Skip to main content

Publications

Schwartz Lab Articles

2024

A presynaptic source drives differing levels of surround suppression in two mouse retinal ganglion cell types

Swygart D, Yu WQ, Takeuchi S, Wong ROL, Schwartz GW. A presynaptic source drives differing levels of surround suppression in two mouse retinal ganglion cell types. Nat Commun2024 Jan 18;15(1):599doi: 10.1038/s41467-024-44851-w. PubMed PMID: 38238324; PubMed Central PMCID: PMC10796971.

Link

2023

Putting early sensory neurons to sleep

Fadjukov J, Schwartz G. Putting early sensory neurons to sleep. Elife2023 Nov 10;12doi: 10.7554/eLife.93339. PubMed PMID: 37947192; PubMed Central PMCID: PMC10637771.

Link

Thrombospondin-1 proteomimetic polymers exhibit anti-angiogenic activity in a neovascular age-related macular degeneration mouse model.

Choi W, Nensel AK, Droho S, Fattah MA, Mokashi-Punekar S, Swygart DI, Burton ST, Schwartz GW, Lavine JA, Gianneschi NC. Thrombospondin-1 proteomimetic polymers exhibit anti-angiogenic activity in a neovascular age-related macular degeneration mouse model. Sci Adv2023 Oct 13;9(41):eadi8534doi: 10.1126/sciadv.adi8534. Epub 2023 Oct 13. PubMed PMID: 37831763; PubMed Central PMCID: PMC10575579.

Link

Optimal Burstiness in Populations of Spiking Neurons Facilitates Decoding of Decreases in Tonic Firing.

Durian SCL, Agrios M, Schwartz GW. Optimal Burstiness in Populations of Spiking Neurons Facilitates Decoding of Decreases in Tonic Firing. Neural Comput2023 Jun 20;:1-41doi: 10.1162/neco_a_01595. [Epub ahead of print] PubMed PMID: 37432862.

Link

IRIS: Integrated Retinal Functionality in Image Sensors.

Yin Z, Kaiser MA, Camara LO, Camarena M, Parsa M, Jacob A, Schwartz G, Jaiswal A. IRIS: Integrated Retinal Functionality in Image Sensors. Front Neurosci2023;17:1241691doi: 10.3389/fnins.2023.1241691. eCollection 2023. PubMed PMID: 37719155; PubMed Central PMCID: PMC10502419.

Link

2022

Unified Classification of Mouse Retinal Ganglion Cells Using Function, Morphology, and Gene Expression

Goetz, J., Jessen, Z. F., Jacobi, A., Mani, A., Cooler, S., Greer, D., … & Schwartz, G. W. (2022). Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression. Cell Reports40(2), 111040.

Link

Differences In Spike Generation Instead Of Synaptic Inputs Determine The Feature Selectivity Of Two Retinal Cell Types

Wienbar, S., & Schwartz, G. W. (2022). Differences in spike generation instead of synaptic inputs determine the feature selectivity of two retinal cell types. Neuron.

Link

Retinal patterns and the cellular repertoire of neuropsin (Opn5) retinal ganglion cells.

D’Souza SP, Swygart DI, Wienbar SR, Upton BA, Zhang KX, Mackin RD, Casasent AK, Samuel MA, Schwartz GW, Lang RA. Retinal patterns and the cellular repertoire of neuropsin (Opn5) retinal ganglion cells. J Comp Neurol2022 Jun;530(8):1247-1262doi: 10.1002/cne.25272. Epub 2021 Dec 15. PubMed PMID: 34743323; PubMed Central PMCID: PMC8969148.

Link

Gap junctions and connexin hemichannels both contribute to the electrical properties of retinal pigment epithelium

Fadjukov J, Wienbar S, Hakanen S, Aho V, Vihinen-Ranta M, Ihalainen TO, Schwartz GW, Nymark S. Gap junctions and connexin hemichannels both contribute to the electrical properties of retinal pigment epithelium. J Gen Physiol2022 Apr 4;154(4)doi: 10.1085/jgp.202112916. Epub 2022 Mar 11. PubMed PMID: 35275193; PubMed Central PMCID: PMC8922333.
 

Predicting and Manipulating Cone Responses to Naturalistic Inputs

Angueyra JM, Baudin J, Schwartz GW, Rieke F. Predicting and Manipulating Cone Responses to Naturalistic Inputs. J Neurosci2022 Feb 16;42(7):1254-1274doi: 10.1523/JNEUROSCI.0793-21.2021. Epub 2021 Dec 23. PubMed PMID: 34949692; PubMed Central PMCID: PMC8883858.

