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This article examines how different auction designs perform when entry is endogenous and selective, by which
we mean that bidders with higher values are more likely to enter. In a model where potential bidders are sym-
metric, we show that three alternative designs can significantly outperform the ‘standard auction with simulta-
neous and free entry’when entry is selective.Whenbidders are asymmetric, we show that level of bid preference
thatmaximizes a seller’s revenues is significantly affected by the degree of selection.We also describe recent em-
pirical and econometric work that shows that the degree of selection can be identified and estimated using stan-
dard types of auction data.
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1. Introduction

This article examines the performance of different auction designs in
a setting where bidders have independent private values but entry is
endogenous and possibly selective. We will say that entry is selective
when potential bidders with higher values are more likely to enter, as
should happen when potential bidders have some information about
their values prior to taking the entry decision. While it seems intuitive
that entry should typically be selective, this has been ruled out by as-
sumption in much of the theoretical and empirical auction literatures.
In this article we will illustrate that allowing for selection can signifi-
cantly affect the conclusions that a researcher would draw about the
value of auction designs that differ from the standard auction with
free entry, and that the exact degree of selection can also affect which
design performs best. We also describe recent work that shows that
the degree of selection is identified and can be estimated using types
of data that are usually available in auction settings.

To develop our results, we consider an auction for a single unit of a
good and assume that there is a well-defined set of risk-neutral poten-
tial bidders with independent private values. Throughout the article we
will use the term ‘player’ to refer to a potential bidder, using ‘bidder’ to
refer to a player that actually enters the auction and is able to submit a
bid. Thewinningbidder is the one that is allocated the good at the end of
t the ‘Selling Mechanisms’ ses-
saac and two referees for com-
rew Sweeting to participate in
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60876. All errors are our own.

).
the auction.We assume that it is costly for a player to enter the auction
which she must do to submit a bid. We assume that a player learns her
value of the object when she incurs the entry cost, so it is natural to in-
terpret the entry cost as including the cost of doing research or ‘due dil-
igence’ on the object being sold.1

As long as the entry cost is not too low or too high, entry will be en-
dogenous in the sense that a player’s entry decision will depend on
what it expects other players to do, as well as what it believes about
its own value. We model a player’s belief about its value by assuming
that, prior to taking the entry decision, it receives, for free, a signal
that is positively correlated with its value. In equilibrium, players with
signals above some threshold will enter, and the degree of correlation
will, therefore, control the extent to which entry is selective. This pro-
vides uswith a frameworkwherewe can examinehow thedegree of se-
lection, determined by the informativeness of the signals, affects the
absolute and relative performance of different mechanisms, measured
either in terms of the seller’s revenues or total surplus. The common as-
sumption of no selection would involve players receiving no signals or,
equivalently, signals that are completely uninformative.

We use a particular parameterization of our model to compare the
performance, both in terms of revenues and efficiency, of different auc-
tion designs. Our baseline design is a ‘standard auction with simulta-
neous and free (i.e., unrestricted) entry’ (SASFE), which is the usual
way that real-world auctions with endogenous entry are modeled. As
1 We will assume that a player has to incur the entry cost even if she discovers that her
value is less than the seller’s reserve price and so does not actually submit a bid. Therefore,
at least when there is a positive reserve price, it is more appropriate to interpret the entry
cost as the cost of gathering information, rather than some bureaucratic cost of submitting
a bid.
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3 BulowandKlemperer (1996) show that under these assumptions, adding anaddition-
al bidder in a standard auction will increase the seller’s revenue by more than using the
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has been documented in the literature, one feature of this design that
can be both inefficient and harmful for the seller is that entry decisions
are not coordinated across players so that the realized number of bid-
ders will be random. With symmetric players, we compare the SASFE
with three designs that deal with this problem in different ways. In
the ‘entry rights auction’ (ERA) of Ye (2007), the seller fixes the number
of entrants in advance and conducts an initial auction for these entry
‘slots’ where players can bid based on their signals. We also consider
two designs where players take entry decisions sequentially, which
also allows for coordination, but also allows for the number of entrants
to depend on the information that the players have and the seller does
not. In one of these designs (a ‘sequential entry auction’), players decide
to enter sequentially but the entrants bid simultaneously. In the other
design, the ‘sequential bidding auction’ of Bulow and Klemperer
(2009) (BK hereafter), players make entry decisions sequentially and
entrants can submit bidswhen they enter in order to signal information
about their values to players that are taking entry decisions later in the
sequence.

When there is no selection, as is typically assumed in the literature,
the SASFE generates higher expected revenues than either of the se-
quential designs and its revenues are quite close to those of the ERA.
However, once selection is introduced into the model, both sequential
designs, and especially the sequential bidding auction, generate substan-
tially higher revenues than the SASFE and the revenue advantage of the
ERA over the SASFE also increases. The identity of the mechanism that
performs best depends on the exact degree of selection that is assumed.
The alternative designs generate higher total surplus than the SASFE
whatever is assumed about selection, but the size of their advantage
over the SASFE also tends to increase when entry is more selective. In
our comparisons, we draw on results developed in Roberts and
Sweeting (2013), who compare the SASFE and the sequential bidding
auction, and Bhattacharya et al. (2014), who compare a SASFE and an
ERA in a procurement setting. The new results in the present article
come from using a single set of parameters, so that the sequential bid-
ding auction and the ERA can also be compared; adding the sequential
entry auction to the consideration set; considering how absolute and rel-
ative performance changes when we move from no selection to partial
selection (the earlier papers only consider different degrees of partially
selective entry); and, examining in more detail why the alternative
mechanisms are more efficient and generate higher revenue.

We also examine how the degree of selection in the entry process
can affect the performance of bid preference programs, that are widely
used by government agencies when selling assets or procuring services,
in a model where bidders are asymmetric.2 These programs are partly
motivated by wanting to increase the probability that bidders of a par-
ticular type will win, but also, following the logic of optimal auctions
(Myerson, 1981), by a desire to raise auction revenues by increasing
the competition that strong bidders face. We show that while very
large bid preferences maximize revenues when there is little selection,
much smaller preferences are optimal when the degree of selection is
high. These results are also new, and an additional contribution is that
we use our analysis to illustrate how changing the degree of selection
changes the level of entry costs required to rationalize a given amount
of entry by weak bidders.

Our paper contributes to the enormous theoretical literature on auc-
tion design, summarized in the surveys of Klemperer (2004), Krishna
(2002) and Milgrom (2004). When the seller has a single unit, and
there is a fixed number of risk-neutral and symmetric bidders with in-
dependent private values, it is well-known that the optimalmechanism
2 Roberts and Sweeting (2013) allow for players to be asymmetric in the context of a
second-price auction, while Bhattacharya et al. (2014) consider a low-bid auction with
symmetric players. In the current article, we show that it is feasible to solvefirst-price auc-
tionswith asymmetric bidders and selective and endogenous entry. This framework is ap-
propriate because bid preference programs are usually applied in the context of first-price
or low-bid auctions.
is a standard auction with a reserve price or entry fee.3 Much of the the-
oretical auction literature has been concerned with exploring which
mechanisms perform best when these assumptions are relaxed. We
will focus on relaxing the assumption that the number of bidders is ex-
ogenous, and explore how particular assumptions about they way the
entry process works affect the absolute and relative performance of dif-
ferentmechanisms. Milgrom (2004) uses endogenous entry as his lead-
ing illustration of why auctions need to be analyzed in their correct
context, arguing that even auctions that are carefully designed can fail
when too few bidders decide to participate (p. 209).4

We follow the existing literature in modeling the way that standard
auctions work as a two-stage game, where, in the first stage, players si-
multaneously decide whether to enter, incurring a common entry cost,
and, in the second stage, the entrants simultaneously submit bids. This
is what we will label an SASFE. Entry decisions into an SASFE will be
non-trivially endogenous when the entry cost is ‘moderate’ (Milgrom,
p. 217) in the sense that it is low enough that, in equilibrium, some
playersmaywant to enter, while being high enough that somemay not.

