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Regulating bidder participation in auctions
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Regulating bidder participation in auctions can potentially increase efficiency compared to
standard auction formats with free entry. We show that the relative performance of two such
mechanisms, a standard first-price auction with free entry and an entry rights auction, depends
nonmonotonically on the precision of information that bidders have about their costs prior
to deciding whether to participate in a mechanism. As an empirical application, we estimate
parameters from first-price auctions with free entry for bridge-building contracts in Oklahoma
and Texas and predict that an entry rights auction increases efficiency and reduces procurement
costs significantly.

1. Introduction

� Given the importance of public procurement for many economies around the world (e.g.,
12% of GDP (Gross Domestic Product) is spent on public procurement in OECD (Organization
for Economic Cooperation and Development) countries (OECD, 2011)), there is natural interest
in improving the efficiency of the procurement process and reducing procurement costs. Under
the assumptions, which we maintain, of symmetric and independent private costs, quite standard
auction formats, such as first-price (low-bid) auctions with suitably chosen reserve prices will
be optimal when the number of bidders is fixed. Assuming a fixed set of bidders will not be
appropriate, however, when suppliers have to spend significant resources in “due diligence” to
understand how much it will cost them to complete the project, and in most of the procurement
settings that have been studied, these types of entry costs appear to be significant (e.g., Li and
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Zheng, 2009; Krasnokutskaya and Seim, 2011). In this article, we examine the performance of a
standard first-price auction with costly but unregulated, or “free,” entry relative to an alternative
mechanism where the procurer regulates entry by using an initial auction to allocate a fixed
number of rights to participate in a second auction for the contract (an “entry rights auction”).

When entry is endogenous, a standard first-price auction is usually thought of as a two-stage
game. In the first stage, a set of potential suppliers (e.g., a set of local contractors who purchase
or are issued with specifications for the contract) simultaneously and noncooperatively decide
whether to pay the cost of entering the auction based on any private information (signals) that
they have about their costs of completing the project. In the second stage, the entrants find out
their true costs of completing the project and submit bids. The contract is allocated to the firm
with the lowest bid, as long as this is less than any reserve price, at a price equal to its bid. We
will call this standard model a “first-price auction with free entry” (FPAFE). In the equilibrium of
an FPAFE, the marginal entrant in the first stage will be indifferent between entering the auction,
which involves paying the entry cost but allows the supplier to potentially win the contract, and
staying out.

A natural question is whether these entry decisions are efficient, in the sense of being
consistent with the minimization of the expected sum of the winning bidder’s cost of completing
the project and total entry costs (social costs). As shown theoretically by Levin and Smith (1994)
and Gentry and Li (2012), under different assumptions about the private information that potential
suppliers have about their costs prior to entry, entry decisions will be efficient in the sense that
a planner who had to choose whether a potential supplier should enter based only on that firm’s
private information would choose the same entry rule that the potential supplier would choose in
the symmetric equilibrium.

1
However, inefficiencies in entry can still arise from the fact that the

entry decisions of different potential bidders are not coordinated, so that there can be outcomes
where too many or too few firms enter. For example, when potential suppliers have no private
information about their costs when taking entry decisions, as assumed by Levin and Smith (1994)
(LS), the symmetric equilibrium involves potential suppliers mixing over entry. As a result,
the number of entrants will be stochastic, and Milgrom (2004) shows that efficiency would be
increased if the procurer instead randomly selected a fixed number of potential suppliers to enter
the auction.

The assumption that potential suppliers have no private information about their costs before
entering seems implausible for many procurement settings, as firms are likely to know at least
something about their free capacities and their costs of securing some of the necessary inputs.
When their private signals are informative about their costs (Roberts and Sweeting, 2013b; Gentry
and Li, 2014), free entry will tend to lead to the most efficient firms entering, and an arrangement
where the auctioneer randomly selected entrants without using this private information would
have a natural disadvantage. However, there could still be scope for the auctioneer to regulate
the number of entrants by using an entry rights auction mechanism (ERA) where, based on their
private information, the potential suppliers first participate in an auction for a fixed number of
rights to perform due diligence and enter the auction for the contract. As long as first-stage bids
are monotonic in the bidders’ private signals, the ERA will also tend to select the most efficient
firms, but the ERA will have the advantage that the number of entrants will be controlled.

We show, using an example, that whether an FPAFE or an ERA is more efficient can depend
in a nonmonotonic way on the precision of the private information that suppliers have about their
costs. When signals are imprecise, the ERA is more efficient, as one would expect, given the

1 The typical Mankiw and Whinston (1986) result that free entry results in excess entry in a homogeneous goods
market does not hold because an entrant only takes business from other firms when it is socially optimal for it to do
so. The Levin and Smith and Gentry and Li results are conditional on the auctioneer setting a reserve price that is equal
to the cost of completing the project outside of the auction if there is no winner. This is the auctioneer-optimal reserve
in the Levin and Smith model, but not the Gentry and Li model, although it is the natural “nonstrategic” reserve price in
that setting as well. As pointed out by a referee, one interpretation of these results is that the procurer cannot improve
efficiency by choosing a reserve strategically.
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informational assumptions made by LS and Milgrom in deriving the result mentioned above.
When signals are very informative, in which case the model tends toward the Samuelson (1985)
(S) model where potential entrants know their costs exactly, the ERA is also more efficient because
it is optimal to have only the supplier with the best (lowest cost) signal paying the entry cost; this
is the outcome that the ERA ensures will happen, whereas no supplier or more than one supplier
may enter in an FPAFE. However, when potential bidders’ signals are moderately informative
about their costs, an FPAFE can be more efficient. The reason is that with free entry the number
of entering suppliers will depend on the private information available to the suppliers but not the
auctioneer, and this can be desirable. For example, although on average it might be desirable to
have two entrants, three entrants might be preferred if they all have signals that indicate that their
costs are likely to be low.

Given this ambiguity in which mechanism is more efficient, we estimate our model using data
on a sample of contracts for highway projects involving work on bridges let by the Departments
of Transportation (DoTs) in Oklahoma and Texas using FPAFEs in order to understand which
mechanism might perform best in a real-world context. To do so, we develop methodologies
for both solving and estimating a parametric model of FPAFEs where potential bidders have
imperfect information about their costs when deciding whether to enter. We solve the model
using the Mathematical Programming with Equilibrium Constraints (MPEC) approach proposed
by Su and Judd (2012).

2
We estimate our model using a simulated method of moments estimator

where the moments are computed using importance sampling, following Ackerberg (2009). This
approach enables us to allow for observed and unobserved heterogeneity in the parameters across
auctions, unlike the one previous attempt to estimate this type of model of which we are aware
(Marmer, Shneyerov, and Xu, 2011).

3

We estimate that entry is moderately selective for these contracts. However, given the other
parameters of our model, our model predicts that overall efficiency would have been increased
by using the ERA format. For example, for the representative (average) auction in our data, we
predict that the sum of the expected cost of the winning bidder and total entry costs would be
2.4% lower in the ERA than the FPAFE and that the total cost to the DoT of letting the contract
(procurement cost) would fall by the same proportion. This fall in DoT procurement costs is much
greater than what we predict would be achieved by using a more standard design adjustment to
an FPAFE, such as adding an optimal reserve price, which for our representative case would only
reduce costs by 0.03%, or by adding additional potential entrants.

We are not aware of any previous attempts in the literature to compare ERAs and auctions
with free entry using real-world parameters. A related theoretical literature has considered so-
called “indicative bidding” schemes where potential bidders submit nonbinding indications of
what they are willing to bid, which the seller may use to select a subset of firms to participate
in an auction.

4
In contrast, in an ERA, first-round bids are binding and can result in payments

by firms that do not win the contract. Indicative schemes are often used by investment banks
and as part of the complicated processes by which defense equipment is purchased (Welch and
Fremond, 1998; Foley, 2003; Quint and Hendricks, 2013). Ye (2007) argues that, generically,
indicative schemes will not induce strictly monotonic first-stage bids in equilibrium, and so will

2 Hubbard and Paarsch (2009) use this approach to solve first-price auction models under the S model assumption
that potential bidders know their values when deciding whether to enter. We extend their solution method to allow for
noisy signals about values (in our case, costs), creating imperfect selection of low-cost bidders into the auction.

3 Some earlier work, such as Krasnokutskaya and Seim (2011), estimates models of endogenous entry into first-price
auctions under the informational assumptions of LS. This implies that there is no selection in the entry process, which
simplifies estimation because the distribution of values for bidders will be the same as the distribution of values in the
population of potential suppliers.

4 There are other designs that also have the flavor of using an auction to select a small number of firms into another
round. For example, in the Anglo-Dutch auction described by Klemperer (2002), bidders first participate in an ascending
auction that selects a smaller set of bidders who compete in a first-price sealed bid auction. This design has been discussed
primarily in settings where bidders are asymmetric (e.g., where there are well-known strong incumbents) and where
valuations are likely to have some common component. In our model, suppliers are symmetric and we assume IPV.
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not tend to guarantee the selection of the bidders that are most likely to have the highest values
or the lowest costs in the second stage. However, he shows that certain types of ERA schemes,
like the one that we consider, will induce strictly monotonic first-stage bidding and so guarantee
an efficient selection of entrants. Recently Quint and Hendricks (2013) have shown that, when
indicative bids are limited to a discrete set and either entry costs or the number of bidders is large,
the unique indicative bidding equilibrium can involve weakly monotonic bid functions, and that,
in computed examples, indicative schemes can outperform standard auctions with free entry. By
guaranteeing fully efficient selection of entrants, ERAs should, in theory, be more efficient than
indicative schemes when the number of selected entrants is the same. At the end of the article,
we discuss several possible reasons why ERAs may be less common than indicative schemes or
FPAFEs in practice.

The article is also related to our earlier work on selective entry auction models (Roberts and
Sweeting, 2013a, 2013b).

5
In those articles, we consider selective entry into second-price auctions,

where the simpler form of equilibrium bidding eases computation and estimation relative to the
first-price auctions considered in this article. FPAFEs are the auction format that is most widely
used in practice.

6
In Roberts and Sweeting (2013b), we compare the performance of a free-entry

auction with a sequential bidding process, which is more efficient, and can improve the seller’s
revenues for a wide range of parameters, even though it allows early bidders to deter entry. Here,
we consider a different type of design change, which retains the simultaneous bidding feature
of most auction formats. This may be attractive, as sequential procedures have the potential
weakness that the auctioneer may favor certain bidders when determining the order.

Four comments are in order about both our model and the nature of the results. First, when
considering the ERA, we model the first-stage auction for entry rights as an all-pay auction.
Following Ye (2007), the advantage from a modelling perspective of using the all-pay format is
that equilibrium first-stage bids are guaranteed to be strictly monotonic in the signal that potential
bidders have about their costs when entry costs are subsidized, which we also assume. This
guarantees that the suppliers that are most likely to have the lowest costs are selected. When the
more common discriminatory or uniform price formats are used to sell entry rights, this property
may not hold because the expected benefit of being the marginal entrant allowed into the final
auction, which determines the bid in these formats, is not guaranteed to be monotonic in the
signal. In fact, it is straightforward to find examples where the relationship is not monotonic for
the distributions that we consider. However, as Ye shows, when the relationship is monotonic,
the expected costs and efficiency under all three first-stage schemes (all-pay, discriminatory, and
uniform) will be identical.

Second, we are comparing our results to a specific form of ERA, where the seller announces
an exact value for the number of bidders who will be able to enter the second-stage auction in
advance, rather than considering the optimal mechanism or even the optimal entry rights auction,
where the number of allowed entrants into the second stage might well depend on the bids that
are announced in the first stage. We do this partly because it is not straightforward to characterize
the procurer-optimal form of entry rights auction in our model, but also because even if it were
known, the optimal mechanism would likely have such a complicated form that a public agency
would likely not want to use it in practice.

7
In any case, because our bottom-line conclusion is

5 Other work on selective entry in auctions includes Gentry and Li (2014), who focused on identification, and
Marmer, Shneyerov, and Xu (2013), who consider nonparametrically testing different models using first-price auction
data in the absence of unobserved auction heterogeneity.

