Skip to main content

Complex Networks

Networks are pervasive in nature and technology, and as such form a relevant framework for our understanding of complex systems. Ecological systems, the brain, as well as human communication and transportation systems are but a few examples thereof. Network studies have revealed striking underlying laws and patterns which apply to a vast range of networks, in nature and in society. We develop novel ways to unveil the structural organization and functional patterns in complex networks with a broad range of applications. In addition to data-driven analyses, we are involved in international efforts to further our fundamental mathematical understanding of networks. 

Related Publications

  • B. Hao and I. A. Kovács (2024) Proper network randomization is key to assessing social balance, Science Advances, 10, eadj0104 [arXiv]
  • S. Schäfer, M. Smelik, O. Sysoev, Y. Zhao, D. Eklund, S. Lilja, M. Gustafsson, H. Heyn, A. Julia, I. A. Kovács, J. Loscalzo, S. Marsal, H. Zhang, X. Li, D. Gawel, H. Wang, and M. Benson (2024) scDrugPrio: A framework for the analysis of single-cell transcriptomics to address multiple problems in precision medicine in immune-mediated inflammatory diseases, Genome Medicine 16, 42 [bioRxiv]
  • R. T. C. Chepuri and I. A. Kovács (2023) Complex quantum network models from spin clusters, Communications Physics, 6, 271 [arXiv]
  • D. L. Barabási, G. Bianconi, E. Bullmore, M. Burgess, S. Y. Chung, T. Eliassi-Rad, D. George, I. A. Kovács, H. Makse, T. E. Nichols, C. Papadimitriou,  O. Sporns, K. Stachenfeld, Z. Toroczkai, E. K. Towlson, A. M. Zador, H. Zeng, A.-L. Barabási, A. Bernard and Gy. Buzsáki (2023) Neuroscience needs network science, The Journal of Neuroscience, 43 (34) 5989-5995 [arXiv]
  • B. Hao and I. A. Kovács (2023) A positive statistical benchmark to assess network agreement, Nat. Commun., 14, 2988 [bioRxiv]
  • H-W. Tang*, K. Spirohn*, Y. Hu, T. Hao, I. A. Kovács, Y. Gao, R. Binari, D. Yang-Zhou, K. H. Wan, J. S. Bader, D. Balcha, W. Bian, B. W. Booth, A. G. Cote, S. de Rouck, A. Desbuleux, K. Y. Goh, D.-K. Kim, J. J. Knapp, W. X. Lee, I. Lemmens, C. Li, M. Li, R. Li, H. J. Lim, Y. Liu, K. Luck, D. Markley, C. Pollis, S. Rangarajan, J. Rodiger, S. Schlabach, Y. Shen, D. Sheykhkarimli, B. TeeKing, F. P. Roth, J. Tavernier, M. A. Calderwood, D. E. Hill, S. E. Celniker, M. Vidal, N. Perrimon, S. E. Mohr (2023) Next-generation large-scale binary protein interaction network for Drosophila melanogaster, Nat. Commun., 14, 2162 [bioRxiv]
  • X.-W. Wang, L. Madeddu, K. Spirohn, L. Martini, A. Fazzone, L. Becchetti, T. P. Wytock, I. A. Kovács, O. M. Balogh, B. Benczik, M. Pétervári, B. Ágg, P. Ferdinandy, L. Vulliard, J. Menche, S. Colonnese, M. Petti, G. Scarano, F. Cuomo, T. Hao, F. Laval, L. Willems, J.-C. Twizere, M. A. Calderwood, E. Petrillo, A.-L. Barabási, E. K. Silverman, J. Loscalzo, P. Velardi and Y.-Y. Liu (2023) Assessment of community efforts to advance network-based prediction of protein-protein interactions, Nat. Commun., 14, 1582 [bioRxiv]
  • J. P. Moutinho, A. Melo, B.C. Coutinho, I. A. Kovács and Y. Omar (2023) Quantum Link Prediction in Complex Networks, Phys. Rev. A 107, 032605  [arXiv]