The cleanest set of theoretical results come from models in which
players have no private information about their values until they have
entered, so that entry is not selective. Assuming that players are sym-
metric, that the common entry cost is moderate and that the entry
game is followed by a standard first price or second price auction (rev-
enue equivalence holds in this context), Levin and Smith (1994) show
that (i) the symmetric equilibrium involves playersmixing over wheth-
er to enter, andmaking zero expected profits; (ii) the seller’s optimal re-
serve price is equal to its value of keeping hold of the object, with
revenue-maximization requiring no reserve price and no entry fees
(see also McAfee and McMillan, 1987); (iii) an increase in the number
of potential entrants will reduce expected revenues; and, (iv) when
the reserve price is equal to the seller’s value, equilibrium entry strate-
gies are optimal in the sense that a social planner who also had to
choose a symmetric entry rule would choose the same entry probability
that the players themselves choose in equilibrium. In what follows, we
will refer to the assumption that entry is not selective as “NS”.5 Of
course, property (iv) does not imply that the mechanism is necessarily
optimal when compared to mechanisms where the seller changes the
entry process in some way, such as fixing the number of players that
can enter or organizing players to move sequentially.

Assuming NS, BK compare outcomes in a SASFE with those in an al-
ternative procedurewhere players take entry decisions and bid sequen-
tially, which they argue is a stylized version of how corporations are
often sold. They show that the alternative procedure raises total surplus
butwill almost always generate lower revenues for the seller, because of
the ability of early movers to deter entry. We will show that their se-
quential bidding procedure can actually increase revenues quite signif-
icantly as soon as any degree of selection is introduced into the model.

A more limited literature has considered endogenous entry with se-
lection. Samuelson (1985) and Menezes and Monteiro (2000) assume
that players know their values when deciding whether to enter. This
is the most extreme form of selection that we will consider, and we
will call this the fully selective, “FS” assumption. A feature of this
model is that bidders with high values tend to make positive profits in
equilibrium. In the SASFE under FS, revenues may increase or decrease
when additional players are added, and the seller-optimal reserve
may be greater than the seller’s value of holding onto the object
optimal design with a fixed number of bidders (which involves setting a reserve price).
As our results illustrate, this conclusion does not necessarily hold when entry is endoge-
nous and one considers the effects of adding a potential bidder.

4 Milgrom’s second illustration concerns asymmetries between bidders, which we also
consider.

5 The “not selective” assumption is sometimes called the “LS” assumption after Levin
and Smith. Similarly, the “fully selective” assumption that we introduce as the opposite
polar case below is often referred to as the “S” assumption following Samuelson (1985).
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(Menezes and Monteiro, 2000). Characterization of optimal policies
tends to be specific to the value distributions considered, which is one
reason why the NS assumption has been the focus of most analysis.
Hubbard and Paarsch (2009) use a computational approach to consider
the effects of bid preferences to some subset of symmetric players in
first-price auctions under the FS assumption.6

Ye (2007), Bhattacharya et al. (2014), Roberts and Sweeting (2013),
Marmer et al. (2013) and Gentry and Li (2014) consider models where
players face a common entry cost but have noisy signals about their
values before they enter, as we assume in this article.7Moreno and
Wooders (2011), Cremer et al. (2009) and Lu and Ye (2013) consider
a variant of the NS model where players have heterogeneous entry
costs. We consider below whether this model has similar implications
to one where entry is partially selective.

Most empirical work has also tended to make the NS assumption,
partly because this assumption implies that the distribution of players’
values will be the same as the distribution of bidders’ values which
is what can be inferred from the data. Athey et al. (2013) and
Krasnokutskaya and Seim (2011) both consider the effects of bid prefer-
ences when entry is endogenous but bidders do not know their values
when deciding whether to enter. In Section 6 we show that smaller
bid preferences may be optimal for the seller when entry is selective.
In Section 7, we describe recent results showing that selective entry
models are identified, aswell as noting recent empirical work, including
Roberts and Sweeting (2013), Roberts and Sweeting (2015) (timber)
and Bhattacharya et al. (2014) (highway procurement), that show
that thesemodels, including the degree of selection, can also be estimat-
ed in practice.

As models with endogenous and selective entry are not analytically
tractable, our comparisons are computational. For ease of exposition, we
focus on a single set of parameters for most of the analysis. While our re-
sults hold for awide variety of parameters and value distributions thatwe
have considered in our research, the reader should be clear that we are
only claiming that selective entry canmatter for the relative performance
of different mechanisms, not that it must always do so. We do not com-
pare the variousmechanisms thatwe considerwith optimalmechanisms,
partly because when entry is partially selective, the generally optimal
mechanism is unknown although, in very recent work, Lu and Ye
(2014) have characterized the optimal design of a two-stage auction.8

The article is structured as follows. Section 2 introduces the basic
model, assuming that players are symmetric, and describes equilibrium
strategies and the effects of selection when a standard auction with free
entry is used. Section 3 describes the alternative mechanisms considered
with symmetric bidders and their associated equilibrium strategies.
Sections 4 and 5 contain the comparisons of expected total surplus (effi-
ciency) and revenues. Section 6 considers bid preferences in a setting
where players are asymmetric. Section 7 briefly describes recent work
that shows that the degree of selection is non-parametrically identified
and can be estimated using real world data. Section 8 concludes.

2. Model

In this section we outline the basic model that we will use to com-
pare different auction designs and illustrate some of the properties of
6 We extend their computational framework below to consider the effect of bid prefer-
ences when players are asymmetric and entry is imperfectly selective.

7 With symmetric players, property (iv) from the NS model continues to hold.
8 Cremer et al. (2009) characterize the formof the optimalmechanism under theNS as-

sumptionwith possibly heterogeneous entry costs. They show that it could be implement-
ed by a sequence of auctions with appropriate reserve prices, and possible entry subsidies
and entry fees. Lu and Ye (2013) design the optimal two-stage auction for this case. Lu and
Ye (2014) show the optimal form of a two-stage auction where players compete to enter
an auction for the object and entrymay be selective. The entry rights auction that we con-
sider here differs from their optimal form in that the number of entrants to the second-
stage is fixed in advance rather than being a function of first-stage bids, and that our
second-stage does not involve those firms that are selected being handicapped based on
their first stage bids.
the equilibrium outcomes in the SASFE. For now, we will assume that
players are symmetric, leaving all discussion of the asymmetric case to
Section 6.

2.1. Informational assumptions

We assume that there are N players interested in a single unit of an
asset. These players have independent private values, which are i.i.d.
draws from a distribution FV(v) (pdf fV(v)), which is continuous on an
interval 0;V

� �
. N and FV(v) are commonly known by all players and

the auction designer. To be able to submit a bid for the asset, a player
must incur an entry cost K. A player that incurs this entry cost (i.e., a bid-
der) is assumed to find out her value for sure, so a natural interpretation
is that K contains a ‘due diligence’ cost associated with evaluating the
asset although it could also include other costs of participation, such
as securing the bonds that are often required in procurement auctions.
In what follows we will assume that K is fixed, and is not a parameter
chosen by the auction designer. Prior to incurring the entry cost, each
player receives a private information, noisy signal of her value. Specifi-
cally we will consider the case where si = vizi, zi ¼ eεi , εi ∼ N(0, σε

2)
and the εs are i.i.d. across bidders, although the functional form is not
important.9 A player is therefore able to condition her entry decision
on her own signal. We assume that the seller has no value to retaining
the object, so that its objective is revenue-maximization.10 The FS
model corresponds to the case where σε

2 = 0, so the signal is perfectly
informative of the player’s value. As σε

2 → ∞, we approximate the infor-
mational assumptions of the NS model, where there are no signals, al-
though, as we shall show, this does not necessarily mean that
strategies and outcomes under NS are always similar to those in a
model with very uninformative signals.

2.2. Standard Auction with Simultaneous and Free Entry (SASFE)

To illustrate these assumptions, it is useful to describe equilibrium
strategies in our baseline mechanism, which is the standard model
used in the literature to describe most real-world auctions (inter alia
(Levin and Smith, 1994; Athey et al., 2011; Athey et al., 2013;
Krasnokutskaya and Seim, 2011; Li and Zheng, 2009; Bhattacharya
et al., 2014). In particular, there is a two-stage game where, in the first
stage, players simultaneously and non-cooperatively decide whether
to enter, and in the second stage, the entrants compete in a simulta-
neous second-price or first-price auction. As revenue equivalence
holds when bidders are symmetric, we will, for tractability, formulate
the second stage procedure as a second-price auction.11 We allow for
the possibility that the seller sets a reserve price r that is known to all
players at the beginning of the game. Recall that a standard auction
with a reserve price is the seller’s optimal mechanism when entry is
fixed.