6 As we assume potential suppliers are symmetric, it is possible to compute expected efficiency and procurement
costs for first-price auctions by exploiting the fact that these outcomes should be the same in the second-price format.
However, to use the information contained in the distributions of submitted bids and winning bids in estimation, it is
necessary to be able to solve first-price auctions with selective entry.

7 Lu and Ye (2013) characterize the optimal entry rights auction format in a setting where there is heterogeneity in
potential bidders’ entry costs, but they have no private information on their values prior to entering. Cremer, Spiegel, and
Zheng (2009) characterize the optimal mechanism in this case, which involves a complicated sequential search process.
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that there may be significant cost and efficiency advantages to using ERAs, this conclusion would
only be strengthened if we considered the optimal form of the ERA instead. In discussing our
results, we do, however, compare the efficiency of our ERA mechanism with the efficiency of two
hypothetical mechanisms where we allow a planner to have access to the private information of
the bidders and to use these signals to choose how many firms enter. Although these hypothetical
alternatives are naturally more efficient, we show that the ERA actually performs almost as well
as they do for the parameters that we estimate.

Third, our results are numerical. When entry is partially selective, it is very difficult to solve
models analytically outside of some special cases.

8
Moreover, as we show, efficiency and cost

comparisons will often depend on the distributions and parameters that are assumed, so it is
important to try to be as realistic about these elements as possible. For this reason, we focus our
results on parameters that are estimated from real-world data and emphasize the magnitude as
well as qualitative direction of our results.

Finally, although we allow for partially selective entry and a model of auction heterogeneity,
we maintain the independent private costs/values assumption that has been typically made in both
empirical studies of public procurement (e.g., Krasnokutskaya and Seim, 2011) and theoretical
work on models of two-stage entry rights or indicative bidding procedures (e.g., Quint and
Hendricks, 2013). Understanding the effects of trying to regulate entry where costs have both
common value and private value components is left to future work. Similarly, we assume that
firms would act competitively in both FPAFEs and ERAs, whereas in some settings it might be
important to consider which mechanism would be more susceptible to collusion.

The article proceeds as follows. Section 2 presents the model of imperfectly selective entry
for FPAFEs and ERAs, and explains how we solve these models. Section 3 describes the data.
Section 4 explains our estimation method. Section 5 discusses the estimates of the model’s
parameters and compares the performance of the FPAFE and the ERA. Section 6 concludes. The
Appendixes contain some additional details on our numerical routines and present some Monte
Carlo evidence on the performance of our estimator.

2. A model of endogenous bidder participation in auctions

� We introduce the general structure of costs and information in our model of procurement
and then describe the FPAFE and the ERA. We also present a numerical example illustrating how
an efficiency comparison of the two mechanisms will depend on the degree of selection in the
entry process.

A procurement agency, which we will call the “procurer” in what follows, wishes to select
one of N risk-neutral suppliers to complete a project. In our empirical setting, a project might
involve repairing or constructing a bridge, and we will allow for cross-auction variation in both
N and the other parameters. The agency may require that it pay no more than a reserve price
r to complete the project, and if no firm submits a bid below this amount, the agency incurs a
cost c0 of procuring the work outside of this specific auction (e.g., this could be the expected cost
from rerunning the auction at a later date, or negotiating one-on-one with a particular contractor).
Supplier i can complete the project at cost Ci distributed FC (·) with compact support [c, c] that
admits a continuous density fC (·). We assume that suppliers are ex ante symmetric and have
independent private costs. To participate in the project-allocation auction of any mechanism,

9

a supplier must pay an entry cost K . Entrants learn their true costs of completing the project.
One interpretation of K is that it includes the cost of research involved in finding out the true
cost, but it will also include any costs associated with preparing a bid. An important assumption
that we maintain throughout is that a firm cannot participate in the project-allocation stage of

8 For example, Ye (2007) considers a case where bidders are uncertain about a component of costs that can only
take on discrete high or low values.

9 This will be the auction in the FPAFE and the second-stage auction in an ERA.
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any mechanism without paying K .
10

Prior to deciding whether to enter, each supplier observes a
signal Si that is correlated with its true cost Ci and that is not correlated with any other supplier’s
cost. Signals are affiliated with costs in the standard sense: the cost distribution conditional on
a signal s first-order stochastically dominates the cost distribution conditional on a signal s̃ < s.
We assume that the marginal distribution of signals admits a continuous density on a compact
interval [smin, smax ].

The LS and S models are limiting cases of this model. If Si = Ci , then signals are perfectly
informative of costs, and the setup reduces to the S model. When Si is independent of Ci , signals
contain no information about costs, and the setup reduces to the LS model. For many empirical
settings, it seems plausible that buyers will have some, but imperfect, information about their
costs prior to conducting costly research, consistent with Si being positively, but not perfectly,
correlated with Ci .

� Selective free entry into first-price auctions. The first model of procurement is the
FPAFE, which we view as describing the procedure used by the DoTs in our data and most other
government agencies. In the first stage, potential suppliers observe their imperfectly informative
cost signals. Based on these private signals, they take independent, simultaneous entry decisions
and pay K if and only if they enter. In the second stage, the set of entrants compete in a first-price
(low-bid) auction with reserve price r . We assume that firms that do not pay K cannot participate
in the auction and that agents bid without knowing how many of their competitors actually entered
the auction, as is done in Li and Zheng (2009). If an entrant learns that his true cost exceeds the
reserve price, he will not bid.

We solve for entry decisions and bid functions that define the unique symmetric Bayesian
Nash equilibrium with monotone bidding behavior.

11
Potential bidders enter using a cutoff strat-

egy; that is, a supplier enters if and only if he observes a signal si < s ′∗ for some critical value of
s ′∗ (Gentry and Li, 2012). Define H (c) to be the probability (not conditional on Si ) that a given
supplier either (i) enters the auction and has a cost no smaller than c, or (ii) does not enter the
auction; thus, H (·) depends on the value of the signal cutoff used for the entry decision. The
equilibrium bid functions β∗(·) are given by the solutions to the optimization problem

β∗(c) ≡ arg max
b

(b − c)
[
H

(
β∗−1(b)

)]N−1
.

The first–order condition associated with this optimization problem gives the differential equation

1 + β∗−1 ′
(b)

(
b − β∗−1(b)

)
(N − 1)

[
H ′ (β∗−1(b)

)
H (β∗−1(b))

]
= 0, (1)

with the upper boundary condition

β∗(r ) = r. (2)

10 As pointed out by a referee, if K is interpreted as containing an information acquisition cost, then there may
be incentives for some suppliers to bid without paying the information acquisition cost. To get around this objection,
one can either assume that K is simply a cost that must be paid in order to be responsive in the auction (in which case,
we could allow nonentering suppliers to find out their costs as well once they have decided not to pay K ) or we can assume
that there are some penalties outside of our model that deter this type of uninformed bidding. For example, there may be
penalties that arise from defaulting on the contract or incurring financial losses, or it may be harder for an uninformed
supplier to find suitable subcontractors.

11 Gentry and Li (2012) establish uniqueness of the symmetric equilibrium in a class of affiliated signal models. As
usual in entry games, asymmetric equilibria may exist.
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The equilibrium critical cutoff values s ′∗ are determined by the indifference condition that
any potential supplier who receives a signal of s ′∗ must be indifferent between entering the auction
or not paying the entry cost at all. This zero-profit condition is thus written∫ r

b

(
b − β∗−1(b)

)
fC

(
β∗−1(b)|s ′∗) [

H
(
β∗−1(b)

)]N−1
db = K , (3)

where b ≡ β(c), and fC (·|s) is the conditional density of a supplier’s costs, computed using Bayes’
Rule, given he receives a signal s.

To solve for the bid functions, we use the Mathematical Programming with Equilibrium
Constraints (MPEC) approach (Su and Judd, 2012). In a manner similar to that outlined by
Hubbard and Paarsch (2009), who use MPEC to solve an FPAFE model where bidders know
their values when they decide whether to enter, we express the inverse bid function as a linear
combination of the first P Chebyshev polynomials (we use P = 25), scaled to the interval [b, r ].
The choice variables in our programming problem are, therefore, P Chebyshev coefficients, the
signal cutoff, and the value of the low bid (b). We pick a fine grid {x j}J

j=1 with J = 500 points on
the interval [b, r ]. Then we solve for the bid functions (more precisely, the Chebyshev coefficients)
and the signal cutoff using

arg min
{b,β∗−1,s′∗}

J∑
j=1

g
(
β∗−1(x j )

)2
s.t. (2) and (3), (4)

where g
(
β∗−1(b)

)
is defined to be the left-hand side of equation (1). This nonlinear programming

problem is solved using the SNOPT solver called from the AMPL programming language. We
give more details about the numerical methods in Appendix A.

12

� Entry rights auctions. When entry is regulated and suppliers have some information about
what their costs are likely to be, a straightforward way to choose the firms that will be allowed to
bid for the contract is to use an initial auction to allocate a fixed number of rights to participate in
a second-stage auction for the contract (Ye, 2007). Before the first stage, the procurer announces
the number of suppliers that will be selected to participate in a (second-stage) auction for the
contract and the reserve price in that auction. In the first stage of our ERA, each supplier i receives
its signal si and submits and pays a nonnegative bid, given by a function γ ∗(si ), for the right to
participate in the second-stage auction. The highest n bidders are selected to participate in the
second stage.

13
In the second stage, the procurer pays each of the selected entrants K to cover their

entry costs, and the selected firms incur these costs and find out their true costs of completing
the contract. The procurer also publicly announces the value of the (n + 1)st highest first-stage
bid.

14
The second-stage auction uses a first-price format with the preannounced reserve price, r .

However, as discussed by Ye (2007) any standard auction format used in the second stage (i.e.,
one where the firm with the lowest bid wins the contract and a firm with the highest possible
cost pays nothing), will generate the same expected payoffs for all parties, and therefore the

12 We assume that suppliers are ex ante symmetric, but this procedure can also be used to solve for equilibria when
suppliers belong to certain discrete types. However, a procedure for finding all of the equilibria in an asymmetric FPAFE
model remains a topic of ongoing research.

13 We assume that there is no reserve price in the first-stage auction, as, given the all-pay nature of the auction, a
reserve price might lead some suppliers being unwilling to participate in the mechanism at all. However, it is possible
that a first-stage reserve price could be used to improve the performance of the ERA beyond the gains that we currently
identify.

14 Publicly revealing the (n + 1)st highest bid in the first stage, but not the winning bids, ensures that bidders
enter the second stage with symmetric beliefs about the distribution of their rival entrants’ costs, which helps to ensure
the efficiency of the second-stage allocation and the revenue equivalence of different second-stage formats. Otherwise,
beliefs about rivals’ costs will depend on an entrant’s own signal and so they will not be symmetric. As pointed out by a
referee, it is unclear whether the procurement cost or efficiency performance of the ERA would change significantly if
this information was not revealed, but it would certainly complicate our analysis.
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same incentives in the first stage, as long as entrants have symmetric beliefs about their rivals and
the first stage has selected the firms with the lowest costs. We assume a first-price format because
it reveals an interesting difference in bidding behavior between the FPAFE and the second stage
of an ERA with at least two entrants.

15

The first-stage auction is therefore a binding all-pay auction with an entry subsidy. Some
explanation for why we model the ERA in this way is required. As shown by Ye (2007) in his
Proposition 5, in an all-pay auction, there will be a unique, symmetric pure strategy equilibrium
where the first-stage bid function, γ ∗(s), is a strictly decreasing function of the cost signal, so that
a firm with a lower cost signal will bid more, when the entry subsidy is sufficiently large.

16
This

monotonicity property is important because it guarantees that the selection of entrants into the
second stage will be efficient. An entry subsidy equal to the due diligence cost K is sufficient for
this property to hold, and, by Ye’s Proposition 6, the level of the subsidy does not affect either the
procurer’s or the bidders’ total payoffs from the mechanism as long as equilibrium first-stage bids
are strictly decreasing, as more generous subsidies are exactly offset by higher first-stage bids. A
corollary of this argument is that none of our efficiency or procurement cost comparisons would
change if we considered slightly lower subsidies that also gave rise to monotonic first-stage bid
functions.