  • M. R. Harris, T. P. Wytock and I. A. Kovács (2022) Computational inference of synaptic polarities in neuronal networks, Advanced Science 2104906, Rising Star Series
  • I. A. Kovács, D.-L. Barabási and A.-L. Barabási (2020) Uncovering the genetic blueprint of the C. elegans nervous system, PNAS 10.1073/pnas.2009093117 [bioRxiv]
  • K. Luck*, D.-K. Kim*, L. Lambourne*, K. Spirohn*, B. E. Begg, W. Bian, R. Brignall, T. Cafarelli, F. J. Campos-Laborie, B. Charloteaux, D. Choi, A. G. Cote, M. Daley, S. Deimling, A. Desbuleux, A. Dricot, M. Gebbia, M. F. Hardy, N. Kishore, J. J. Knapp, I. A. Kovács, I. Lemmens, M. W. Mee, J. C. Mellor, C. Pollis, C. Pons, A. D. Richardson, S. Schlabach, B. Teeking, A. Yadav, M. Babor, D. Balcha, O. Basha, S.-F. Chin, S. G. Choi, C. Colabella, G. Coppin, C. D’Amata, D. De Ridder, S. De Rouck, M. Duran-Frigola, H. Ennajdaoui, F. Goebels, A. Gopal, G. Haddad, M. Helmy, Y. Jacob, Y. Kassa, R. Li, N. van Lieshout, A. MacWilliams, D. Markey, J. N. Paulson, S. Rangarajan, J. Rasla, A. Rayhan, T. Rolland, A. San Miguel, Y. Shen, D. Sheykhkarimli, G. M. Sheynkman, E. Simonovsky, M. Taşan, A. Tejeda , J.-C. Twizere, Y. Wang, R. Weatheritt, J. Weile, Y. Xia, X. Yang, E. Yeger-Lotem, Q. Zhong, P. Aloy, G. D. Bader, J. De L. Rivas, S. Gaudet, T. Hao, J. Rak, J. Tavernier, V. Tropepe, D. E. Hill*, M. Vidal*, F. P. Roth*, and M. A. Calderwood* (2020) A reference map of the human binary protein interactome, Nature 580, 402-408 [biorxiv]
  • B. Ágg, A. Császár, M. Szalay-Bekő, D. V. Veres, R. Mizsei, P. Ferdinandy, P. Csermely and I. A. Kovács (2019) The EntOptLayout Cytoscape plug-in for the efficient visualization of major protein complexes in protein-protein interaction and signaling networks, Bioinformatics btz257
  • I. A. Kovács, K. Luck, K. Spirohn, Y. Wang, C. Pollis, S. Schlabach, W. Bian, D-K. Kim, N. Kishore, T. Hao, M. A. Calderwood, M. Vidal and A.-L. Barabási (2019) Network-based prediction of protein interactions, Nature Communications 10, 1240 [biorxiv]
  • F. Cheng*, I. A. Kovács*, A-L. Barabási (2019) Network-based prediction of drug combinations, Nature Communications 10, 1197
  • I. A. Kovács and A.-L. Barabási (2015) Network science: Destruction perfected. Nature 524, 38-39.
  • I. A. Kovács, R. Mizsei and P. Csermely (2015) A unified data representation theory for network visualization, ordering and coarse-graining. Scientific Reports 5,13786 [arXiv]
  • N. Sahni, S. Yi, M. Taipale, J. I. Fuxman Bass, J. Coulombe-Huntington, F. Yang, J. Peng, J. Weile, G. I. Karras, Y. Wang, I. A. Kovács, A. Kamburov, I. Krykbaeva, M. H. Lam, G. Tucker, V. Khurana, A. Sharma, Y.-Y. Liu, N. Yachie, Q. Zhong, Y. Shen, A. Palagi, A. San-Miguel, C. Fan, D. Balcha, A. Dricot, D. M. Jordan, J. M. Walsh, A. A. Shah, X. Yang, A. Stoyanova, A. Leighton, M. A. Calderwood, Y. Jacob, M. E. Cusick, K. Salehi-Ashtiani, L. J. Whitesell, S. Sunyaev, B. Berger, A.-L. Barabási, B. Charloteaux, D. E. Hill, T. Hao, F. P. Roth, Y. Xia, A. J. M. Walhout, S. Lindquist and M. Vidal (2015) Widespread Macromolecular Interaction Perturbations in Human Genetic Disorders, Cell, Vol. 161, Issue 3, p647–660.