In the second stage, all entrants are assumed to bid their values, so
that the good will be allocated to the bidder with the highest value at
a price equal to the secondhighest bidder value. In thefirst stage, a play-
er will enter if her private signal exceeds a threshold determined by a
9 More generally, and following the exposition in Gentry and Li (2014), one can think of
each player receiving a signal that has a uniformmarginal density on [0,1], where the con-
ditional distribution of vi is stochastically ordered in si. The assumption of independence
across bidders is more important, as a player can only infer something about another
player’s value from that player’s entry decision, rather than something about her own
value.
10 This assumption could potentially affect the results by favoring mechanisms that in-
crease the probability that the object is sold. However, the probability that the object is
not sold in an SASFE is quite small, and ignoring these cases does not change the compar-
ison between the different auction mechanisms.
11 In this setting, revenue equivalence holds whether or not bidders are informed of the
number of other bidders that entered into a first-price auction. See Section 6.2 of Milgrom
(2004) for an extended discussion.
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Fig. 1. Marginal distribution of values and the posterior distribution of values conditional
on receiving the 75th percentile signal.

Table 1
Expected Outcomes in a Standard Auction with Simultaneous and Free Entry.

α Value of
Winner

Number of
Entrants

Total
Surplus

Seller
Revenues

Bidder
Profits

0 (FS) 112.29 2.57 99.44 85.57 13.88
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zero profit condition. Focusing, as usual, on the symmetric equilibrium,
the equilibrium threshold S′∗ will solve

Z V

r

Z v

r
v−xð Þh xjS0�� �

dx
� �

g vjS0�� �
dv−K ¼ 0

where
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is the pdf of values conditional on signal si, ϕ(⋅) denotes the standard
normal pdf and h(x|S′∗) is the conditional pdf of the highest value of
other entering bidders (or r if no other firm enters with a value above
the reserve price) when they also use entry threshold S′∗. It is straight-
forward to show that there will be a unique symmetric equilibrium,
and we will assume that this equilibrium is played, although asymmet-
ric equilibria may exist.

The variance of the signal noise has a significant effect on auction ef-
ficiency and the distribution of payoffs between buyers and sellers, and
this has important implications for auction design. To illustrate this, we
introduce the parameters that we will use throughout our analysis of
sales to symmetric players. We assume that ln(Vi) ∼ N(μV, σV

2), with V
truncated to [0,200], μV = 4.5, σV = 0.2, and that N = 5 and K = 5
(which is moderate - i.e., in equilibrium, some players may want to
enter while others may not - for all assumptions on the degree of selec-
tion). Unless otherwise stated, we assume that the reserve price r = 0.
The mean value of a player is 91.8, with standard deviation 18.5.12 The
truncation point, V ¼ 200, is sufficiently high that the probability that
a value from the untruncated log-normal would lie above this value is
small, and our calculations are essentially unaffected if we consider
even higher values for this parameter.

A useful measure of the precision of the signal is α≡ σ2
ε

σ2
εþσ2

V
, which

must lie on [0,1). 13 Fig. 1 shows the density of a player’s posterior belief
about her value when she receives a signal equal to the 75th percentile
of the marginal distribution of signals for four different values of α. For
α=0.9 or 0.99, the conditional distributions are similar to themarginal
distribution of values (also shown), which would, of course, be a
player’s belief about its value in the NS model. In spite of this, we will
show that auction performance can change quite significantly when
one moves from the NS model to a selective entry model with a fairly
high value of α, such as 0.9. It is in this sense that we will claim that
“small deviations” from the NS assumption can matter, although one
might also viewourfinding that outcomes can differ substantially as im-
plying that the differences between a NS model, where players have no
private information when they decide whether to enter, and one where
they have very noisy signals, are not really as small as Fig. 1 might
suggest.14 Lower values of α are associated with more precise signals,
12 These parameter choices are somewhat arbitrary, but it seems plausible that the dis-
tribution of values will generally be single-peaked and that there should be reasonable
heterogeneity in values for assets that sellers decide to sell by auction.
13 If the value distribution were not truncated above, the posterior distribution for a
player’s value having received a signal siwould be a log-normal distribution with location
parameterαμ+(1− α)ln(si) and squared scale parameterασV

2, so one can think of 1−α
as, approximately, the weight that the player should place on her signal when updating
her beliefs.
14 This might matter because, for example, an applied researcher might use the fact that
due diligencework takes place as a reason to prefer theNSmodel over the FSmodel. How-
ever, due diligencewould still be required even if, as seems very plausible in almost all set-
tings in practice, players have some information about their private values before they
begin the due diligence process. Our results imply that conclusions derived under NS
may not hold if some selection was allowed.
so that for a given entry threshold, a potential bidder with a signal
above that threshold is more likely to have a high value. Wewill, there-
fore, say that a lower α is associated with more selective entry.

Table 1 shows how a set of expected outcomes, specifically, seller
revenues, the value of the winning bidder, the number of entrants,
total surplus (measured as the value of the winning bidder less total
entry costs) and bidder profits, vary as a function of α. The bottom
row shows the results when players receive no signals and, in equilibri-
um, mix over whether to enter or not, as in the NS model.

In the SASFE, outcomes under NS are quite similar to those when
α = 0.99, but they change quite quickly as α falls, so that roughly half
of the decrease in revenues and the increase in bidder profits which
happens when one moves from the NS case to the FS case occurs
0.01 112.29 2.57 99.44 85.57 13.87
0.1 112.25 2.60 99.27 85.62 13.65
0.2 112.22 2.63 99.06 85.77 13.30
0.3 112.14 2.67 98.78 85.96 12.81
0.4 111.98 2.72 98.38 86.16 12.22
0.5 111.78 2.77 97.92 86.45 11.47
0.6 111.55 2.83 97.37 86.78 10.59
0.7 111.25 2.91 96.70 87.22 9.47
0.8 110.86 3.00 95.82 87.77 8.05
0.9 110.32 3.14 94.60 88.58 6.01
0.95 109.96 3.25 93.69 89.24 4.44
0.99 109.58 3.42 92.45 90.30 2.14
NS 109.43 3.60 91.42 91.42 0

Notes:When there is no entry, the value of thewinner, revenues and surplus are zero. Bid-
der profits are the sumof player profits. Expected outcomes based on500,000 simulations.



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 20 40 60 80 100 120 140 200

Marginal Inframarginal

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Marginal Inframarginal

180160

0 20 40 60 80 100 120 140 200180160

(b) α=0.9, Threshold = 73.1

(a) α=0.1, Threshold = 89.1

Fig. 2.Distribution of values for themarginal and the average inframarginal entrant for dif-
ferent degrees of selection.

193A. Sweeting, V. Bhattacharya / International Journal of Industrial Organization 43 (2015) 189–207
when one moves from NS to α = 0.9. This finding will be common to
many of our comparisons, even though players’ posteriors under NS
are not so different to those when α = 0.9, as illustrated in Fig. 1.

Several other patterns are also interesting. First, when entry is more
selective, there is less entry and, therefore, lower spending on entry
costs.15 However, because potential entrants are more informed about
their values, the expected value of the winning bidder actually tends
to increase even though there is less entry and the distribution of the
highest value in the population of players is unchanged. Putting these
two features together means that expected surplus increases quickly
as selection increases.

Second, selection has a quite dramatic effect on the distribution of sur-
plus. Under the NSmodel, the fact that players mix over entry in equilib-
rium implies that entrants’ expected profits are equal to zero. Therefore,
in expectation, the seller captures all of the surplus. On the other hand,
with selection only the marginal entrant has expected profits of zero,
while inframarginal entrants, with more optimistic posterior beliefs
about their values, expect positive profits. Fig. 2 illustrates the difference
between the distribution of values for themarginal (i.e., the pdf of values
conditional on receiving the signal s= S′∗) and average inframarginal en-
trant (the pdf of values conditional on receiving a signal s ≥ S′∗) for two
different values of α. When selection is weak (α = 0.9) these distribu-
tions are much more similar than when entry is selective. Bidder profits
increase so quickly with selection that even though expected surplus in-
creases, the expected revenues of the seller fall.