In contrast, a strictly decreasing equilibrium first-stage bid function might not exist if we
considered a first-round format that operated as either a uniform price auction (e.g., the n selected
entrants would each pay the (n + 1)st highest bid) or a discriminatory auction where only the
selected entrants pay their bid. As shown by Ye (2007) in his Proposition 3, first-round bid
functions will be strictly decreasing in these formats only if, in the first stage, a bidder’s expected
gain from participating in the second stage conditional on being the marginal (i.e., nth) selected
entrant is strictly decreasing in the cost signal. Whether this will be the case will depend on both
n and the specifics of the cost and signal distributions considered, and we have found ranges of
signals over which this monotonicity property does not hold for some of the parameters that we
consider in this article. However, if the property does hold, then both efficiency and the expected
payoffs of all parties should be the same as under the all-pay format, so it is still insightful to use
the all-pay format even if it is used less frequently than other formats in the real world.

We are interested in the symmetric Bayesian Nash equilibrium where the first-round bidding
strategy γ ∗(·) is monotone in the signal and the second-round bid function β∗(·; s) is monotone
in the cost for every possible value of the revealed (n + 1)st highest first-round bid. Note that in
such an equilibrium, revealing the (n + 1)st highest bid is equivalent to revealing the (n + 1)st

lowest signal s. Thus, entrants in the second round use Bayes’ Rule to compute the distribution
of the costs of any one of their opponents as FC |S≤s(·), with density fC |S≤s(·).

The second-stage bid function β(·; s) solves the differential equation

β∗′(c; s) = (n − 1) (β∗(c; s) − c)

[
fC |S≤s(c)

1 − FC |S≤s(c)

]
,

with the boundary condition β∗(r ; s) = r . To solve for the bid function γ ∗(·), note that the profit
of a bidder with cost c who is invited to enter the auction, when the (n + 1)st signal is s, is, in the
case of a second-round auction operating in a first-price format,

�(c; s) = (β∗(c; s) − c)
[
1 − FC |S≤s(c)

]n−1
,

where we are exploiting the fact that the entry cost is being fully subsidized by the procurer.

15 We exploit payoff equivalence so that we can verify our solutions are accurate by considering a second-stage
auction that operates in a second-price format where we do not need to solve for Chebyshev-approximated bid functions.

16 Fullerton and McAfee (1999) also show how an all-pay auction with an entry subsidy induces efficient entry into
the related mechanism of a research tournament. See Ye (2007) for an extensive discussion of the differences between
the Fullerton and McAfee model and the type of model considered here.
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The first-stage bid function γ ∗(s) should solve

γ ∗(s) ≡ arg max
g

∫ smax

γ ∗−1(g)

∫ c

c

�(c; s)d FC |S=s(c)d FS(n:N−1) (s) − g,

where FC |S=s(·) is the conditional distribution of the cost given a signal of s and FS(n:N−1) (·) is the
distribution of the nth highest signal of the remaining N − 1 bidders, with pdf fS(n:N−1) (·). Solving
this maximization problem and imposing that in equilibrium g = γ ∗(s) gives the differential
equation

γ ∗′(s) = −
∫ c

c

�(c; s) fS(n:N−1) (s)d FC |S=s(c),

with boundary condition γ ∗(smax ) = 0. As entry is subsidized, the integrand on the right-hand
side is always positive (a selected firm cannot lose money in the second stage because the entry
subsidy covers the entry cost), so the first-stage bid function will be monotonically decreasing in
s. The total procurement cost will be equal to the price paid in the second round plus the sum of
the entry subsidies for the n entrants less the sum of the first-stage bids.

The value of n, the number of firms selected for the second stage, plays an important role
in the ERA, and is chosen by the procurer. So that the first stage is meaningful, it is natural
to assume that 1 ≤ n < N .

17
If n = 1, then the procurer selects one firm in the first stage and

effectively makes that firm a take-it-or-leave-it offer to complete the project at the second-stage
reserve price r (we assume that the chosen firm would still have to pay the entry cost even if it
faces no competition in the second stage). Although this case may seem somewhat trivial, this is
exactly what an efficiency-maximizing procurer would like to do when bidders are well-informed
about their costs, because the firm with the best signal will be the one that should be selected to
complete the project with high probability. Therefore, for the rest of this section we allow for the
possibility that n = 1, but in the empirical application we will restrict ourselves to allowing only
2 ≤ n < N . As we find that the ERA outperforms the FPAFE, changing this constraint could only
strengthen our conclusions.

� Efficiency of bidder entry. We now compare the efficiency of the ERA and the FPAFE
using an example to illustrate how the advantage of fixing the number of entrants depends on
how well informed bidders are about their values before they pay the entry cost. We say that a
mechanism is more efficient when the expected social costs of completing the project (the cost
of the auction winner or c0 if there is no winner, plus the sum of entry costs) is lower than in the
other mechanism. Recall from the discussion in the Introduction that although entry strategies in
the FPAFE are optimal from an efficiency perspective whether or not signals are affiliated with
true costs (Levin and Smith; 1994; Gentry and Li, 2012), if a potential bidder’s entry strategy is
only allowed to depend on that firm’s private information, there may be an efficiency advantage
to fixing the number of entrants, for example, through an ERA. Doing so will help overcome the
problem that conditioning only on a bidder’s own private information will result in uncoordinated
entry, and possibly too many or too few entrants.

It is straightforward to show that an ERA must be more efficient when either signals are
completely uninformative, as in the LS model, or completely informative, as in the S model. In
the former case, Milgrom (2004, pp. 225–227) shows this result.

18
In the case of the S model,

17 Considering a case where all suppliers are invited to participate in the second stage (n = N ) would involve no
competition in the first stage, so all bids would be zero. In essence, the procurer would subsidize the entry costs of all
the potential suppliers and then run a standard FPA in which everyone knows their true costs. For the parameters that we
look at in Section 5, choosing n = N would not be optimal.

18 The results reflects the fact that when signals are uninformative, the sum of the expected cost of the lowest cost
entrant plus total entry costs will be convex in the number of realized entrants either in an FPAFE or when a fixed number
of entrants is chosen randomly by the procurer. Under the LS assumptions, the expected cost of the lowest cost firm
among n will be the same in both of these cases.
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efficiency requires that only the firm with the lowest cost signal enters (assuming this signal is
less than c0), and this is achieved through an ERA with n = 1 but cannot be guaranteed in any
mechanism where entry decisions are not coordinated.

The situation is more complicated when signals are partially informative. An ERA, where
the number of entrants is fixed in advance, does not allow the number of entrants to depend
on the private information that suppliers have about their costs, which is correlated with how
valuable their entry is likely to be from an efficiency perspective. To illustrate, consider a specific
example where there are four suppliers with costs distributed lognormally with location parameter
μC = −0.09 and scale parameterσC = 0.2 (so that the mean cost is 0.93 and the standard deviation
is 0.19). We assume that c0 and the reserve in the FPA and the second round of the ERA are equal
to 0.85. We truncate the costs to the interval [0, 4.75]. We set K = 0.02 and Si = Ci · exp (εi ),
where εi ∼ N (0, σ 2

ε
). Initially, we assume that σε = 0.2.

For these parameters, the equilibrium signal threshold in the FPAFE would be 0.829 and,
on average, 1.46 suppliers would enter. An ERA designed to maximize expected efficiency,
without knowledge of what suppliers’ signals are, would select a single entrant. To illustrate why
the FPAFE might be more efficient, suppose that the signals of the four potential entrants are
{0.78, 0.79, 0.80, 0.90}. Given these signals, expected efficiency would be maximized by having
the three firms with the lowest signals enter (expected social costs are 0.812), which in this
example is what happens in the FPAFE, rather than just the firm with the lowest signal, which is
what happens in the ERA (expected social costs are 0.823).

Given these parameters, the FPAFE also dominates in expectation (i.e., integrating out
over all possible realizations of suppliers’ cost signals). To show how this result relates to the
precision of the suppliers’ information, the top panel of Figure 1 shows the percent decrease
in expected social costs from using an ERA rather than an FPAFE, allowing for either n = 1,
2, or 3 in the ERA. Positive numbers reflect the ERA outperforming the FPAFE, and negative
numbers reflect the FPAFE doing better. The solid line indicates the gain from using an ERA
with n chosen to maximize efficiency, so that it marks the upper envelope of the lines for the
individual ERAs. On the horizontal axis, we measure the precision of information by a parameter
α ≡ σ 2

ε
/
(
σ 2
ε

+ σ 2
C

)
which varies from 0 to 1.

19
Holding σC fixed, as α → 1, the model will

tend toward the informational assumptions of the LS model, and as α → 0, it tends toward the
informational assumptions of the S model. The other parameters are the same as in the preceding
example. The middle panel shows the expected cost of completing the project for each of these
mechanisms (the cost is c0 if no bidder submits a bid below the reserve price), and the bottom
panel shows the expected number of entrants in the FPAFE and the efficiency-maximizing ERA.

When α is close to 0 or 1, an ERA is more efficient in expectation when n is chosen
appropriately. However, for values of α between 0.45 and 0.7, the FPAFE is more efficient than
any of the ERAs. Whether the FPAFE does better because it economizes on entry costs or lowers
the expected cost of completing the project depends on the value of α, because this affects how
many firms the ERA should select for the second stage. When α = 0.5, the optimal n is 1 and we
are in the case considered above where the additional entry under the FPAFE lowers the expected
cost of completing the project by enough to lower social costs. When α = 0.6, a different logic
applies. In this case, the optimal ERA has n = 2, and there is higher expenditure on entry costs
and a lower cost to complete the project than in the FPAFE. However, because the firm with
the second-lowest signal will be less likely to win in the second-stage auction, especially if it
would not have entered the FPAFE, the entry cost effect dominates and the FPAFE is again
more efficient.

20
The fact that which mechanism is more efficient can depend on the parameters,

19 If the support of the lognormal distribution were not truncated, then the conditional distribution of the cost given
a signal s would be lognormal with location parameter αμC + (1 − α) log(s) and scale parameter σC

√
α.

20 As illustration, the supplier with the second lowest—cost signal wins in the second stage of the ERA with
probability 0.314 if its cost signal would have led it to enter the FPAFE and with probability 0.178 if it would not have
entered the FPAFE.
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FIGURE 1

PERFORMANCE OF AN ERA (WITH n = 1, 2, OR 3) AND AN FPAFE
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)
. In the top panel, the vertical axis shows the percentage reduction in social costs from using an ERA

rather than an FPAFE. Outcomes are calculated using 500,000 simulations.

including the degree of selection, motivates us to estimate our model using real-world data on
procurement auctions.

3. Data

� We estimate our model using a sample of FPAFE procurement auctions for bridge construc-
tion projects conducted by the Oklahoma and Texas DoTs from March 2000 through August 2003.
These data is part of the sample originally collected and used by De Silva, Dunne, Kankanamge,
and Kosmopoulou (2008), and we detail how our sample was chosen in Appendix B. As they
describe, the data comes from all areas of Oklahoma, but only the North Texas and Panhandle
regions of Texas, so that the geographic, construction, and economic conditions are likely to be
similar across the two states.

For each project, the data contain information on the number of “planholders,” which are
the construction companies that were interested enough in the project to purchase, at a price
of about $100, the detailed plans for the project developed by the state’s engineer. The list of
planholders is publicly available prior to the auction, and we use the number of planholders to
define N , the commonly known number of potential suppliers for the project.