Link

2021

Color Vision: More Than Meets The Eye

Schwartz, G. W. (2021). Color vision: More than meets the eye. Current Biology, 31(15), R948-R950.

Link

Identification of retinal ganglion cell types and brain nuclei expressing the transcription factor Brn3c/Pou4f3 using a Cre recombinase knock-in allele.

Parmhans N, Fuller AD, Nguyen E, Chuang K, Swygart D, Wienbar SR, Lin T, Kozmik Z, Dong L, Schwartz GW, Badea TC. Identification of retinal ganglion cell types and brain nuclei expressing the transcription factor Brn3c/Pou4f3 using a Cre recombinase knock-in alleleJ Comp Neurol2021 Jun;529(8):1926-1953doi: 10.1002/cne.25065. Epub 2020 Nov 10. PubMed PMID: 33135183; PubMed Central PMCID: PMC8009822.

Link

An Offset ON-OFF Receptive Field Is Created By Gap Junctions Between Distinct Types Of Retinal Ganglion Cells

Cooler, S. Schwartz, G. W. (2021). An offset ON–OFF receptive field is created by gap junctions between distinct types of retinal ganglion cells. Nature Neuroscience 24, 105–115. 

Link

2018

A Self-Regulating Gap Junction Network Of Amacrine Cells Controls Nitric Oxide Release In The Retina

Jacoby, J., Nath, A., Jessen, Z. F., & Schwartz, G. W. (2018). A self-regulating gap junction network of amacrine cells controls nitric oxide release in the retinaNeuron100(5), 1149-1162. 

Link

2017

Electrical Synapses Convey Orientation Selectivity In The Mouse Retina

Nath, A., & Schwartz, G. W. (2017). Electrical synapses convey orientation selectivity in the mouse retinaNature communications8(1), 2025.

Link

 

Circuit Mechanisms of a Retinal Ganglion Cell with Stimulus-Dependent Response Latency and Activation Beyond Its Dendrites

Mani, A., & Schwartz, G. W. (2017). Circuit mechanisms of a retinal ganglion cell with stimulus-dependent response latency and activation beyond its dendrites. Current Biology27(4), 471-482. 

Link

Three Small-Receptive-Field Ganglion Cells in the Mouse Retina Are Distinctly Tuned to Size, Speed, and Object Motion

Jacoby, J., & Schwartz, G. W. (2017). Three small-receptive-field ganglion cells in the mouse retina are distinctly tuned to size, speed, and object motionJournal of Neuroscience37(3), 610-625. 

Link

Cardinal Orientation Selectivity Is Represented by Two Distinct Ganglion Cell Types in Mouse Retina

Nath, A., & Schwartz, G. W. (2016). Cardinal orientation selectivity is represented by two distinct ganglion cell types in mouse retinaJournal of Neuroscience36(11), 3208-3221. 

Link

An Amacrine Cell Circuit for Signaling Steady Illumination in the Retina

Jacoby, J., Zhu, Y., DeVries, S. H., & Schwartz, G. W. (2015). An amacrine cell circuit for signaling steady illumination in the retinaCell reports13(12), 2663-2670. 

Link

Book

Retinal Computation

Schwartz GW. (2021). Retinal Computation. Elsevier.

Link

Preprints

The Olivary Pretectal Nucleus Receives Visual Input of High Spatial Resolution

Levine JN, Schwartz GW (2020). The Olivary Pretectal Nucleus Receives Visual Input of High Spatial Resolution. bioRxiv:2020.06.23.168054.

Link

Mind The Gap: Decoding Decreases In Tonic Firing In Populations Of Spiking Neurons

Durian, S., Agrios, M., & Schwartz, G. W. (2022). Mind the gap: decoding decreases in tonic firing in populations of spiking neurons. bioRxiv.

Link

Collaborations

Retinal Patterns And The Cellular Repertoire Of Neuropsin (Opn5) Retinal Ganglion Cells

D’Souza, S. P., Swygart, D. I., Wienbar, S. R., Upton, B. A., Zhang, K. X., Mackin, R. D., … & Lang, R. A. (2022). Retinal patterns and the cellular repertoire of neuropsin (Opn5) retinal ganglion cellsJournal of Comparative Neurology530(8), 1247-1262.

Link

Gap Junctions And Connexin Hemichannels Both Contribute To The Electrical Properties Of Retinal Pigment Epithelium

Fadjukov, J., Wienbar, S., Hakanen, S., Aho, V., Vihinen-Ranta, M., Ihalainen, T. O., … & Nymark, S. (2022). Gap junctions and connexin hemichannels both contribute to the electrical properties of retinal pigment epithelium. Journal of General Physiology154(4), e202112916.