This is an appropriate place to comment briefly on the inefficiencies
that exist in the entry process of the SASFEmodel, and to clarify some of
the discussion of the inefficiencies that exists in the literature. As ex-
plained by Milgrom (2004), in the context of the NS model, and
Gentry and Li (2012), in the context of a selective entry model, entry
strategies are efficient in the sense that a social planner that was
constrained to choose, ex-ante, an identical entry probability or thresh-
old rule for all playerswould choose the same strategies that the players
themselves would choose in the symmetric equilibrium.16 However,
this does not mean that entry decisions are efficient in a more general
sense. For example, when all potential entrants make simultaneous de-
cisions using the same thresholds, the realized number of entrants is
random, and when surplus is a concave function of the number of en-
trants (as can be easily shown under NS), surplus can be increased by
fixing the number of entrants.

Oneway to fix the number of entrants,whichmakes particular sense
when players have some private information about their values, is to
hold an auction for a limited number of slots to compete in an auction
for the object. This is the “entry rights auction” that we consider
below. An alternative way to try to address some of the inefficiency
that arises from randomness without fixing the number of entrants is
to make players take their entry decisions sequentially rather than si-
multaneously. We consider two sequential procedures below: in one
of them players enter sequentially but bid simultaneously; and, in the
other one, there is also an element of sequential bidding. This opens
up the possibility that subsequent entry decisions may be conditioned,
to some extent, on the values, as well as the entry decisions, of earlier-
movers. This may be more efficient, but increases the possibility that
earlier-movers will be able to deter later entry, hurting the seller.
15 In general, we would expect less entry with selection, when K is held fixed, for two
reasons. First, holding the probability that other players enter fixed, those entrants will
tend to have higher values when entry is more selective decreasing the expected payoff
that a player with a given value has from entering. Second, a player’s surplus in an
second-price auction is a convex function of her own value.Without selection, the expect-
ed surplus is calculated using the unconditional distribution of these values. With selec-
tion, it is calculated using a distribution that is conditional on the signal received, and,
because this distribution should be more concentrated than the unconditional distribu-
tion, the expected payoff from entering will, all else equal, tend to be lower.
16 In a secondprice auction for a single unit aMankiw andWhinston (1986) style ‘excess
entry’ result does not hold because an entrant only takes market share from other firms
when it is socially efficient to do so.
An alternative model of the standard auction, which has been con-
sidered in Moreno and Wooders (2011) and which has been used em-
pirically by Krasnokutskaya and Seim (2011) and Li and Zheng
(2009), is to assume that entry is simultaneous and non-selective, but
that players have heterogeneous, privately observed entry costs. The
equilibrium entry strategies in this case are also threshold rules, in
entry costs instead of signals, and an obvious similarity to the selective
entry model is that players with low entry costs will tend to make pos-
itive profits in equilibrium. An important difference is thatwhile a lower
entry cost makes entry more attractive, it does not affect the payoffs of
other players conditional on entry occurring, whereas when a player
has a high signal in a selective entrymodel this does affect other players’
expected payoffs from entering because it is the bidder with the highest
value that will be allocated the object. However, this leaves open the
question of whether the models have different implications for auction
design.

In order to shed some light on this question, Table 2 shows the same
outcomes as Table 1, as a function of σK, when entry costs are assumed
to be distributed normally with mean 5 (the value of K assumed in our
examples) and standard deviation σK, and we assume NS, so that
players receive no signals prior to taking their entry decisions. The
first row corresponds to the model in the final row of Table 1.



Table 2
Expected Outcomes in an NS Model with Heterogeneous K.

σK Value of
Winner

Number of
Entrants

Total
Surplus

Seller
Revenues

Bidder
Profits

0, common K (NS) 109.43 3.60 91.42 91.42 0
0.01 109.42 3.60 91.45 91.38 0.07
0.05 109.38 3.59 91.51 91.30 0.22
0.1 109.34 3.58 91.60 91.20 0.40
0.2 109.24 3.56 91.78 91.00 0.77
0.3 109.16 3.55 91.94 90.81 1.13
1 108.99 3.52 92.28 90.45 1.83
2 108.06 3.35 94.94 88.36 6.58
5 106.91 3.16 100.49 85.68 14.81

Notes: Mean K is 5. σK is the standard deviation.
Expected outcomes based on 500,000 simulations.
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Increasing the heterogeneity in entry costs raises total surplus and
bidder profits, while reducing entry and seller revenues. In terms of di-
rection, these are the same changes that come from increasing the de-
gree of selection. However, the causes of the changes in total surplus
are somewhat different between the two models. In the selective
entry model, the value of the winner tends to rise and the amount of
entry tends to fall with more selection, and both of these forces raise
total surplus. In contrast, with heterogeneous K, the value of thewinner
and the expected amount of entrymustmove in the samedirection, and
both fall when there ismore heterogeneity. The increase in total surplus
is driven by the fact that some entrants actually have lower entry costs,
whereas, in the selective entry model neither the distribution of valua-
tions nor the level of entry costs changewhen selection is introduced.17

Maybe the most striking difference, however, is that when we allow for
limited heterogeneity in entry costs, which seems plausible in reality,18

the expected outcomemeasures only change by small amounts (for ex-
ample, going from σK = 0 to σK = 0.3 lowers a seller’s revenue by less
than 1%), whereas seemingly small deviations from the informational
assumptions of NS (e.g., moving from NS to α = 0.9) have already
been shown to change outcomes more dramatically. To generate reve-
nues and surplus similar to the FS model, one needs to push σK as
high as 5, by which point, given our parametric assumptions, 16% of
players have negative entry costs, in which case their entry increases
surplus even when they do not win the object.19
3. Alternative mechanisms

With symmetric bidders, we focus our discussion of mechanisms
other than the SASFE on three relatively simple alternatives, two of
which have been considered in the existing literature. Of course, these
alternatives do not exhaust the spectrum of possible alternatives, but,
to the extent that we find that alternatives outperform the SASFE, our
conclusion would only be strengthened if we found other mechanisms
that could do even better.
17 For example, when σK =2, efficiency would be lower than in the common entry cost
case if all of entrants had to incur the mean entry cost.
18 Note that in models that allow heterogeneous entry costs, it is assumed that this het-
erogeneity is not correlated with players’ valuations, so the heterogeneity must be
interpreted as being due to differences in the technology of evaluating the object or in
the bureaucratic costs of submitting bids, rather than being due to the type of expertise
that might be associated with having a high value. It seems unlikely that differences in
costs of research technologies that players would actually choose to use would be large.
19 An open, but interesting, question concerns how parameters will be biased if a re-
searcher estimates a model that allows for heterogeneity in entry costs, when the true
model has no heterogeneity but does have selection. The existing empirical literature on
market entry, including Krasnokutskaya and Seim (2011) in an auction context, has typi-
cally estimated entry costs to be quite heterogeneous, and onemight conjecture that large
estimated variances may actually reflect the presence of selection.
3.1. Entry rights auction (Ye, 2007; Bhattacharya et al., 2014)

Ye (2007) characterizes equilibrium strategies in a game where the
seller first announces the number of bidders it will allow to compete in
an auction for the object and then auctions off these rights to all players
in a first-stage auction, before conducting the auction itself.20 This ‘entry
rights auction’ (ERA) procedure addresses the problem that the number
of entrants into an SASFE is random, by having the seller control the
number of entrants, while guaranteeing that it is the players with the
highest signals that enter. It also allows the seller to extract some of sur-
plus that the restricted set of entrants will get from the second-stage
auction. However, it does not allow the number of entrants to be a func-
tion of the private information that players have, which can be a disad-
vantage relative to other mechanisms when entry is partially selective.

Following Ye, we assume that an ERA works in the following way.
First, the seller commits to select the n highest first-stage bidders to
compete in an auction for the object and to give each of the selected bid-
ders a subsidy equal to K. Then, all potential bidders, having seen their
signals, submit non-negative bids in a first-stage auction that uses an
all-pay format. The n selected bidders then receive their subsidy, incur
their entry cost K, find out their values, and compete in a second-stage
auction for the object, which wewill assume has a second-price format.
There are no reserves in either auction.

Some of the details of themechanism deserve further comment. First,
following Ye’s Proposition 5, the all-pay format and the subsidy, while
relatively rarely observed in practice, are used to guarantee that first-
stage bids are strictly increasing functions of signals,21 so that the selected
second-stage bidderswill be those that aremost likely tohave thehighest
values. Second, any subsidy that guarantees this type of efficiency will
generate the same (net) revenue for the seller (Proposition 6). Third,
while more standard first-stage formats in which only the selected bid-
ders pay might not have strictly increasing first-stage bid functions, for
parameters where these functions are monotonic these formats should
generate the same revenue and efficiency outcomes as the all-pay format
(this also follows from Proposition 6).22 For this reason, focusing on the
all-pay format as a modeling device is reasonable.