Summary statistics for the sample are presented in Table 1. On average, the number of
potential suppliers, the number of entrants, the level of unemployment, and the number of
entrants (observed bidders in the FPAFE) are significantly (at the 1% level) higher in Texas than
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TABLE 1 Summary Statistics for Our Sample of Auctions, by State

Variable Mean Standard Deviation 25th-tile 50th-tile 75th-tile

OK Potential suppliers 6.882 1.997 5 7 8
# obs. = 262 Number of entrants (bidders) 4.344 1.570 3 4 5

Unemployment 4.136 0.971 3.2 4.1 4.6
Engineer’s estimate 491,120 543,662 226,338 320,755 523,139
Winning bid 451,800 520,945 207,146 288,317 471,151
Relative winning bid 0.917 0.133 0.826 0.888 0.980

TX Potential suppliers 7.909 2.027 6 8 10
# obs. = 154 Number of entrants (bidders) 4.844 1.657 4 5 6

Unemployment 5.641 1.214 4.4 5.6 6.5
Engineer’s estimate 1,409,158 1,185,331 550,537 967,817 1,977,169
Winning bid 1,366,487 1,177,504 530,084 892,737 1,847,180
Relative winning bid 0.976 0.134 0.892 0.965 1.038

ALL Potential suppliers 7.262 2.067 6 7 9
# obs. = 416 Number of entrants (bidders) 4.529 1.619 3 4 6

Unemployment 4.693 1.291 3.8 4.4 5.7
Engineer’s estimate 830,971 949,131 258,485 446,273 914,745
Winning bid 790,410 936,689 240,553 406,155 887,277
Relative winning bid 0.939 0.136 0.844 0.914 1.006

Notes: Winning bid and engineer’s estimate are in dollars, and the relative winning bid is the winning bid divided by
the engineer’s estimate.

Oklahoma, but the entry rate (measured by the proportion of planholders that submit bids) is not
significantly different across the states. One feature of the data is that the number of entrants can
vary significantly across auctions even when the number of planholders is fixed. For example, out
of the 51 Oklahoma auctions with six planholders, there are 2, 6, 11, 13, 14, and 5 auctions with
1 through 6 observed bidders, respectively. If entry is costly, which is suggested by the fact that
around one third of planholders ultimately chose not to submit bids, this type of variation in the
number of entrants suggests that coordinating entry may help to increase efficiency.

Because we will apply the FPAFE model presented in Section 2 to these data, we briefly
discuss how far its major assumptions are appropriate in this setting. The assumption of inde-
pendent private costs is common in the literature studying highway procurement auctions (e.g.,
Jofre-Bonet and Pesendorfer, 2003; Li and Zheng, 2009; Krasnokutskaya and Seim, 2011). We
also follow much of the literature in assuming that bidders are ex ante symmetric (see, e.g., Li and
Zheng, 2009).

21
Last, our model assumes that there is a commonly known reserve price, which

is required to prevent suppliers wanting to submit infinite bids when there is some probability
that no other firms enter. Therefore, we assume that the DoT would reject bids that were too
high; specifically, we assume that the DoT uses a reserve price equal to 1.5 times the engineer’s
estimate of the cost of the project, even though the DoTs actual policy for rejecting bids is not
public information.

22
We choose this relatively high price so that the number of auctions that we

have to drop because the DoT accepted bids above this assumed reserve price is very small (two
in OK, four in TX).

23
In our data, we also observe that the DoTs reject 28 winning bids that are

below this reserve price. However, many of these auctions have winning bids that are well within

21 The De Silva, Dunne, Kankanamge, and Kosmopoulou (2008) data does contain an estimate of capacity utilization
and bidder distance from the project site, but for the auctions that we look at, these supplier-specific variables have almost
no power when trying to predict which supplier wins the auction. For example, in a linear probability model with auction
fixed effects, where the dependent variable is a dummy for the winning bidder, these variables are both individually and
jointly insignificant and the within-auction R2 is only 0.0005.

22 An alternative approach (e.g., Li and Zheng, 2009) is to assume that the government acts as an additional bidder
if only one firm enters.

23 If our assumption about the reserve price is correct, we might still expect to see a few bids submitted above the
reserve price if a supplier decides to enter and finds out that it has a cost that is greater than the reserve price.
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the range that we see the DoTs accepting; for example, the average rejected winning bid is 0.96
times the engineer’s estimate, which is close to the average accepted winning bid in the data, and
only five of the rejected winning bids are above 1.2 times the engineer’s estimate. We assume
that these must have been rejected for reasons other than the level of the bid, and so we also
exclude these auctions from our estimation sample. In Section 5, we consider whether changing
the assumed reserve price could alter our conclusions about how well the ERA and an FPAFE
perform.

4. Estimation

� In this section, we describe how we estimate the model and detail the additional parametric
assumptions we make on the specification of the model in order to take it to the data. Our
estimation approach is based on matching a set of moments predicted by our model, which we
calculate using simulations and importance sampling, to a set of moments observed in our data
(e.g., the proportion of auctions where five suppliers enter). Li and Zhang (2013) provide an
earlier example of the estimation of a first-price auction model with nonselective entry using a
moment-based approach.

24

� Model setup and specification. We estimate a fully parametric version of the FPAFE
model from Section 2. We normalize the cost parameters by the engineer’s estimate of costs,
so that a supplier cost of 0.9 means 90% of the engineer’s estimate, and an entry cost of 0.03
means that it costs 3% of the engineer’s estimate for the entire project to enter the auction.

25

Allowing for the a subscript to denote a particular auction, we assume that costs in an auction a
are drawn from a truncated lognormal distribution, FCa(·), with location parameter μCa and scale
parameter σCa . We truncate costs to the interval [0, 4.75], but, as the average winning bid is 0.94,
this truncation has essentially no effect on the distribution of costs for plausible parameters. We
assume Si = Ci · exp (εi ), where εi ∼ N (0, σ 2

εa) and εi independent across suppliers. However,
rather than estimating the values of σ 2

εa , we estimate αa where αa ≡ σ 2
εa/

(
σ 2
εa + σ 2

Ca

)
.

26

As is implicit in the notation, we allow for parametric, auction-specific observed and unob-
served heterogeneity in the structural parameters θa ≡ {μCa, σCa, αa, Ka}. Previous research (e.g.,
Bajari, Hong, and Ryan, 2010; Krasnokutskaya, 2011) has found both types of heterogeneity in
the means of the cost distribution for road construction contracts, and it is plausible that the
variance of these distributions and the level of entry costs are also heterogeneous. Note, however,
that we assume that within an auction bidders are symmetric in that they draw their project costs
and signal noise from the same distributions and that they have the same cost of entering the
auction. The parameters for auction a are drawn from independent truncated normal distributions
with means that depend on observed covariates Xa . Letting T RN (μ, σ 2, c, c) denote a normal
distribution with mean μ and variance σ 2 and truncation points [c, c], we assume that

μCa ∼ T RN
(
XaβμC , ω

2
μC
, c

μC
, cμC

)
σCa ∼ T RN

(
XaβσC , ω

2
σC
, c

σC
, cσC

)
(5)

αa ∼ T RN
(
Xaβα, ω

2
α
, c

α
, cα

)
Ka ∼ T RN

(
XaβK , ω

2
K , cK , cK

)
.

24 Specifically, Li and Zhang (2010) use an indirect inference method where they match parameters with those from
an auxiliary model. Li (2010) provides additional information on this type of approach.

25 It is natural to assume that larger projects will require more due diligence and may also require the bidders to
post larger bonds that guarantee that they will complete the work. Of course, the imposed linearity of the entry cost with
the engineer’s estimate is an assumption.

26 Estimating the distribution of αa means that we are directly estimating how the degree of selection differs across
auctions. Understanding this variation is less straightforward when estimating separate distributions of σεa and σCa .
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In our setting, Xa is a vector consisting of a constant, the unemployment rate in the county
where the project is located in the month that the auction is held (in percentage points), and a
dummy variable equal to 1 for auctions in Texas. We denote the coefficients for these covariates as
β0,×, β1,×, and β2,×, respectively, where × can beμC , σC , α, or K . We allow only unemployment to
affect the location parameter of the cost distribution, setting β1,σC = β1,α = β1,K ≡ 0. The Texas
dummy coefficient could capture differences in the procurement process across the states, which
might affect entry costs or how much suppliers know about their costs, as well as the costs of
completing the project.

To make our estimation approach work, we assume that we, the researchers, know the
truncation points.

27
For the cost parameters, we choose very wide bounds that should have little

effect on the parameter distributions for plausible parameters. For example, we truncate Ka at
0.04% and 16% of the engineer’s estimate, where the industry literature (cited in our discussion
of the results below) indicates that values in the range 1%–2% are likely. The parameters to be
estimated are 
 ≡ {

βμC , βσC , βα, βK , ω
2
μC
, ω2

σC
, ω2

α
, ω2

K

}
.

� Importance sampling. We estimate the model using a simulated method-of-moments
estimator and we use importance sampling to approximate the moments predicted by a given set
of parameters (Ackerberg, 2009). The motivation behind using importance sampling is that it
would be too costly to resolve a large number of FPAFE models each time one of the parameters
changes. Instead, with importance sampling, we can solve a very large number of games once
and then only reweight these outcomes as we change the parameters.

To explain the way that we use importance sampling, let ye = f (Xa, θa) denote an expected
outcome of an auction, such as an indicator for whether the winning bid lies between 0.8 and 0.9
times the engineer’s estimate. Calculating ye in our setting is expensive because we have to solve
the FPAFE and then simulate outcomes. The density of θ , given Xa and 
, is φ(θ |Xa, 
). The
expected value of the outcome given Xa and 
, which we can label E(ye|Xa, 
), is

E(ye|Xa, 
) =
∫

f (Xa, θa)φ(θa|Xa, 
) dθa.

As this integral does not generally have an analytic form, one could approximate it for a
given value of 
 using simulation by drawing S samples of θ from the distribution φ(θ |Xa, 
)
and computing f (Xa, θas) for each draw θas so that

E(ye|Xa, 
) ≈ 1

S

S∑
s=1

f (Xa, θas).

However, this calculation would require solving a new set of S auctions whenever one of the
parameters in 
 changes. The importance sampling methodology exploits the fact that∫

f (Xa, θa)φ(θa|Xa, 
) dθ =
∫

f (Xa, θa)
φ(θa|Xa, 
)

ψ(θa|Xa)
ψ(θa|Xa) dθ,

where ψ(θa|Xa) is an importance sampling density that has the same support as φ(θa|Xa, 
),
but does not depend on unknown parameters. In this case, we can calculate f (Xa, θas)

28
for a

large number of draws taken fromψ(θa|Xa), and then calculate an approximation to E(ye|Xa, 
),
where we only have to recompute the weights φ(θa |Xa ,
)

ψ(θa |Xa )
when 
 changes, that is,

E(ye|Xa, 
) ≈ 1

S

S∑
s=1

f (Xa, θas)
φ(θas|Xa, 
)

ψ(θas|Xa)
. (6)

27 As noted by Ackerberg (2009), we would not be able to use importance sampling as part of our estimation
approach if the truncation points depended on the parameters that we are estimating.

28 For each solved auction (i.e., for a given draw of θas) we use a single simulation as an unbiased estimator of
f (Xa, θas ). We could, of course, use more draws to increase efficiency.
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TABLE 2 Importance Sampling Density Parameters (�̃) for Estimation

β0 β1 β2 ω c c
Constant Unemployment Texas Standard Deviation Lower Trunc. Upper Trunc.

μC −0.07 −0.005 0 0.012 −0.4 1.0
σC 0.05 0 0 0.025 0.0095 0.995
α 0.5 0 0 0.25 0.1 0.9
K 0.015 0 0 0.01 10−4 0.16

Notes: The parameter 
̃ specifies the distribution, as given by the functional form in (5).

To estimate the parameters, we group the auctions observed in the data into 32 groups,
based on the interaction of the number of planholders (N = 4, . . . , 11), the state (OK or TX), and
whether the unemployment rate in the county is above or below the median level for the state in
the month that the auction was held. For each of these groups, we create moments that measure
the difference between average observed outcomes (ya) and expected outcomes (E(ye|Xa, 
))
for the auctions in the group. The outcomes consist of indicator variables for the number of firms
submitting bids, indicators for whether the winning bid lies in one of 15 discrete bids (we divide
the interval [0, 1.5] into 15 equally sized bins), and the proportion of all suppliers’ bids that lie
in each of these bins (as some suppliers do not enter, the sum of the proportions across the bins
for a given group will be less than 1).