Link

Predicting and Manipulating Cone Responses to Naturalistic Inputs

Angueyra, J. M., Baudin, J., Schwartz, G. W., & Rieke, F. (2022). Predicting and manipulating cone responses to naturalistic inputs. Journal of Neuroscience42(7), 1254-1274. 

Link

Identification Of Retinal Ganglion Cell Types And Brain Nuclei Expressing The Transcription Factor Brn3c/Pou4f3 Using A Cre Recombinase Knock-in Allele

Parmhans N, Fuller AD, Nguyen E, Chuang K, Swygart D, Wienbar SR, Lin T, Kozmik Z, Dong L, Schwartz GW, Badea TC (2020). Identification of Retinal Ganglion Cell Types and Brain Nuclei expressing the transcription factor Brn3c/Pou4f3 using a Cre recombinase knock-in allele. Journal of Comparative Neurology. 1-28 

Link

Acute Hyperglycemia Reverses Neurovascular Coupling During Dark to Light Adaptation in Healthy Subjects on Optical Coherence Tomography Angiography

Kwan CC, Lee HE, Schwartz G, Fawzi AA. (2020). Acute Hyperglycemia Reverses Neurovascular Coupling During Dark to Light Adaptation in Healthy Subjects on Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. Apr 9;61(4):38.

Link

Caffeine Delays Retinal Neurovascular Coupling during Dark to Light Adaptation in Healthy Eyes Revealed by Optical Coherence Tomography Angiography

Zhang YS, Lee HE, Kwan CC, Schwartz GW, Fawzi AA. (2020). Caffeine Delays Retinal Neurovascular Coupling during Dark to Light Adaptation in Healthy Eyes Revealed by Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. Apr 9;61(4):37. 

Link

Molecular Signatures Of Retinal Ganglion Cells Revealed Through Single Cell Profiling

Laboissonniere LA, Goetz JJ, Martin GM, Bi R, Lund TJS, Ellson L, Lynch MR, Mooney B, Wickham H, Liu P, Schwartz GW, Trimarchi JM. (2019). Molecular signatures of retinal ganglion cells revealed through single cell profiling. Sci Rep. Oct 31;9(1):15778.

Link

Hemodynamic Response of the Three Macular Capillary Plexuses in Dark Adaptation and Flicker Stimulation Using Optical Coherence Tomography Angiography

Nesper PL, Lee HE, Fayed AE, Schwartz GW, Yu F, Fawzi AA. (2019). Hemodynamic Response of the Three Macular Capillary Plexuses in Dark Adaptation and Flicker Stimulation Using Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. Feb 1;60(2):694-703. 9.

Link

 

Review & Viewpoints

Color Vision: More Than Meets The Eye

Schwartz, G.W. (2021). Color vision: More than meets the eye. Current Biology, 31 (15)

Link

Circuits for Feature Selectivity in the Inner Retina (Featured in The Senses: A Comprehensive Reference)

Schwartz, G.W. & Swygart, D. (2020). Circuits for Feature Selectivity in the Inner Retina. in The Senses: A Comprehensive Reference. Ed. Bernd Fritzsch.

Link

Typology and Circuitry of Suppressed-by-Contrast Retinal Ganglion Cells

Jacoby, J., & Schwartz, G. W. (2018). Typology and circuitry of Suppressed-by-Contrast retinal ganglion cellsFrontiers in cellular neuroscience12.

Link

The Dynamic Receptive Fields Of Retinal Ganglion Cells

Wienbar, S., & Schwartz, G. (2018). The dynamic receptive fields of retinal ganglion cellsProgress in retinal and eye research.

Link

Nonlinear Spatial Encoding By Retinal Ganglion Cells: When 1 + 1 ≠ 2

Schwartz, G., & Rieke, F. (2011). Nonlinear spatial encoding by retinal ganglion cells: when 1+ 1≠ 2. The Journal of general physiology138(3), 283-290.

Link

 

An Expanding View Of Dynamic Electrical Coupling In The Mammalian Retina

Cafaro, J., Schwartz, G. W., & Grimes, W. N. (2011). An expanding view of dynamic electrical coupling in the mammalian retina. The Journal of physiology589(9), 2115-2116

Link

The Retina as Embodying Predictions about the Visual World

Berry, M. J., & Schwartz, G. (2011). The retina as embodying predictions about the visual world. Predictions in the Brain: Using Our Past to Generate a Future, 295.