In our view, the most important caveat associated with the mecha-
nism is that it is assumed that participation in the first-stage auction is
costless, whereas participation in the second-stage auction requires K
to be incurred. This may be unreasonable from the perspective that
there may be some bureaucratic costs associated with submitting any
type of bid, even if no due diligence is done, but it might also be difficult
to generate interest in the auction if potential buyers are unable to con-
duct some examination of the asset before they submit binding first-
stage bids.23 In practice, two factors may tend to lessen the force of
this critique in some real-world settings. First, if a seller has tomake fre-
quent use of auctions it will have an incentive to develop a reputation
for not holding auctions for the right to try to buyworthless objects. Sec-
ond, when n ≥ 2 the revenues from the first-stage bids are usuallymuch
20 Ye also compares this type of auction, where first-stage bids are binding and result in
payments, with ‘indicative bidding’ schemes where bidders are only asked for indications
of what they will bid in the first-stage. He shows that indicative bidding schemes generi-
cally do not have equilibria that result in efficient entry. Quint andHendricks (2013) show
that indicative schemesmay haveweaklymonotonicfirst-stage equilibriumbidding strat-
egies when the bidding space is discrete and either entry costs are large or the number of
bidders is large.
21 For example, as Ye notes, the FSmodel presents a particular problem for other auction
formats. In those formats a pure strategy first-stage bid would be determined only by the
value that a player has to being themarginal entrant into the second stage, butwhen n ≥ 2,
the marginal entrant will certainly lose in the second stage under the FS assumption, so
that first-stage bids will be zero for all signals.
22 Monotonicity in first-stage uniform or discriminatory formats requires that a bidder’s
expected payoff from being selected conditional on being themarginal selected entrant is
increasing in her signal. For many parameters, including those used in our examples, this
fails, but often only for quite high signals that occurwith relatively low probability. There-
fore, it is at least plausible that these standard formats might work quite well in practice,
but this is obviously an open question.
23 Note that this criticism could also apply to some types of entry fee.



27 One might argue that if players have some sense of the entry decisions that other
players aremaking, sequential entrymight be an appropriate way tomodel how standard
auctions actually work, although this is not the usual modeling approach. An exception is
BKwho use sequential entry as their baselinemodel of entry into the standard auction, al-
though they note that their conclusions do not change if entry is simultaneous.
28 For example, with two players there are three equilibrium entry thresholds (one for
the first player, and two for the second player); seven thresholds for three players; fifteen
thresholds for four players; thirty-one for five players; and so on. The computational bur-
den therefore increases geometrically in the number of players.
29 For N=6we did findmultiple equilibria when entry is quite selective. These equilibria
differed in some of their revenue and efficiency properties. For example,many of the equilib-
ria involve some later players in the sequence entering almost certainly with other players
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smaller than the amounts that the winner will pay in the second-stage,
especially when entry is very selective.24 Therefore, it is plausible that
firms may be willing to submit first-stage bids on the basis of much
more limited due diligence that they would need to do if selected for
the second-stage auction.

In equilibrium, the selected bidders will submit bids equal to their
values in the second-stage, which resembles a standard independent
private values second-price auction with a fixed number of bidders. To
solve for the first-stage equilibrium bid function, γ∗(⋅), note that the ex-
pected second-stage profit of a selected entrant with value v, when the
(n + 1)st highest signal is s, is

Π v; sð Þ ¼
Z v

0
v−xð ÞhV jS N s xð Þdx N 0

where the inequality follows from the fact that the entry cost is fully
subsidized for the selected bidders and hV jSN s is the pdf of the highest
value of other bidders given s. Then γ∗(s) should solve

γ� sð Þ≡ arg max
g

Z γ�−1 gð Þ

0

Z V

0
Π v; sð ÞdFV jS¼s vð ÞdFS n:N−1ð Þ sð Þ−g;

where FV|S = s(⋅) is the conditional distribution of the value given a signal
of s and FS n:N−1ð Þ �ð Þ is the distribution of the nth highest signal of the remain-
ing N− 1 bidders, with pdf f S n:N−1ð Þ �ð Þ. Solving this maximization problem
and imposing that, in equilibrium, g=γ∗(s) gives thedifferential equation

γ�0 sð Þ ¼
Z V

0
Π v; sð Þ f S n:N−1ð Þ sð ÞdFV jS¼s vð Þ;

with boundary conditionγ∗(0)=0. AsΠ v; sð ÞN0, thefirst-stage bid func-
tion is monotonically increasing in s.

The value of n, the number of bidders selected for the second stage,
can play an important role in the ERA, and is chosen by the seller. If
n=N, which is never optimal for the level of entry costs thatwe consid-
er, first-stage bids will be zero and the seller effectively subsidizes the
entry costs of all potential bidders in the second-stage. If n = 1, then
the procurer selects awinner based only on signals.25 In the calculations
in the next section we assume that n ≥ 2, and find that n=2 is optimal
for the seller, in terms of revenues, unless α is very close to 1.

While this model is appropriate for selective entry, in the NS case,
where bidders have no signals, there is no pure strategy equilibrium
in the all-pay auction. Instead, for this case only, we will assume that
the seller uses a uniform pricefirst-stage auction,where only the select-
ed bidders pay and the price is equal to the (n+1)st highest bid. In this
case, each player will bid its value to being selected for the second stage
in the symmetric pure strategy equilibrium.26 As all of these bidswill be
the same, entrants will, in effect, be chosen randomly.

3.2. Sequential auctions

We consider two sequential procedures. In one of them, the sequen-
tial entry auction, players choose to enter sequentially, in a random
order chosen by the seller, but entrants submit simultaneous bids
once all entry decisions have been made. In the other, players may
place bids as soon as they enter, andwewill call this version the sequen-
tial bidding auction.
24 In our example, expected total first stage revenues are highest under NS (16.98) but
they are less than 5 for values of α b 0.3.
25 In the case of the FS model, n=1would be socially efficient because only the highest
value entrant would incur the entry cost, and, if the seller could set an optimal reserve
price in the first stage, it would also be revenue-maximizing. However, this assumes that
the asset can effectively be allocated via an auctionwith a fixed number of bidderswith no
entry costs and considering this case would clearly go against the spirit of our analysis. Of
course, if we did consider it, it wouldmake the SASFE, where several potential buyersmay
incur the entry cost, appear even less optimal.
26 As noted previously, a player should bid her value to being the marginal entrant. But,
under NS, the marginal entrant is just as likely to win as any inframarginal entrant.
3.2.1. Sequential entry auction
In this procedure, the seller approaches the players in a random order

and asks them whether they wish to enter. Players later in the sequence
observe earlier choices andwe assume that players are committed to the
choices that they make, so that a player that chooses to enter will incur
the entry cost K, and find out its value, and one that chooses not to
enter cannot subsequently change this decision. Once all players have
taken entry decisions, firms submit bids in a second-price auction.27

Under NS, the entry game has a simple equilibrium where players
will enter until an additional entrant would expect negative profits
from entry given the entry that has already taken place. For our param-
eters, for example, exactly three players enter in equilibrium. In amodel
with signals, equilibrium entry rules will be thresholds, and a player’s
threshold will depend on the decisions of earlier entrants, the thresh-
olds that those players used and the thresholds that later players will
be using. For example, if the first player has an entry threshold of 100,
then a later player who observes that the first player entered can infer
that the first player’s signal was at least 100, and this later player’s
entry decision will also be affected by the thresholds that it believes
players that get to move even later will use if it enters. Therefore, rather
than solving for a single equilibrium threshold it is necessary to simulta-
neously solve for an entire vector of thresholds, based on different zero
profit conditions, as a function of all possible histories of the game.28

One issue that arises in these auctions is that, because later movers
must form beliefs about the values of earlier players, it is possible that
the entry game may have multiple equilibria even though entry is se-
quential. The results reported below for N = 5 are based on equilibria
that were found from multiple starting points.29