We estimate 
 by minimizing the squared sum, across groups and moments, of these
differences, which is a consistent method of moments procedure where the different moments
and the different groups receive equal weighting. We use ψ(θa|Xa) ≡ φ(θa|Xa, 
̃), where 
̃ is
given in Table 2 and φ(·) denotes the truncated normal model given in (5), as our importance
sampling density. For each group of auctions, we take N S draws of θ from this distribution and
solve the associated FPAFE model, calculating ye = f (Xa, θa) using simulation, where N S is
equal to 100 times the number of auctions in the group. We choose 50 of these simulated auctions
for each of our auctions to calculate E(ye|Xa, 
) using equation (6), as part of the estimation
procedure. In Appendix C we provide some Monte Carlo evidence that an importance sampling-
based estimator can perform well for this model even using a smaller number of draws (as few
as five) for each auction. As is usual when using importance sampling, accuracy is improved by
using an importance sampling density which is close to the true density. In practice, we chose the
starting parameters reported in Table 2 based on a large number of initial runs, using more diffuse
importance sampling densities, which indicated that these parameters values would be close to
the parameters that we would estimate in both states.

We calculate standard errors using a bootstrap procedure. For a given bootstrap replication,
we redraw auctions from each of our 32 groups with replacement. For each of these auctions, we
choose a new set of 50 simulated auctions, from our large sample of N S for that group, to use in
the importance sampling calculation. In this way, the reported standard errors should account for
the fact that our estimates are dependent on the particular set of importance sampling draws that
we use to calculate the moments.

� Identification. Gentry and Li (2014) formally study nonparametric identification in a
broad class of selective entry auction models where potential bidders first simultaneously decide
whether to enter the model based on signals about their values and then compete in a standard
auction, such as a first-price auction. With no unobserved heterogeneity, they show that exogenous
sources of variation in the equilibrium level of entry can identify the model. When the sources
of variation in entry are sufficiently rich (e.g., a continuous variable that shifts entry costs or
a continuously varying reserve price with suitable support), one obtains point identification,
whereas when there is only discrete variation (e.g., in the number of potential entrants), one
obtains partial identification, although they show that the resulting bounds are often informative.

C© RAND 2014.



690 / THE RAND JOURNAL OF ECONOMICS

FIGURE 2

SIMULATED ENTRY, BID, AND WINNING BID DISTRIBUTIONS FOR A REPRESENTATIVE AUCTION FOR
VARIOUS VALUES OF α AND K
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Notes: The top row plots these distributions as α moves from 0.1 to 0.5 to 0.9. the bottom row plots them as K moves
from 0.005 to 0.01 to 0.02. we set the location of the value distribution equal to −0.0963, the scale parameter equal to
0.0705, α (when we vary K ) equal to 0.4979, and K (when we vary α) equal to 0.0147. densities are plotted based on
100,000 simulations of each auction.

One intuition for why the model is identified with no unobserved heterogeneity comes
from the fact that when there are few potential entrants or entry costs are very low, all potential
bidders should choose to enter with high probability. In this case, we have exogenous entry
and more standard results for the identification of value or cost distributions in auction models
will hold (Athey and Haile, 2002). The average level of entry costs and the degree of selection
(equivalently, the informativeness of suppliers’ signals) will then be identified from how the
amount of entry and the distribution of bids change as the number of potential entrants rises.

29

If not all potential entrants participate in the auction for larger values of N , entry costs must be
nontrivial. Furthermore, as shown by Levin and Smith (1994) in the corollary to their Proposition
9, one implication of the random entry, discussed in the Introduction, that occurs with no selection
(α = 1) is that the expected procurement cost will rise with the number of potential entrants given
optimal or nonstrategic reserve prices. When α < 1, the sign of the relationship will depend on
the parameters (Samuelson, 1985, discusses the α = 0 case). In our sample, controlling for state
fixed effects and unemployment, there is a significant (at the 10% level) negative relationship
between the log of the procurement cost relative to the engineer’s estimate and the number of
potential entrants, indicating that a model with no selection can be rejected. In estimation, the
value of α̂ will be chosen to not only match this relationship, but also, given the estimated value
of K̂ , how the distribution of all bids and the distribution of the number of entrants change with
both N and observables such as unemployment.

To illustrate how α and K jointly determine observed outcomes, the two rows of Figure 2
show how the distributions of the number of entrants, all bids and winning bids, change as we
change α from 0.1 (a high degree of selection) to 0.5 to 0.9 (a low degree of selection) and K

29 Variation in the number of potential entrants is a common source of identification in entry models (Berry and
Tamer, 2006).
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from 0.005 to 0.01 to 0.02, with fixed N . We draw these figures holding the other parameters
fixed at their mean estimated values for auctions in Oklahoma with an unemployment rate of 3%,
and we assume that there are seven potential entrants.

30

As α increases, there is more entry on average (potential suppliers place less weight on their
signals when forming their posteriors so that suppliers with high [bad] signals are more willing
to enter). However, suppliers with very low costs become less likely to enter (it is more likely
that they receive a bad signal), and those that do enter tend to face less competition from other
low-cost entrants so that their markups tend to increase. This tends to shift the distribution of
winning bids slightly to the right. The distribution of all bids also shifts slightly to the right, as
more high cost suppliers tend to enter. As entry costs increase, fewer firms enter but, because of
selection, the firms that do enter tend to have lower costs. On its own, this would tend to shift
the distribution of the bids to the left. However, because they expect to face less competition,
entering suppliers will tend to submit higher markups. The increase in markups tends to shift
the distribution of bids, as well as the distribution of winning bids, to the right, and, in this case,
we can see that this effect actually tends to dominate. As we shall see in Section 5 below, the
markups that suppliers with moderately high costs submit in an FPAFE play an important role in
our counterfactual comparison with an ERA.

Gentry and Li (2014) show that their identification results extend to a case where there is
unobserved heterogeneity that affects both the distribution of values/costs and the level of entry
costs, as long as there is still some observed exogenous source of variation in the equilibrium
level of entry. Our model, where we allow for independent sources of unobserved heterogeneity
to affect the distribution of costs, entry costs, and the degree of selection is not included in the
class of models that they consider and our parametric assumptions are likely to be important. To
provide some additional transparency into how the moments that we use in estimation identify
the parameters of our model, we follow a recent article by Gentzkow and Shapiro (2013). They
suggest a method for illustrating how sensitive (locally) estimated parameters are to particular
groups of moments that are defined by a structural model.

The eight rows of Figure 3 show the absolute values of Gentzkow and Shapiro’s scaled
sensitivity parameters 
 for moments based on N = 7 potential suppliers and low unemploy-
ment in Oklahoma, and the parameter estimates that will be presented in Section 5. Gentzkow
and Shapiro define their sensitivity parameter as 
 = �θγ�

−1
γ γ

, where θ are the parameters, γ
are the moments, and � represents the variance-covariance matrix of the stacked vector of the
parameters and the moments evaluated at the estimated parameters. This scaling means that we
can interpret the vertical axis values as telling us how much a one standard deviation increase
in a given moment would change the parameter relative to its asymptotic standard deviation.

31

Figure 3(a) shows the scaled sensitivity parameters for the constant (β0,×) parameters, and Fig-
ure 3(b) shows them for the standard deviation (ω×) parameters. In each panel, we show the scaled
sensitivity parameters for each of the moments. The first column considers the entry moments,
with each bar corresponding to the moment that measures the probability of seeing a particular
number of entrants. The second column considers the bid distribution, and each bar corresponds
to a moment that measures the probability that a supplier’s bid lies in the corresponding bin
(e.g., 0.7–0.8, 0.8–0.9, etc.). The final column considers the distribution of the winning bid.
Figure 3 also overlays the simulated values of the associated moments, at the estimated parame-
ters, to put the horizontal axis into perspective; these moments are scaled so that they fit on the
figures and the value of the moment should not be read from the vertical axis. All distributions
are conditional on at least one entrant, as this is what we observe in the data.

30 Specifically, we set the location of the value distribution equal to −0.0963, the scale parameter equal to 0.0705,
α (when we vary K ) equal to 0.4979, and K (when we vary α) equal to 0.0147. The winning bid distribution is drawn
conditioning on at least one potential bidder entering.

31 When interpreting the values on the y-axis, it is important to remember that the combination of N = 7, OK,
and low unemployment is only one of the 32 N -state-unemployment level combinations that we use in estimation. The
patterns are broadly similar but not identical for the other groups.
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FIGURE 3

ABSOLUTE VALUES OF THE SCALED SENSITIVITY PARAMETER FROM GENTZKOW AND SHAPIRO
(2013)
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Notes: For Oklahoma auctions with low unemployment and seven potential suppliers. Each row corresponds to a
different parameter (β0,× in (a) and ω× in (b)), and each column corresponds to a different distribution. The scaled
sensitivity parameters for each moment (i.e., each bin of the distribution) are represented by the gray bars and the value of
the scaled sensitivity parameter can be read from the vertical axis. The solid lines show the relative value of the different
moments evaluated at the different parameters.
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TABLE 3 Parameter Estimates

β0 β1 β2 ω

Constant Unemployment Texas Standard Deviation OK Mean TX Mean

μC −0.0868 −0.0023 0.0154 0.0142 91.1% 92.1%
(0.0324) (0.0064) (0.0132) (0.0091) (0.84%) (1.89%)

σC 0.0687 −0.0117 0.0304 6.45% 5.61%
(0.0196) (0.0213) (0.0132) (0.97%) (0.87%)

α 0.4979 0.1115 0.1284 0.4979 0.6055
(0.0972) (0.0943) (0.0764) (0.0770) (0.0752)

K −0.0018 0.0105 0.0189 1.47% 1.88%
(0.0406) (0.0191) (0.0109) (0.26%) (0.28%)

Notes: Standard errors are in parentheses and are calculated using a non-parametric bootstrap described in the text.
The state averages are (going down the rows) the average of costs, the mean standard deviation of the cost distribution,
the mean α and the mean entry cost, relative to engineer’s estimate, for auctions in each state.

The sensitivity parameters show two intuitive patterns. First, the parameters tend to be most
sensitive to the moments that capture the most observations in the data (e.g., four suppliers enter,
rather than one or seven suppliers). Second, all of the parameters are somewhat sensitive to all of
the moments, reflecting how, as explained above, a parameter such as the level of entry costs will
affect not only the cost distribution of the suppliers that enter and how much entrants markup
their bids. That said, the figures suggest that for the four parameters related to α and K , the entry
moments are particularly important in the sense that their sensitivity parameters are larger. On
the other hand, for ωμC and ωσC , the moments describing the distributions of either all bids or
winning bids play a relatively greater role. This is intuitive, as, for example, increasing both the
number of auctions where suppliers tend to have high costs and the number of auctions where
they tend to have low costs, which is what happens as ωμC increases, should tend to spread out
the distribution of the winning bid without necessarily affecting the average amount of entry. Of
course, one could take these results further to try to identify more optimal moments for estimation
(e.g., interactions of the amount of entry and the winning bid), but we view this type of extension
as a topic for further research.

5. Results

� In this section, we present the estimation results and our counterfactual analysis of the
impact of switching from the observed FPAFE format to an ERA format.

� Parameter estimates. The left-hand columns of Table 3 present the parameter estimates.
To interpret the location and scale parameters together, the right-hand columns report the average
across the auctions in each state of (going down the rows) the mean of the cost distribution, the
standard deviation of the cost distribution, the value of α, and the entry cost. The mean of the cost
distributions are similar in the two states, between 91% and 92% of the engineer’s estimate. As the
average winning bids are higher than this, it suggests that the markups may be quite substantial.
We will return to why this happens, and how the ERA can help to reduce markups, in discussing
our counterfactual results.

Mean entry costs are 1.5% of the engineer’s estimate of the cost of the project in Oklahoma
and 1.9% in Texas. Although in many industries it is hard to know what entry costs are really
reasonable, in this setting we are able to compare them with estimates from manuals that are
used in the industry. Halpin (2005) estimated that the cost of researching and preparing bids is
around 0.25% to 2% of total project costs. Park and Chapin (1992) estimated that these costs are
typically about 1% of the total bid. Our estimates therefore appear quite reasonable.

