroscience. 2014 Jan 22;34(4):1293-305. PMID: 24453320
Wong YC, Holzbaur EL.
https://pubmed.ncbi.nlm.nih.gov/24453320