3.2.2. Sequential bidding auction (Bulow and Klemperer, 2009; Roberts and
Sweeting, 2013)

In an important paper, BK seek to understand the relative perfor-
mance of a standard free-entry auction and a sequential procedure
where bidders are allowed to both enter and place bids in a sequential
order. They motivate the latter as being a stylized model of the way that
many corporations are sold. For example, the board of the target corpora-
tionmay negotiate an outline deal with one potential buyer, before other
potential buyers are given an opportunity to submit competing bids. BK
compare the mechanisms partly to understand whether the use of
sequential procedures is in the interests of target or acquiring
shareholders.30 Under the assumptions of the NS model, they show that
the standard auction will almost always generate higher expected reve-
nues for the seller, even though the sequential procedure, which allows
later players to condition their entry decisions on how earlier-movers
have both entered and bid, will tend to be more efficient. This reflects
almost certainly staying out, so that outcomes lookmore like those that would occur if a ran-
domgroup of bidderswere selected to participate in the auction independent of their signals.
In these equilibria, expected surplus tends to be lower (in some examples by asmuch as 3%),
with smaller decreases in expected revenues. We do not report sequential entry auction re-
sults for N=6, although it would be interesting to explore the number of equilibria and the
implications of the various equilibria for auction design, andwhether a sellermight be able to
help select particularly favorable equilibria using a more exotic design, in a more systematic
way. As pointed out by a referee, onemight view the existence of inefficient equilibria as one
practical argument against using the sequential entry auction.
30 The board of the target has a legal duty to act in the interests of its shareholders.
Denton (2008) questions the legality of “go-shop” procedures, which have a sequential el-
ement, as a way of selling corporations, based on BK’s results.



35 Of course, there are some inefficiencies associated with the procedure as a whole. In
particular, those players who get to move first are more likely to win the object. However,
when entry is at leastmoderately selective the difference inwinning probabilities is small,
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the fact that, in equilibrium, an early entrant with a relatively low value
may be able to deter future entry in a very particular type of way. We
will show that, with any degree of selective entry, entry-deterring strate-
gies change in an important way that can raise revenues significantly.

BK’s sequential auction procedure works as follows.31 The seller ap-
proaches players in a random order. The first player decides whether to
enter, incurringK if she does so, and, having foundout her value, she can
place a jump bid. If she does not do so, the standing price is either zero
or a reserve set by the seller. The next player, who observes what hap-
pened in the first round, then decides whether to enter (incurring K),
and, if he does so and the first player also entered, the two incumbents
compete in a knockout button auction. The loser drops out and cannot
subsequently re-enter the bidding. If the second bidder wins the knock-
out then, if he wants, he can place a new jump bid above the standing
price at the end of the knockout. If the first player did not enter, then
if the second bidder enters, there is no knockout but the second bidder
can place a jump bid. The procedure is repeated until all potential bid-
ders have had an opportunity to enter, at which point the object is allo-
cated to the incumbent bidder at the standing bid.

Oncewe allowplayers to have signals before they enter, the only dif-
ference in how the game is played is that now a potential bidder’s signal
can also affect her entry decision. This difference, however, has a signif-
icant effect on equilibrium strategies. With no selection, BK show that
there is excess deterrence from the perspective of the seller, which
arises from the fact that jumpbidding strategies involve a “semi-pooling
equilibrium”. To illustrate, suppose that the (N− 1)th bidder enters, and
the previous incumbent exits the knockout at a price of bs. BK show that
the new incumbent’s jump bidding strategy will be:

• place no jump bid if the new incumbent’s value is less than V′; or,
• place a jumpbid equal to b′ N bs if the new incumbent’s value is greater
than or equal to V′,

where V′ is determined by the condition that, if the final potential bid-
der knows that that the incumbent’s value is at least V′, then it will
choose not to enter,32while b′ is determined by the condition that an in-
cumbent with value exactly V′ should be indifferent between not plac-
ing any jump bid, in which case the next potential entrant will enter,
and placing the jump bid b′ and deterring entry. Subsequent potential
entrants enter if and only if a jump bid of less than b′ is placed.

Using the parameters assumed above, the bold line in the left-hand
section of Fig. 3 shows the incumbent’s jump bidding strategy when
bs =75. In this case, V′=83.77 and b′=81.43, and themaximum rev-
enues that the seller can realize are 83.77.33 Note that if the next mover
knew that the incumbent had a value of V′ + ϵ, where ϵ is small, entry
would be profitable, but it chooses not to do so because it is unable to
distinguish an incumbent with this value from ones with possibly
much higher values.

In contrast, when entry is selective, the unique equilibrium jump-
bidding strategies, under the D1 refinement (Cho and Kreps, 1987;
Ramey, 1996), are fully separating for incumbent values up to V−K .34

Strategies change because, in our example, for any such incumbent
value, the final player may enter if it receives a signal that is high
enough. This gives an incumbent with a high value an incentive to dis-
tinguish itself from incumbents with lower values (because, by doing
31 We note that BK allow for the possibility that the number of potential bidders is sto-
chastic, so that it is not known for sure at the beginning of the game. Our fixed N assump-
tion is a special case of their framework.
32 Given that the (N− 1)th bidder did not receive a signal when decidingwhether to en-
ter, the pdf of theNth bidder’s belief about the new incumbent’s value given that this value

must be above bs, is simply f V vð Þ
1− FV bsð Þ for all v ≥ bs .

33 These revenues would be realized when the incumbent has a value slightly less than
83.77, no jumpbid is placed, entry occurs and the subsequent knockout ends at the incum-
bent’s value. If the incumbent’s value is more than 83.77, then the revenue will be 81.43.
34 Incumbents with values aboveV−K continue to pool, but, because we are assumingV
is high, it is very unlikely that an incumbent will have a value this high (the probability is
less than 10−4 for our parameters).
so, it will be able deter more entry), and, under the refinement, this
eliminates pooling equilibria (for values less than V−K). Roberts and
Sweeting (2013) show how the equilibrium jump bidding strategies
in each round can be characterized by round-specific differential equa-
tions with lower boundary conditions where a new incumbent with a
bid equal to the standing bid does not raise its bid.

The remaining lines in the left-hand section of Fig. 3 show the equilib-
rium bid schedule for several different values of α, including 0.95, 0.99
and 0.9975. The right-hand section of the figure shows the corresponding
probabilities of entry as a function of the incumbent’s value.When signals
are very uninformative (α greater than 0.95), we see that only incum-
bents with values significantly above V′ (the value that deters entry in
the NS case) deter entry with high probability. With full separation, the
entry decision of the final player will be socially optimal in the sense
that entry will take place if and only if the expected increase in the
value of thewinner that occurswith entry is greater than the entry cost.35

Given these bid functions, the seller’s revenues will increase discon-
tinuously when any degree of selection is introduced into the model be-
cause there is more entry and because the jump bids that high value
incumbents place, which do tend to deter entry, are significantly above
b′. As the degree of selection increases, incumbents with low values
will deter some entry, which will not happen under NS, but because
only potential entrants with quite low values are likely to be deterred,
this does not tend to have a large effect on the seller’s revenues. In our
computations below we show how, during the course of the game
with five rounds, this change in strategies can significantly increase the
seller’s revenues relative to the NS case, and also relative to the SASFE
for a given degree of selection.

Roberts and Sweeting (2013) examine what happens under a wider
range of parameters.When K is small, the difference in the values of the
incumbents that deter entry in the sequential bidding auction under NS
andwith small degrees of selection, such asα=0.99, tends to fall slight-
ly, while the difference in the level of deterring bid submitted by an in-
cumbent with a very high value also becomes smaller (and, for very
small K, can actually be higher in the NS case). This is illustrated in
Fig. 4, which repeats the left-hand panel in Fig. 3, but for K = 3, K = 1
and K=0.5. As a result of both of these changes, the change in expected
revenues and surplus of the sequential bidding auction when selection
is introduced (relative to NS) in the sequential bidding auction is
much smaller, even though these is still a discontinuity in strategies.36
4. Efficiency comparisons

Having introduced the various mechanisms, we now compare their
performance. The standard measures of performance are efficiency
(i.e., total surplus, defined as the value of winner less total entry costs)
and seller revenues. We begin by considering total surplus, and then
turn to the question of how surplus is split between the seller and the
potential buyers. Our analysis uses the set of parameters introduced
previously. When considering efficiency, we assume that there is no
and early-movers do not necessarily have higher profits, so that players’ incentives to ex-
pend resources to try to get selected to move first may be limited. For instance, consider
our example parameters when α = 0.6. The first player wins with probability 0.2102
and the last player with probability 0.1857. The last player’s expected payoff is actually
higher than that of the first-mover (3.7362, compared to 2.2511), because the last player
only enters when it is very likely to win at a relatively low price.
36 As BK showed, the SASFE outperforms the sequential bidding auction under NS. The
two changes discussed in the text lead to Roberts and Sweeting finding that the SASFE
yields higher expected revenues that the sequential bidding auction when K is small and
α is high (see Fig. 2 in Roberts and Sweeting, 2013, where the performance of the SASFE
is improved by assuming that an optimal reserve price is used in that mechanism but
not the sequential bidding auction). However, in these cases it is also true that the revenue
advantage of the SASFE is small (typically less than 1%). In all cases, the sequential bidding
auction dominates the SASFE in terms of efficiency.
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Fig. 3. Jump bid functions and entry probabilities as a function of the degree of selection in a sequential bidding auction model.
Note:Diagram shows bid functions and entry probabilities in the penultimate round of a sequential bidding auction where the standing bid at the end of the previous knockout is
75 (so the incumbent's value must be at least 75).