Our estimates of entry costs are also lower than those that have been estimated based
on models with no selection. For example, based on highway paving contracts in California,
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Krasnokutskaya and Seim (2011) estimates mean entry costs to be approximately 3% of the
engineer’s estimate, and Bajari, Hong, and Ryan (2010) estimates them to be 4.5% of the engineer’s
estimate. There are some intuitions for why allowing for selection will tend to lower estimated
entry costs. In any model, the level of the entry cost will be identified from the fact that the
marginal entrant must be indifferent between getting some expected surplus if it enters and not
paying the entry cost. Holding the entry probability of other suppliers and the distribution of
costs fixed, the expected surplus of the marginal entrant, and therefore the estimated entry cost,
will tend to be lower with selection for two reasons. First, with selection, the other suppliers who
choose to enter will tend to have lower costs than if their costs were randomly drawn, reducing
the marginal entrant’s surplus. Second, as pointed out by one of our referees, because a bidder’s
surplus is usually convex in its own type, the marginal entrant’s expected surplus will tend to be
lower when it is conditioning on an informative signal than when it has no signal.

The estimates of α suggest that entry is partially selective in this setting, with a mean α
of around 0.50 in Oklahoma and 0.61 in Texas; these mean values of α correspond to the scale
parameter σε of the error distribution being approximately σC in Oklahoma and 1.3 times σC in
Texas. The degree of selection is therefore in the range where our example suggests that it is
possible that the FPAFE may be more efficient than an ERA, even though entry into FPAFEs is
clearly volatile in our empirical setting.

� Regulating bidder entry with an entry rights auction. In this subsection, we use our
parameter estimates to quantify how procurement costs and efficiencies would change if the DoTs
switched from using FPAFEs to using ERAs. Throughout what follows, the procurement cost
refers to the net amount that the procurer expects to pay to get the project completed. In an FPAFE,
this is just the expected winning bid, or c0 if there is no winner. In the ERA, it is the expected
winning second-round bid (or c0) plus the sum of entry costs less the expected sum of first-round
bids. Social costs refer to the expected sum of entry costs plus the cost of the supplier completing
the project (or c0), and a mechanism is more efficient if and only if it has lower social costs.
We assume that the cost of completing a project outside the auction is 1.5 times the engineer’s
estimate and, unless we state otherwise, this is used as the reserve price in the FPAFE and the
second stage of the ERA.

In presenting the results, we assume the DoTs would choose the number of entrants in the
ERA to minimize the procurement cost (n∗

cost), but we will comment below on how the results
are very similar if we assume instead that the number of entrants is chosen to minimize social
costs (n∗

eff). The choice of n∗
cost balances several competing effects. In equilibrium, the procurer

pays the full entry cost of an additional entrant, and increasing the number of entrants will reduce
the amount that any supplier bids in the first-stage auction. On the other hand, when there are
more entrants, a firm with lower costs may be selected to complete the project and bidding in the
second-stage auction will tend to be more competitive. With the exception of the additional entry
cost, the size of these different effects will depend on the degree of selection, as an additional
entrant will be more likely to win when signals are less informative.

Tables 4 and 5 present the results. Table 4 compares the outcomes of interest (social costs,
procurement costs, and the profits for an individual supplier), and Table 5 shows the average cost
of the winner, the average winning bid, and the average amount of entry under each mechanism.
For the ERA, it also shows the average total expenditure on entry costs and the average revenue
from first-stage bids. In both tables, we use a range of different parameter values. The baseline
case (top row) corresponds to the mean parameters for auctions in Oklahoma (unemployment
rate 4.14%) and approximately the mean number of potential suppliers in that state (seven).
In the remaining rows, we change the number of potential suppliers up and down by approximately
one standard deviation and each parameter, in turn, to be equal to either the 10th or the 90th
percentiles of its distribution. The parameter that is changed from the baseline is listed in italics.

For all of the parameters listed, we predict that an ERA would both be more efficient and
lower procurement costs. For the baseline parameters, both social costs and procurement costs

C© RAND 2014.



BHATTACHARYA, ROBERTS, AND SWEETING / 695

T
A

B
L

E
4

So
ci

al
C

os
ts

,P
ro

cu
re

m
en

t
C

os
ts

,a
nd

M
ea

n
P

ro
fit

s
fo

r
an

In
di

vi
du

al
Su

pp
lie

r
R

el
at

iv
e

to
th

e
E

ng
in

ee
r’

s
E

st
im

at
e

Pa
ra

m
et

er
s

S
oc

ia
lC

os
ts

P
ro

cu
re

m
en

tC
os

ts
10

0
×

A
vg

.S
up

pl
ie

r
P

ro
fi

ts

C
as

e
N

μ
C

σ
C

α
K

F
PA

F
E

E
R

A
%

D
if

f.
F

PA
F

E
E

R
A

%
D

if
f.

F
PA

F
E

E
R

A
%

D
if

f.

B
as

el
in

e
7

−0
.0

96
3

0.
07

05
0.

49
79

0.
01

47
0.

88
6

0.
86

5
−2

.4
1%

0.
91

4
0.

89
2

−2
.4

1%
0.

39
9

0.
39

1
−2

.0
1%

L
ow

N
5

−0
.0

96
3

0.
07

05
0.

49
79

0.
01

47
0.

89
1

0.
87

4
−1

.9
1%

0.
92

3
0.

90
5

−1
.9

5%
0.

64
8

0.
63

6
−1

.8
5%

H
ig

h
N

9
−0

.0
96

3
0.

07
05

0.
49

79
0.

01
47

0.
88

3
0.

85
9

−2
.7

4%
0.

90
8

0.
88

3
−2

.7
5%

0.
28

0
0.

27
7

−1
.0

7%

L
ow
μ

C
7

−0
.1

14
5

0.
07

05
0.

49
79

0.
01

47
0.

87
1

0.
85

0
−2

.4
7%

0.
89

9
0.

87
6

−2
.5

6%
0.

39
7

0.
38

4
−3

.2
7%

H
ig

h
μ

C
7

−0
.0

78
1

0.
07

05
0.

49
79

0.
01

47
0.

90
1

0.
88

0
−2

.3
6%

0.
93

0
0.

90
8

−2
.3

7%
0.

40
4

0.
39

7
−1

.7
3%

L
ow
σ

C
7

−0
.0

96
3

0.
03

35
0.

49
79

0.
01

47
0.

92
6

0.
90

2
−2

.5
4%

0.
94

0
0.

91
5

−2
.6

5%
0.

20
1

0.
19

2
−4

.4
8%

H
ig

h
σ

C
7

−0
.0

96
3

0.
10

81
0.

49
79

0.
01

47
0.

84
8

0.
82

9
−2

.2
1%

0.
89

0
0.

87
0

−2
.2

5%
0.

59
9

0.
57

7
−3

.6
7%

L
ow
α

7
−0

.0
96

3
0.

07
05

0.
33

39
0.

01
47

0.
88

4
0.

86
1

−2
.6

4%
0.

91
5

0.
89

1
−2

.6
2%

0.
44

1
0.

43
9

−0
.4

5%

H
ig

h
α

7
−0

.0
96

3
0.

07
05

0.
66

20
0.

01
47

0.
88

9
0.

87
1

−2
.1

2%
0.

91
4

0.
89

3
−2

.2
9%

0.
34

8
0.

32
8

−5
.7

5%

L
ow

K
7

−0
.0

96
3

0.
07

05
0.

49
79

0.
00

24
0.

83
9

0.
83

7
−0

.2
1%

0.
87

0
0.

86
7

−0
.3

4%
0.

44
2

0.
41

8
−5

.4
2%

H
ig

h
K

7
−0

.0
96

3
0.

07
05

0.
49

79
0.

03
03

0.
93

4
0.

89
6

−4
.1

1%
0.

96
1

0.
92

3
−3

.9
5%

0.
38

0
0.

39
0

2.
63

%

N
ot

es
:W

e
co

m
pa

re
th

e
F

PA
F

E
to

an
E

R
A

w
it

h
th

e
nu

m
be

r
of

en
tr

an
ts

ch
os

en
to

m
in

im
iz

e
pr

oc
ur

em
en

tc
os

ts
.N

ot
e

th
at

lo
w

er
nu

m
be

rs
fo

r
so

ci
al

co
st

s
m

ea
n

th
at

a
m

ec
ha

ni
sm

is
m

or
e

ef
fi

ci
en

t.
T

he
“%

D
if

f.”
co

lu
m

ns
co

rr
es

po
nd

to
th

e
pe

rc
en

tc
ha

ng
e

in
th

e
qu

an
ti

ty
w

he
n

m
ov

in
g

fr
om

an
F

PA
F

E
to

an
E

R
A

.A
ve

ra
ge

ou
tc

om
es

ar
e

es
ti

m
at

ed
us

in
g

50
0,

00
0

si
m

ul
at

io
ns

.

C© RAND 2014.



696 / THE RAND JOURNAL OF ECONOMICS

TABLE 5 Breakdown of the Expected Values of Major Quantities in an FPAFE and an ERA

FPAFE ERA

Total Total 1st

Case Comp. Cost Win Bid No. Entrants Comp. Cost Win Bid n∗
cost/N Entry Costs Stage Bids

Baseline 0.837 0.914 3.381 0.835 0.891 2/7 0.029 0.028

Low N 0.845 0.923 3.125 0.844 0.902 2/5 0.029 0.025

High N 0.831 0.908 3.528 0.829 0.884 2/9 0.029 0.029

Low μC 0.821 0.899 0.888 0.820 0.875 2/7 0.029 0.027

High μC 0.852 0.930 0.921 0.851 0.907 2/7 0.029 0.029

Low σC 0.877 0.940 0.905 0.873 0.900 2/7 0.029 0.013

High σC 0.797 0.890 0.907 0.800 0.882 2/7 0.029 0.042

Low α 0.835 0.915 3.311 0.831 0.881 2/7 0.029 0.019

High α 0.838 0.914 3.479 0.841 0.902 2/7 0.029 0.038

Low K 0.828 0.870 4.592 0.830 0.843 3/7 0.007 0.013

High K 0.848 0.961 2.856 0.835 0.891 2/7 0.061 0.028

Notes: The cases correspond to the parameters listed in Table 4. The “Comp. Cost” columns report the expected
completion cost, which is the winner’s cost when the project is awarded to a bidder and c0 = 1.5 when there is no winner.
The “Win Bid” columns are the average bid of the winning bidder in the auction for the contract (this is identically the same
as the procurement cost in the FPAFE). The “Total 1st Stage Bids” column lists the sum of the expected first-round bids
in the ERA. The column n∗

cost/N lists the procurer-optimal number of entrants selected in the ERA. Average outcomes
are estimated using 500,000 simulations.

are 2.4% lower under the ERA. The magnitudes are broadly similar across the parameters, except
when entry costs are low (Low K) when both the absolute and the proportional differences are
small. Aggregating across all of the auctions in both states, by taking a draw of the parameters
for each of the auctions in our sample, we predict that using ERAs would lower social costs by
$7.78 million (2.49%) and lower procurement costs by $8.03 million (2.50%). For 3.5% of these
draws, we predict that the FPAFE would be more efficient, but in all of these cases entry costs are
very low, α has values between 0.39 and 0.77, the efficiency advantage of the FPAFE is small,
and we also predict that the ERA would lower procurement costs, although the procurement cost
differences are small in these cases.

Although improvements of around $8 million may seem fairly small, it is important to
remember that the sample we are using (contracts involving bridge work in Oklahoma and a
small section of Texas) are a very small fraction of highway contracts let by US DoTs in the
years that we study: in 2007, the public sector spent $146 billion to build, operate, and maintain
highways in the US with three quarters of this amount spent by state and local governments
(Congressional Budget Office, 2011). Moreover, the proportional effects that we are finding are
large relative to those produced by auction design changes that are often considered. For example,
for the baseline parameters setting a strategic reserve to minimize procurement costs in the FPAFE
would only lower procurement costs by 0.03%, whereas we predict that an ERA would lower
procurement costs by 2.4%.

32

Interestingly, the ERA also reduces procurement costs by more than adding additional
potential suppliers, which is often viewed as providing an upper bound on what an optimal design
change can achieve.

33
This can be seen in Table 4, where adding two more potential suppliers in

32 We calculate the optimal reserve price by computing procurement costs on a fine grid of reserve prices with 0.01
spacing, using 500,000 simulations to calculate expected costs in each case. Efficiency in the FPAFE falls when a reserve
price other than 1.5 (the value of c0) is used. We have also found that an optimal reserve price in the second stage of the
ERA can only improve its performance by a trivial amount.