Link

Gregory Schwartz Articles

*equal contribution

Receptive Field Center-surround Interactions Mediate Context-dependent Spatial Contrast Encoding In The Retina

Turner, M. H., Schwartz, G. W., & Rieke, F. (2018). Receptive field center-surround interactions mediate context-dependent spatial contrast encoding in the retinaeLife7, e38841.

Link

 

Nonlinear Spatiotemporal Integration by Electrical and Chemical Synapses in the Retina

Kuo, S. P., Schwartz, G. W., & Rieke, F. (2016). Nonlinear spatiotemporal integration by electrical and chemical synapses in the retina. Neuron90(2), 320-332.

Link

The Synaptic And Circuit Mechanisms Underlying A Change In Spatial Encoding In The Retina

Grimes, W. N.*, Schwartz, G. W.*, & Rieke, F. (2014). The synaptic and circuit mechanisms underlying a change in spatial encoding in the retina. Neuron82(2), 460-473. 

Link

 

Interplay Of Cell-autonomous And Non-autonomous Mechanisms Tailors Synaptic Connectivity Of Converging Axons In Vivo

Okawa, H., Della Santina, L., Schwartz, G. W., Rieke, F., & Wong, R. O. (2014). Interplay of cell-autonomous and nonautonomous mechanisms tailors synaptic connectivity of converging axons in vivoNeuron82(1), 125-137.

Link

Visual Space Is Represented by Nonmatching Topographies of Distinct Mouse Retinal Ganglion Cell Types

Bleckert, A., Schwartz, G. W., Turner, M. H., Rieke, F., & Wong, R. O. (2014). Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell typesCurrent Biology24(3), 310-315.

Link

Controlling Gain One Photon At A Time

Schwartz, G. W., & Rieke, F. (2013). Controlling gain one photon at a timeElife2, e00467.

Link

Alert Response to Motion Onset in the Retina

Chen, E. Y., Marre, O., Fisher, C., Schwartz, G., Levy, J., da Silveira, R. A., & Berry, M. J. (2013). Alert response to motion onset in the retina. Journal of Neuroscience33(1), 120-132.

Link

The Spatial Structure Of A Nonlinear Receptive Field

Schwartz, G. W., Okawa, H., Dunn, F. A., Morgan, J. L., Kerschensteiner, D., Wong, R. O., & Rieke, F. (2012). The spatial structure of a nonlinear receptive field. Nature neuroscience15(11), 1572. (Faculty of 1000 recommendation by Brent Doiron)

Link

Low Error Discrimination Using A Correlated Population Code

Schwartz, G.*, Macke, J.*, Amodei, D., Tang, H., & Berry, M. J. (2012). Low error discrimination using a correlated population codeJournal of neurophysiology108(4), 1069-1088. 

Link

Fine Spatial Information Represented in a Population of Retinal Ganglion Cells

Soo, F. S., Schwartz, G. W., Sadeghi, K., & Berry, M. J. (2011). Fine spatial information represented in a population of retinal ganglion cells. Journal of Neuroscience31(6), 2145-2155.

Link

 

An Oscillatory Circuit Underlying The Detection Of Disruptions In Temporally-periodic Patterns

Gao, J., Schwartz, G., Berry, M. J., & Holmes, P. (2009). An oscillatory circuit underlying the detection of disruptions in temporally-periodic patterns. Network: Computation in Neural Systems20(2), 106-135.

Link 

Sophisticated Temporal Pattern Recognition in Retinal Ganglion Cells

Schwartz, G., & Berry 2nd, M. J. (2008). Sophisticated temporal pattern recognition in retinal ganglion cellsJournal of neurophysiology99(4), 1787-1798. 

Link

 

Synchronized Firing among Retinal Ganglion Cells Signals Motion Reversal

Schwartz, G., Taylor, S., Fisher, C., Harris, R., & Berry II, M. J. (2007). Synchronized firing among retinal ganglion cells signals motion reversal. Neuron55(6), 958-969. 
(Faculty of 1000 recommendation by Leonard Maler)

Link

Detection And Prediction Of Periodic Patterns By The Retina

Schwartz, G., Harris, R., Shrom, D., & Berry II, M. J. (2007). Detection and prediction of periodic patterns by the retina. Nature neuroscience10(5), 552. 
(Faculty of 1000 recommendation by Bruce Cumming)

Link

Shadows Of The Past: Temporal Retrieval Effects In Recognition Memory

Schwartz, G., Howard, M. W., Jing, B., & Kahana, M. J. (2005). Shadows of the past: Temporal retrieval effects in recognition memory. Psychological Science16(11), 898-904. 

Link