197A. Sweeting, V. Bhattacharya / International Journal of Industrial Organization 43 (2015) 189–207
reserve price in any mechanism, deferring consideration of reserve
prices to the next section. We also assume that the seller sets a fixed n
in the ERA in advance of the first stage to maximize expected revenues,
although,with our parameters, it wouldmake the same choices if it was
aiming to maximize total surplus.

Fig. 5 reports the total surplus (5(a)) for the standard auction and
the three alternatives, and a decomposition into the expected value of
the winner (5(b)) and expected total entry costs (5(c)). We compute
outcomes for the NS and FS models, as well as values of α between
0.01 and 0.99. Note that the values of α considered are not evenly
spaced, with more values close to the polar cases, so that we can see
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how slight deviations from the polar assumptions affect outcomes. It
is immediately clear that small deviations from the NS assumption can
affect outcomes more than small deviations from the FS assumption.
For the ERA and sequential bidding auction, the NS cases are marked
by discrete points as a reminder of the discontinuity of either themech-
anism (ERA) or equilibrium strategies (sequential bidding auction)
when onemoves from amodel with any degree of selective entry to NS.

Across all of the mechanisms, surplus increases when entry is more
selective. The direction of this effect is expected as, when signals are
more informative, it is more likely that it will be players with high
values that have high signals, and so will enter or be chosen to enter.
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Under NS, both the ERA and the sequential entry auction randomly se-
lect three players to enter. Excepting this case, the ranking of themech-
anisms does not depend on the degree of selection, with the sequential
bidding auction generating the highest expected surplus, followed by
the ERA, the sequential entry auction and, finally, the SASFE.37 However,
it is also clear that the range of expected surpluses becomesmuch larger
when one moves from the NS to the selective entry model (reflecting
the fact that deterrence in the sequential bidding auction becomes
more efficient), and tends to increase as entry becomes more selective.

Fig. 5(b) and (c) help to identify where the differences in surplus
come from. As the degree of selection increases, surplus rises both be-
cause the value of thewinner increases and the amount of entry falls, al-
though, with the assumed entry cost, changes in entry tend to have a
larger effect on surplus. For a given degree of selection, the SASFE and
the two sequential auctions all lead to quite similar expected values of
the winner, and for values of α ≥ 0.7, the value of the winner is actually
highest in the SASFE even though the probability that the object is not
sold to any player (so that the value of the winner is zero) is highest
in this mechanism because of the uncoordinated nature of entry. The
ERA attains the maximum possible value of the winner, i.e., it equals
the expected highest value in the population of players, under the FS as-
sumption because in this case the playerwith the highest valuewill def-
initely be selected to enter, because she has the highest signal, and will
be allocated the object. On the other hand, when α lies between 0.8 and
0.95, the expected value of the winner is lower under the ERA because
only two players are chosen to enter, and the ones selected may well
not be the ones with the highest values. Note, however, that the prob-
lem is not (just) that there is less entry. As shown in panel (c), the ex-
pected amount of entry in the ERA is similar to that in the sequential
bidding auction for these values of α. Instead the source of the relatively
poor performance of the ERA in these cases is that it does not allow for
there to be additional entry when the entrants turn out to have low
values, whereas, when incumbents have low values, more players will
tend to enter the sequential bidding auction.

The panels also reveal that the two sequential auctions produce very
similar expected values of the winner, but that the sequential bidding
auction achieves this with significantly less entry.38 The key driver of
the difference is that in the sequential entry auction it is very likely
that the players who will get to move first will enter, even if they have
low signals because they know that their entry decision will likely
deter later players from entering, whereas in the sequential bidding
auction, early players know that, in the fully separating equilibrium,
they will only be able to deter entry if their values are high enough. To
illustrate, suppose that α = 0.05, so that players are quite well-
informed about their values when they take their entry decisions. In
the sequential entry auction, the first player to make an entry decision
enters with probability 0.9652. In the sequential bidding auction,
where its value will be revealed, it only enters with probability 0.3076.
However, the probability that the first player wins in the sequential
entry auction when it enters is only 0.2592, compared with 0.6619 in
the sequential bidding case,39 reflecting the fact that early-mover
entry is less efficient when only entry decisions are sequential.
37 In the case of the ERA this conclusion is not necessarily general, because of the restric-
tion that nmust be an integer greater than or equal to two. For example, when entry costs
are high enough, expected entry into the SASFEmay be less than 2, and the inefficiency as-
sociated with requiring two players to incur the entry cost may become more significant
when entry is more selective.
38 For example, on average, 2.16 players enter the sequential entry auction under the FS
assumption, compared with 1.31 players for the sequential bidding auction. When
α = 0.99, the numbers are 2.87 and 2.44 respectively.
39 Therefore, overall the probability that the first playerwins in the sequential entry auc-
tion is 0.2502, compared with 0.2036 in the sequential bidding mechanism. For the re-
maining players in the order the probabilities of winning are [0.2303, 0.1981, 0.1715,
0.1498] in the sequential entry auction and [0.2036, 0.2012, 0.2003, 0.1973, 0.1976] in
the sequential bidding auction. The similarity between these winning probabilities ex-
plains why the expected values of the winners are approximately the same. Note that un-
der NS the first player enters with probability one in both of the sequential mechanisms.
In many settings, the seller may be able to increase the number of
potential entrants by designing the object for sale appropriately or en-
gaging in marketing activities. We therefore also look at how the ex-
pected total surplus changes when an additional player is added. The
fact that there is an additional player will automatically tend to increase
the expected highest value in the population of players (for our param-
eters, by 2.34), but the increase in expected surplus will depend on how
likely this player is to enter and the change in total entry costs. As noted
in footnote 3.2.1, we encountered some multiple equilibria in the se-
quential entry game when N = 6, so we ignore this mechanism in our
comparisons (the equilibria in the other mechanisms are unique). The
results are shown in the left-hand columns of Table 3.

As the degree of selection increases, the surplus gain from adding a
player is larger for each of the mechanisms, reflecting the pattern that a
player with a high value is more likely to enter, or be selected to enter,
when there is more selection, and the fact that the increase in the expect-
ed number of entrants is smaller. In both of the sequential auctions and
the SASFE, the average amount of entry also rises, whereas in the ERA
the optimal n remains fixed. However, the change in entry has different
effects in the SASFE and the sequential auctions. In the SASFE, because
entry decisions are simultaneous and not coordinated, the equilibrium
probability that no players enter (so that there is no surplus) rises even
though the expected number of entrants increases. As a result, total sur-
plus can actually fall when there are more players, and this happens in
the SASFEwhen there is very little or no selection. On the other hand, sur-
plus tends to increase in the sequential auctions, where some entry is ef-
fectively certain, for all values of α and, when selection is weak, the
incremental surplus in the sequential auction is actually greater than in
the ERA, which is a further reflection of the fact that fixing the number
of entrants and selecting entrants based on their signals, as the ERA
does, is particularly inefficient when signals are fairly uninformative.

5. Revenue comparisons

As already illustrated in the case of the SASFE (Table 1), selection af-
fects the distribution of surplus between the seller and the potential
buyers. For ourmechanism comparison, Fig. 6 shows the seller’s expect-
ed revenue (panel (a)) and the expected total bidder payoffs (panel
(b)). In each mechanism, selection reduces expected revenues (except-
ing the move from NS to α b 1 for the sequential bidding auction) and
increases bidder payoffs, reflecting the fact that informative private sig-
nals create information rents.