33 Bulow and Klemperer (1996) show that in an IPV model with a fixed number of symmetric bidders, an additional
bidder is more valuable to the seller than being able to implement an optimal auction design. This theoretical result does
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an FPAFE to the baseline case (changing it to the High N case) lowers procurement costs by 0.6%
of the engineer’s estimate, compared to a 2.4% reduction from switching to an ERA.

Table 5 shows that in most cases the ERA is more efficient because there is both less entry
and the average cost of the winner is lower. The fact that it can have both of these advantages
reflects the uncoordinated nature of entry in the FPAFE: even though more firms may enter an
FPAFE on average, there may be instances where no firms, or only one firm, enter(s) and at least
one additional entrant, who will always be in the ERA as n∗

cost = 2 for these parameters, might
decrease the expected cost of completing the project substantially.

34
However, most of the ERA’s

efficiency advantage comes from lower entry costs (e.g., this accounts for 91% of the reduction
in social costs in the base case). This fact helps to explain why the one case in Table 4 where the
social costs are almost identical under the two mechanisms is where entry costs are very low (Low
K, where K equals just 0.2% of the engineer’s estimate). In this case, the additional entry into the
FPAFE lowers the expected cost of completing the project although increasing entry costs by a
relatively small amount. However, even in this Low K case, the ERA is still more efficient.

A natural question is how well the ERA that we consider does relative to a mechanism that
was designed to maximize efficiency. As already noted, one weakness of our ERA is that the
number of selected entrants does not depend on suppliers’ signals. Another weakness, relative to
a sequential search procedure, is that the procurer cannot get bids from more firms if the ones for
whom it initially chooses to pay the entry cost turn out to have high costs. Based on our results
so far, it is unclear whether these weaknesses are important. To investigate this further, we can
compare social costs under our ERA and under two more efficient but hypothetical alternatives.

35

In the first alternative, which we can call the “signal-dependent ERA” (S-D ERA), we allow the
procurer to choose the number of entrants with knowledge of suppliers’ signals but without using
any information on the costs of the selected entrants. In the second alternative, which we can call
the “sequential search procedure” (SSP), we consider a procurer who knows the suppliers’ signals
and then approaches suppliers sequentially, in ascending order of their signals. The procurer asks
an additional supplier to enter if, based on its signal and the lowest cost to complete the project
of the suppliers that have entered already, the procurer expects that its entry will reduce the cost
of completing the contract by enough to offset the additional entry cost.

For the baseline parameters, we find that our ERA performs very well compared to these
hypothetical alternatives. Social costs for the FPAFE, ERA, S-D ERA, and SSP, are 0.886, 0.865,
0.863, and 0.857, respectively. The ERA with fixed n therefore achieves 91% and 72% of the
efficiency gains of switching from the FPAFE to the S-D ERA and SSP, respectively, while
maintaining the attractive elements of simultaneous bidding and being quite straightforward to
implement. Qualitatively, these comparisons also hold for the other parameters in Table 4: with
the exception of the Low K case, where all mechanisms have very similar social costs, the fixed
n ERA achieves at least 78% of the gains that would result from switching from the FPAFE to
the S-D ERA, and at least 60% of the gain from switching from the FPAFE to the SSP.

As can be seen in Table 4, the benefits of the increased efficiency of the ERA often accrue
entirely to the procurer, with the profits of the average supplier tending to fall slightly (the percent
changes in the supplier’s profits are nontrivial because supplier profits are quite small under either
mechanism), whereas procurement costs tend to fall by slightly more than the gain in efficiency.

not hold with endogenous entry, but its logic is often used to motivate the importance of trying to generate additional
interest in the assets being auctioned (e.g., Klemperer, 2002).

34 For the baseline parameters, there is no entrant into the FPAFE in 1% of simulated auctions, in which case the
procurement cost is 1.5. This would happen only if both of the selected firms had costs above 1.5 in the ERA and this
happens with almost zero probability, and never in our simulations. If we condition our comparison on cases where at least
one firm enters the FPAFE, so that we ignore simulations where the outcome of the FPAFE is particularly inefficient, the
expected winner’s cost is very similar for the ERA and the FPAFE, but the overall differences in social costs, procurement
costs, and bidder profits are almost identical to those shown in Table 4.

35 The alternatives are hypothetical in the sense that we ignore the fact that it might be difficult or very expensive
for the procurer to get suppliers to report their signals or costs truthfully.
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FIGURE 4

KERNEL DENSITIES FOR (A) THE WINNER’S COST OF COMPLETING THE CONTRACT AND (B) TOTAL
PROCUREMENT COSTS IN BOTH THE FPAFE AND THE ERA, USING THE BASELINE PARAMETERS
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Notes: The costs to the procurer in the ERA includes entry costs paid less the revenue from the first-stage bids.
Densities are plotted based on 500,000 simulations. Simulations of the FPAFE where no suppliers entered are ignored.

Aggregating over the whole sample, total supplier profits fall by $242,000 (2.82%) under the
ERA. An exception is when entry costs are high (High K), as the bidders also benefit under the
ERA, but even in this case the procurer benefits more than the bidders do.

To understand why procurement costs fall, recall that in an FPAFE, the procurer only pays
the winning bid whereas in an ERA, it pays the winning bid and the entry costs of all of the
suppliers admitted to the second stage, but also receives the first-stage bids of all of the suppliers.
Table 5 shows that in general, first-stage revenues and the entry costs roughly offset from the
procurer’s perspective so that the fall in procurement costs comes primarily from the fact that
winning bids tend to be significantly lower in the second stage of the ERA than in the FPAFE.

Winning bids are lower because the winner’s markup tends to be lower in the ERA, not
because the winner’s cost is lower. Figure 4 plots the distribution of the winner’s cost and the
procurement cost for both mechanisms at the baseline parameters. The winner cost distributions
are very similar in shape for the two mechanisms, but the distribution of procurement costs for the
FPAFE has a more pronounced right tail, which is driven by the fact that winners with relatively
high costs have high markups in the FPAFE.

36

The difference in markups for the baseline parameters can be seen more clearly in Figure 5,
which compares the FPAFE bid function and the average of the bid functions from the second
stage of the ERA with n∗

cost = 2.
37

The diagrams include the pdfs of the cost distribution of
a typical entrant into each mechanism to indicate which parts of the bid curve are the most
empirically relevant (Figure 4 shows the pdf for the winning bidder). The markups in the ERA
are slightly larger than in the FPAFE for low-cost bidders, but they are smaller for higher costs,
which the majority of bidders, and even a large share of winning bidders, have. This leads to an

36 The left end of the procurement cost distributions in Figure 4(b) are also of note. In an FPAFE, there is a single
bid function for given parameter values (θa) because entrants do not know how many other planholders are bidding. This
bid function maps costs to the interval [b

¯
, r ], and the sharp cutoff in the kernel density for the FPAFE corresponds to b

¯
.

On the other hand, bid functions in the ERA depend on the realization of s̄, and this causes b
¯

to vary depending on signals
even when the parameters of the auction are fixed. As a result, there is no sharp cutoff in the density for the ERA.

37 The bid function in the second stage of the ERA depends on the value of the highest losing bid in the first stage.
Here, the average bid function in the ERA is defined by β(c) ≡ ∫

β(c; s) fS(s) ds, where fS(·) is the density of the (n + 1)st

lowest signal.
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FIGURE 5

COMPARING THE BID FUNCTION FOR AN FPAFE (HEAVY SOLID LINE) WITH THE AVERAGE BID
FUNCTION IN AN ERA WITH n = 2 AT THE BASELINE PARAMETERS
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Notes: The bid function for the FPA is shown with a heavy solid line, and the bid function for the ERA is shown with
a heavy dashed line. The base parameters are (μC = −0.0963, σC = 0.0705, α = 0.4979, K = 0.0147, N = 7, and a
reserve price r = 1.5. The dotted line is the 45◦ line, for comparison. The lighter lines show the densities for the cost of
a typical entrant into each mechanism.

average markup for the winning bidder in the FPAFE of 9.4% (ignoring cases where there is no
sale), whereas the average markup for the winning bidder in the second stage of the ERA is only
6.8%.

Markups are lower in the ERA even though for the baseline parameters a bidder should
expect to face 2.9 rival bidders in the FPAFE and only one rival bidder in the second stage of the
ERA with n∗

cost = 2. This reflects how the lack of coordination in entry affects bidding incentives.
In the FPAFE, a bidder with a high cost knows that he is most likely to win when no other firms
enter, in which case he should be submitting a bid at the reserve price; even though it is unlikely
that no other firms enter, the possibility leads him to submit a high bid in equilibrium.

38
On

the other hand, in an ERA with n∗
cost = 2, a bidder knows that he can only win if he submits a

lower bid than his competitor. Therefore, as a bidder’s cost increases, he will tend to bid more
aggressively (i.e., with a lower markup), as can be seen in Figure 5 where the average ERA
markup is monotonically decreasing in the bidder’s cost for all costs below 1.2.

39

We can also compare the FPAFE and ERA, assuming that the number of selected firms
in the ERA is chosen to maximize efficiency (n∗

eff). Up to integer constraints, n∗
eff balances the

cost of an additional entrant against the possible gain that will come from lowering the cost of
completing the project. Given our estimates, it turns out that using n∗

eff or n∗
cost does not change the

results very much because, given the integer constraint, n∗
eff and n∗

cost are usually the same. This

38 That high-cost bidders bid close to the reserve may suggest that the level of the reserve plays an important role
in determining why average winning markups in the FPAFE are so large. However, Figure 4 shows that the distribution
of the winner’s cost is usually not in the region where bids are close to the reserve even if it is often in the range where
markups are high. For the baseline parameters, reducing the reserve price to 1.1 only reduces the average winner’s markup
to 8.3% (compared to 9.4% when the reserve is 1.5), and increasing it to 4.75 (the maximum of the support of the cost
distribution) only increases it to 10.9%.

39 Above 1.2, the markup increases, reflecting the shape of the upper tail of the cost distribution. However, it is very
rare for the winner in the second stage of an ERA to have a cost above 1.2, so this has little effect on procurement costs.
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is the case for all of the parameters in Tables 4 and 5. When we draw parameters for all of the
auctions in our data, there are some cases with low entry costs where the optimal ns are higher
(e.g., in 12% of cases n∗

cost, is greater than 2 and it takes on values as high as 6). In 17% of cases,
we find that n∗

eff > n∗
cost. However, although this is a significant proportion of cases, we find that

using n∗
eff rather than n∗

cost only reduces social costs slightly, by less than $0.1 million in aggregate
(recall than the advantage of the ERA with n∗

cost over the FPAFE is $7.8 million). In none of
our experiments have we found a case where n∗

eff < n∗
cost. The intuition here is that allowing an

additional entrant reduces the bids that firms make in the first stage of the ERA, and a procurer
that seeks to minimize procurement costs, therefore, has an incentive to exert market power by
reducing the number of entry slots. This incentive appears to typically outweigh the incentive to
reduce second-stage markups by increasing competition. This is sensible given that, even with
n = 2, markups in the second stage of the ERA tend to be small.

Given the sizable gains of using an ERA that we estimate above, a potential puzzle is why
they are not used more often for the sort of public procurement we study here. There are several
possible explanations. First, it may be the case that the reduced supplier profits are actually
harmful to the procurer in the long run, especially when it wants to let many contracts over a
number of years. In this case, it may benefit when there are a large number of firms in the industry
who are potentially interested in bidding, although, as noted above, the benefits from increasing
the number of potential suppliers in an FPAFE are quite small in our setting. Kagel, Pevnitskaya,
and Ye (2008) show that in a laboratory setting students tend to overbid in ERAs, leading to
bankruptcies. If this is true in the field as well, this might provide an additional route by which
ERAs might diminish long-run competition.

Second, in empirical settings like ours, many suppliers are relatively small companies that
face liquidity constraints, and these may be tightened by having to make binding bids into
ERAs.

40
A system that favors bigger companies may be undesirable, as one of the goals of public

procurement is often to favor smaller or minority-owned businesses (e.g., Krasnokutskaya and
Seim, 2011; Athey, Coey, and Levin, 2013). On the other hand, to the extent that suppliers are
also hurt by uncoordinated entry when entry is costly, one could argue that these same concerns
could also provide motivation for regulating entry.