  • R. Juhász, I. A. Kovács and F. Iglói (2015) Long-range epidemic spreading in a random environment, Phys. Rev. E 91 032815 [arXiv]
  • R. Juhász and I. A. Kovács (2013) Infinite randomness critical behavior of the contact process on networks with long-ranged connections, J. Stat. Mech. P06003 [arXiv]
  • I. Kovács (2013) ‘Infinitely Disordered Critical Behavior in Higher Dimensional Quantum Systems’ Ph. D. dissertation, Supervisor: Prof. Ferenc Iglói, consultant: Prof. emer. Péter Szépfalusy, Eötvös Loránd University of Sciences (ELTE), Wigner RCP SZFKI, Budapest, Hungary
  • M. Szalay-Bekő, R. Palotai, B. Szappanos, I. A. Kovács, B. Papp and P. Csermely (2012) ModuLand plug-in for Cytoscape: determination of hierarchical layers of overlapping network modules and community centrality, Bioinformatics bts352 [arXiv]
  • A. Mihalik, A. S. Kaposi, I. A. Kovács, T. Nanasi, R. Palotai, A. Rak, M. S. Szalay-Beko and P. Csermely. Edited by: B. Vedres, M. Scotti (2012) How creative elements help the recovery of networks after crisis: lessons from biology. Cambridge University Press, Networks in Social Policy Problems p. 179-188
  • I. A. Kovács and F. Iglói (2011) Renormalization group study of random quantum magnets, J. Phys.: Condens. Matter 23 404204 [arXiv]
  • I. A. Kovács and F. Iglói (2011) Infinite-disorder scaling of random quantum magnets in three and higher dimensions Phys. Rev. B 83, 174207 [arXiv]
  • I. J. Farkas, T. Korcsmáros, I.A. Kovács, Á. Mihalik, R. Palotai, G.I. Simkó, K.Z. Szalay, M. Szalay-Bekő, T. Vellai, S. Wang, P. Csermely (2011) Network-based tools for the identification of novel drug targets Science Signal. 4, pt3
  • I. A. Kovács, R. Palotai, M. S. Szalay, P. Csermely (2010) Community landscapes: an integrative approach to determine overlapping network module hierarchy, identify key nodes and predict network dynamics PLoS ONE 5(9):e12528 [arXiv]
  • P. Csermely, I. A. Kovács, Á. Mihalik, T. Nánási, R. Palotai, Á. Rák és M. Szalay (2009) Hogyan küzdik le a válságokat a biológiai hálózatok, és mit tanulhatunk el tőlük? Magyar Tudomány 170, 1381-1390 (in hungarian)
  • P. Csermely, T. Korcsmáros, I. A. Kovács, M. S. Szalay and C. Sőti (2008) Systems biology of molecular chaperone networks. In: The biology of extracellular molecular chaperones. Novartis Foundation Symposium Series Vol. 291, Wiley, pp. 45-58
  • Z. Spiro, I. A. Kovács and P. Csermely (2008) Drug-therapy networks and the predictions of novel drug targets J. Biol. 7, 20 [arXiv]
  • C. Böde, I. A. Kovács, M. Szalay, R. Palotai, T. Korcsmáros and P. Csermely (2007) Network analysis of protein dynamics FEBS Lett. 581, 2776-2782 [arXiv]
  • M. Szalay, I. A. Kovács, T. Korcsmáros, C. Böde and P. Csermely (2007) Stress-induced rearrangements of cellular networks: consequences for protection and drug design FEBS Lett. 581, 3675-3680 [arXiv]
  • T. Korcsmáros, M. Szalay, C. Böde, I. A. Kovács and P. Csermely (2007) How to design multi-target drugs: Target-search options in cellular networks Expert Op. Drug Discov. 2:1-10 [arXiv]
  • T. Korcsmáros, I. A. Kovács, M. S. Szalay and P. Csermely (2007) Molecular chaperones: the modular evolution of cellular networks J. Biosci. 32, 441-446 [arXiv]
  • I. A. Kovács, M. S. Szalay and P. Csermely (2005) Water and molecular chaperones act as weak links of protein folding networks: energy landscape and punctuated equilibrium changes point towards a game theory of proteins FEBS Lett. 579, 2254-2260 [arXiv]