Third, designing an ERA appropriately, in particular choosing n, may require the procurer
to have more information, for example, about the distribution of costs or the entry cost, than
running a FPAFE. In our empirical setting, when we take a draw of the parameters for each of
the auctions in our sample, n = 2 is the procurer-optimal choice for 88% of these draws, and it
is always the best choice unless K is small.

41
Therefore, in general, adopting a policy that two

suppliers will be selected should be effective.
Fourth, Quint and Hendricks (2013) suggest that ERA may provide sellers with perverse

incentives to try to sell off contracts that, once they undertake research, bidders will find to
be worthless. In some settings this may be an important consideration, but it may be less of a
concern when a state agency is letting a large number of contracts and so should want to maintain
a reputation for integrity.

Finally, it may of course be that some of the standard assumptions used to model procurement
auctions, which we have maintained here, such as independent private values, simultaneous entry
decisions, and independent signals (e.g., Athey, Levin, and Seira, 2011; Krasnokutskaya and
Seim, 2011; Li and Zheng, 2011) are incorrect and affect the comparison of the different designs.
For example, if bidder signals are correlated or entry decisions are made sequentially, entry into
the FPAFE may be less volatile, mitigating some of the gains to using the ERA. Alternatively,

40 Following the same logic, liquidity constraints or risk aversion might tend to reduce first-stage bids, increasing
procurement costs.

41 Exactly how small K needs to be to make having more entrants optimal depends on the other parameters, but
particularly the level of α. As α increases, it becomes more desirable to select more entrants.

C© RAND 2014.



BHATTACHARYA, ROBERTS, AND SWEETING / 701

it may be that our assumption that firms act competitively in both mechanisms is not correct: if
firms are more able to collude in an ERA, then this might offset the reductions in procurement
costs that our model predicts.

6. Conclusion

� In procurement settings, where it is expensive for potential suppliers to learn their costs of
completing a project, unregulated entry can lead to volatile amounts of supplier participation.
If suppliers have either very little information or almost perfect information about their costs
prior to entering, then fixing the number of entrants, and choosing them through some type of
entry rights auction procedure, will tend to raise efficiency. However, when suppliers are partially
informed about their costs, fixing the number of entrants in advance can be inefficient because it
ignores the fact that suppliers’ private information can determine how valuable additional entry
would be.

We compare the performance of a standard first-price auction with free entry and an entry
rights mechanism in the empirical setting of highway construction projects involving bridge work
in Oklahoma and Texas, where we find suppliers’ information to be partially informative and
entry costs to be significant. For the vast majority of projects in our sample we predict that using
an entry rights auction procedure would significantly increase efficiency and reduce procurement
costs, and that using ERAs would have much larger effects on procurement costs than alternative
procedures such as setting an optimal reserve price in a standard auction or even increasing
the number of potential bidders. This reflects the fact that an entry rights procedure can both
economize on entry costs by coordinating entry, but also encourage even high-cost suppliers to
bid aggressively by ensuring that they will face competition.

Appendix A

In this Appendix, we provide some additional details on how we solve the FPAFE model developed in Section 2.
The choice of grid {xi }N

i=1 has a minor effect on the solution to the programming problem. Hubbard and Paarsch

(2009) use an N -point Gauss-Lobatto grid on [b, r ],
42

but we have found in our experiments that an evenly spaced grid
is often more efficient. Throughout the article, we use N = 500 grid points and P = 25 polynomials in the expansion;
these choices solve the optimization problem reliably and efficiently.

Bid functions are monotonic in the cost of the bidder, so we follow Hubbard and Paarsch (2009) and impose that
β∗−1(xi ) ≥ β∗−1(xi−1) for 2 ≤ i ≤ N when solving the problem in (4). Furthermore, we impose the rationality constraint
that an agent never bids less than his cost: β∗−1(xi ) ≤ xi for all i . Finally, we replace the constraint in equation (3) by
the condition that the two sides cannot differ by more than 0.1% of K . The integral in equation (3) is replaced by an
approximation using the trapezoidal rule on the N -point grid defined previously.

Although we need to calculate bid functions to use in our estimation procedure, we are able to verify the accuracy
of our solutions by exploiting the fact that a second-price auction, which is easier to solve (Roberts and Sweeting, 2013b,
use this format to analyze timber auction data), should give the same equilibrium entry thresholds and the same expected
procurement cost as a first-price auction with the same parameters. In the many examples that we have looked at, both
the entry thresholds and the expected revenues typically agree to several decimal places.

Appendix B

In this Appendix we provide details on how we select the sample of procurement auctions that we use in estimation. De
Silva, Dunne, Kankanamge, and Kosmopoulou (2008) study a range of different types of highway procurement auctions
from January 1998 through August 2003. However, we focus only on auctions after March 2000, due to an important
change in policy in Oklahoma: prior to March 2000, they did not disclose the engineer’s estimate to bidders. Throughout
this article, we restrict our attention to auctions for new projects (not reauctions of failed sales) involving bridge work
with between four and 11 planholders. From the remaining set of bridge construction contracts let during this period
(483 in OK and 177 in TX), we also employ some additional selection rules removing auctions where (i) there was no

42 A Gauss-Lobatto grid on [−1, 1] is defined to be the points yk = cos [kπ/(N − 1)] for k ∈ {0, 1, . . . , N − 1}.
To define a grid on other intervals, we simply scale these points linearly.
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winner or the DoT rejected all bids (drops 50 in OK, one in TX); (ii) the engineer’s estimate was less than $100,000 or
more than $5 million (drops 121 in OK, 15 in TX); (iii) the data is incomplete in the sense that it records that the number
of recorded planholders differs from the number of suppliers that are listed (drops one in OK); and (iv) the winning bid
was extremely high or extremely low. Specifically, we drop auctions where the winning bid was less than 70% of the
engineer’s estimate, which drops three auctions in Texas and 47 auctions in Oklahoma. Although these auctions have
similar observable characteristics to the rest of the sample, 16 of these Oklahoma auctions were won by two companies
that only won four of the remaining auctions in the sample, suggesting that they may have been somewhat unusual. We
also drop two auctions in Oklahoma and four in Texas with winning bids greater than 150% of the engineer’s estimate,
as we assume in estimation that the DoTs set a reserve price at this level even though no reserve price was officially
announced for these auctions. After these selection rules, we have a sample of 262 auctions in Oklahoma and 154 in
Texas.

Appendix C

In this Appendix, we describe some Monte Carlo experiments designed to test the performance of a simulated method of
moments estimator where we use importance sampling to approximate the moments. We are particularly interested in how
many importance sampling draws per auction are required for accurate estimates (in our actual estimation, we use 50). In
all of our experiments we create data using the specification in (5). We draw the number of potential suppliers N uniformly
at random from the set {4, 6, 8}. We set the vector of observed characteristics for auction a to be Xa ≡ (1, xa) where xa is a
random draw from the set {0, 0.2, 0.4, 0.6, 0.8, 1}. The parameters in the specification are assumed to be βμC = (0, 0.65)′,
βσC = (0.05, 0)′, βα = (0.5, 0)′, βK = (0.04, 0.05)′, ωμC = 0.05, ωσC = 0.02, ωα = 0.05, and ωK = 0.015. We denote
this “true” parameter vector as 
0. The truncation points are taken to be cμC

= −0.4, cμC = 1, cσC
= 0.005, cσC = 0.995,

cα = 0.1, cα = 0.9, cK = 0.0001, and cK = 0.16.
43

We truncate the cost distribution to [0, 4.75], where the probability
that a cost draw will be above the upper support is almost always negligible for our draws of the parameters, and we set
the reserve price equal to 4.75. For any set of parameters drawn from this distribution, we can solve for the equilibrium
bid functions and entry decisions, and simulate outcomes.

As in our empirical application, we estimate the parameters by matching a set of moments describing the outcomes
from auctions with their expectations, calculated using importance sampling, with separate moments for each {N , xa}
combination. Specifically, we match the distribution of the number of entrants (i.e., indicator variables for whether one,
two, three, etc. firms enter), the distribution of winning bids (using indicator variables for whether the winning bid is in
a particular bin, where we divide the interval [0.4, 2.65] into bins of width 0.075), the distribution of all bids (we divide
the interval [0.4, 4.2] into bins of width 0.1) and the number of suppliers that enter but do not submit bids because they
have valuations greater than the reserve. We estimate the parameters by minimizing the squared sum of the differences
between the observed and predicted moments, where each moment is weighted equally.

We report the results from three experiments. In each experiment, we use 500 auctions as data, but we vary the
importance sampling density and the number of simulated draws we use for each auction. Table C1 shows the mean and
the standard deviation of each parameter when we run each experiment 100 times.

In the first experiment (A), we use the true distribution of the parameters as the importance sampling density, which
is optimal but obviously infeasible in an empirical application where the goal is to estimate the true parameters, and use
five simulations for each auction.

44
In the second experiment (B), we make the importance sampling density more diffuse,

by setting ωμC = 0.1, ωσC = 0.04, ωα = 0.1, and ωK = 0.03, and other parameters remain the same. We continue to use

Five simulations per auction.
45

In the final experiment (C), we use the same importance sampling density as in (B) but we
use 30 draws per auction. In all of our experiments, we use the true parameters to begin our search but we have verified
that using a wide-range of starting values does not change our estimates because the objective function is generally very
well behaved. The results of these experiments are shown in columns (A)–(C) of Table C1, respectively.

In all three experiments we recover the coefficients accurately, and, when we use a more diffuse importance sampling
density and 30 draws (C), we recover the parameters almost as well as when we use the true distribution of the parameters
(A). There is some evidence that we tend to overestimate the variance ω parameters in (B) when we use the diffuse density
and only Five draws, but even in this case, the magnitude of any bias appears to be quite small.

Based on these results, in our empirical application we choose to use 50 draws for each auction. We also choose the
importance sampling density based on a large number of initial runs, using quite diffuse importance sampling densities.
This indicated that the parameters of the importance sampling density that we actually use (see Table 2) were likely to be
close to the parameters that we would end up estimating.

43 These truncation points are chosen to ensure that we can solve the FPAFE model accurately.
44 Note rather than solving a fresh set of 2,500 auctions each time we perform a separate run of the experiment,

we solve 25,000 auctions drawn from the distrubution up front, and then draw, with replacement, from this pool when
creating our data and importance sampling draws for each run.

45 In this case, we created solved 75,000 auctions and draw from this pool for each run.
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TABLE C1 Results of Monte Carlo Experiments

Experiment

Parameter Variable True Value A B C

Location parameter (μC ) Constant 0 0.0000 0.0015 −0.0043
(0.0100) (0.0186) (0.0170)

xa 0.65 0.6507 0.6533 0.6602
(0.0174) (0.0282) (0.0247)

ω 0.05 0.0488 0.0575 0.0504
(0.0044) (0.0073) (0.0059)

Scale parameter (σC ) Constant 0.05 0.0494 0.0463 0.0416
(0.0074) (0.0152) (0.0126)

xa 0 −0.0002 0.0085 0.0195
(0.0113) (0.0204) (0.0194)

ω 0.02 0.0192 0.0295 0.0225
(0.0035) (0.0094) (0.0077)

Degree of selection (α) Constant 0.5 0.4994 0.4985 0.4984
(0.0205) (0.0354) (0.0231)

xa 0 0.0000 −0.0102 −0.0130
(0.0308) (0.0607) (0.0571)

ω 0.05 0.0479 0.0803 0.0561
(0.0078) (0.0190) (0.0164)

Entry cost (K ) Constant 0.04 0.0388 0.0361 0.0387
(0.0047) (0.0118) (0.0085)

xa 0.05 0.0516 0.0559 0.0529
(0.0074) (0.0173) (0.0121)

ω 0.015 0.0143 0.0209 0.0145
(0.0025) (0.0063) (0.0038)

Notes: Each column reports the mean and standard deviation of the parameter estimates from 100 runs, where there
are 500 auctions used as data in each run. In column A, the importance sampling density is the true distribution and we
use 5 simulations per auction in the data. In columns B and C, we use a more diffuse importance sampling density (see
text) and either 5 (B) or 30 (C) simulations per auction.
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