Under the polar NS assumption, the ERA generates the highest ex-
pected revenue, with a small advantage over the SASFE and the sequen-
tial entry auction. Consistent with BK’s theoretical result, the sequential
bidding auction generates substantially lower revenue. Given our pa-
rameters, however, the ranking changes as soon as we introduce any
degree of selection. The ERA and the sequential bidding auction gener-
ate higher revenues than the other mechanisms, and the advantage of
the best alternative to the SASFE becomes significantly larger as the de-
gree of selection increases. Of course, these rankingsmaydependon our
selection of parameters, but we have found them to hold quite broadly
when K is large enough so that it is likely that one or more bidders will
not enter the SASFE when there is no selection (see footnote 3.2.2 for a
discussion of why the ranking of the SASFE and the sequential bidding
auction can change when K is small).

The relative performance of the sequential bidding auction and the
ERA depends on the exact value of α, with the sequential bidding auction
doing better for α=0.9, 0.95 or 0.99, and the ERA doing relatively better
with more selection. In the ERA, the relatively slow decline in expected
revenues asα falls reflects two changes that tend to offset eachother. Rev-
enues in the second stage auction equal the second highest value of the
selected entrants. Holding n fixed, this tends to increase as α falls because
players’ signals,which are used to select the entrants, becomemore infor-
mative. On the other hand, revenues from the first-stage auction tend to
decrease as players with low signals know that their payoffs from
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entering the auction, even if they are selected, are likely to be low. As a
specific example, when α = 0.9, expected first-stage revenues in the
ERA are 15.74 (or 17.1% of total revenues), falling to almost zero under
the FS assumption. Revenues in the sequential bidding auction fall
when there is more selection as later entrants will become less inclined
to enter unless their signal indicates that their value should be significant-
ly above the value of the current incumbent. This reduction in entry,while
socially efficient, tends to reduce the seller’s revenues. The fact thatwhich
of these mechanisms performs best is sensitive to the degree of selection,
and the fact that the advantage of the sequential bidding auction over the
SASFE is also a non-monotonic function ofα around 0.7, serve to illustrate
the value of being able to identify the exact degree of selection in the entry
process when choosing an auction design.

The sequential bidding auction always generate higher bidder pay-
offs, but the differences to the other considered mechanisms are
Fig. 5. (a) Expected total surplus. (b) Expected
greatest in the polar NS and FS cases, and the advantage is quite small
when there is selective entry and α ≥ 0.5. Even though an incumbent
may be able to deter entry in these cases, it can be quite costly to do
so, and, when signals are imprecise, players may enter the auction and
subsequently find out that their values are not high enough to allow
them towin the object. For a given value of α, the othermechanisms al-
ways generate quite similar payoffs for bidders. From a design perspec-
tive, the fact that amechanism, such as the sequential bidding auction, is
able to generate higher revenues for potential bidders, as well as the
seller, may be important because, in the long-run, this type of design
is likely to encourage more players to make the investments that will
allow them to participate in auctions, benefiting the seller in termsof in-
creased competition.

The right-hand side of Table 3 reports the change in expected revenue
when another player is added. Bulow and Klemperer (1996) show that
value of the winner. (c) Expected entry costs.



Table 3
Changes in Outcomes when the Number of Players is Increased from Five to Six.

α Expected Total Surplus Expected Revenues

SASFE ERA Sequential
Bidding

SASFE ERA Sequential
Bidding

Fig. 5 (continued).
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when the number of bidders isfixed, the seller always benefitsmore from
adding an additional bidder than by using the optimal auction design.
Under theNS assumption, because the potential buyersmakeno informa-
tion rents in the SASFE or the ERA, the seller experiences the full efficiency
increase or loss from adding a potential entrant, and the seller’s expected
revenues actually fall in an SASFE when an additional potential bidder is
added. When entry is selective, the seller’s revenues increase by more
than the increase in total surplus, reflecting the fact that increased compe-
tition tends to reduce bidder payoffs. Interestingly, however, the increase
in revenueswhen additional bidders are added is greater for the ERA and,
especially, the sequential bidding auction. This suggests that the gains
from using mechanisms other than the SASFE will become larger when
more buyers are potentially interested in the object.

An obvious question is whether the revenue performance of these
mechanisms can be significantly improved by introducing additional
features, such as reserve prices. Fig. 7 shows expected revenues from
the SASFE, with no reserve and a seller-optimal reserve (a seller-
optimal entry fee leads to the essentially identical revenues as an opti-
mal reserve), and the sequential bidding auction, with no reserve and
a seller-optimal reserve that is common across rounds.40

Under NS, the optimal reserve price for the SASFE is the value that
the seller has of retaining the object, which is zero by assumption, so
adding an optimal reserve has no effect on expected revenues. An opti-
mal reserve can increase expected revenues in the sequential bidding
auction under NS, although not by enough to reverse the SASFE’s reve-
nue advantage in this case.41When entry is selective, a non-zero reserve
40 In the sequential bidding auction,wemodel the reserve price as being an initial stand-
ing bid chosen by the seller. It should be possible to do even better by allowing the seller to
change this reserve price across rounds until entry occurs, but for simplicity we do not try
to calculate the gains fromusing this typeof policy. Including a positive reserve price in the
all-pay first-round of an ERA could lead to some players refusing to participate, while it is
not necessarily attractive to think that the seller would be willing to subsidize second-
round entry costs if the bidder subsequently refused tomeet a second-round reserve price.
Computing the optimal reserve in a sequential entry auction would involve an excessive
amount of computation.
41 Specifically, it is optimal for the seller to set a reserve price above V′ (for our parame-
ters a reserve of 92.63 is optimal). For this reserve price, entry will occur until a buyer in-
dicates that they are willing tomeet this reserve, in which case entry stops, and the object
is sold at the reserve. Therefore, the mechanism essentially becomes one where the seller
sequentially offers the good to each potential buyer at a fixed price.
can be optimal in the SASFE, but they do not increase revenues by more
than 0.4% for any value of α. In contrast, a strategic reserve in the se-
quential bidding auction can raise that mechanism’s already larger rev-
enues by as much as 4.7%, extending the revenue advantage of the
sequential bidding auction over the SASFE to a really quite significant
margin. Another way of framing these results is that, when entry is se-
lective, the gain in revenues of switching from an SASFE to either an
ERA or a sequential bidding auction can be many times greater than
the value of setting an optimal reserve in the SASFE.

6. Asymmetric bidders, bid preferences and selection

In this section we examine how selective entry impacts how bid
preference programs affect revenues and efficiency in a setting where
players are asymmetric. Bid preferences are widely used, partly to
meet distributional targets, such as allocating a certain proportion of
0 (FS) 1.58 2.34 2.29 2.14 2.92 4.26
0.01 1.56 2.33 2.25 2.07 2.92 4.05
0.05 1.55 2.32 2.20 2.06 2.91 3.97
0.1 1.51 2.28 2.14 2.05 2.88 3.86
0.2 1.47 2.20 2.05 2.03 2.83 3.66
0.3 1.41 2.08 1.94 1.98 2.73 3.45
0.4 1.32 1.95 1.85 1.86 2.62 3.14
0.5 1.21 1.80 1.73 1.77 2.45 2.87
0.6 1.09 1.63 1.58 1.67 2.24 2.55
0.7 0.87 1.43 1.42 1.47 1.99 2.26
0.8 0.70 1.17 1.23 1.22 1.66 1.93
0.9 0.37 0.80 0.95 0.78 1.21 1.55
0.95 0.17 0.57 0.79 0.56 0.84 1.33
0.99 -0.19 0.32 0.49 0.03 0.38 1.08
NS -0.48 0 0.06 -0.48 0 0.15

Notes: Expected outcomes based on 500,000 simulations.



43 In their setting, Krasnokutskaya and Seim predict that granting weaker players bid
preferences can increase procurement costs because the effect on the entry decisions of
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contracts to small businesses or companies owned by minorities,42 but
they may also increase seller revenues when one group of players
tends to have lower values. In this section, we use a model where
players are asymmetric and examine how selection affects the level of
bid preference that a seller that wants to maximize its revenues should
choose.

In the existing literature, bid preference programs have been ana-
lyzed primarily under NS. For example, Athey et al. (2013) (ACL) use
an estimated NS model to show that bid preferences may be preferable
to other distributional schemes, such as set-asides, in the context of US
Forest Service timber auctions, and they estimate that preferences of
42 For example, the FCC grants bid credits to small businesses in some spectrum auctions
(Congressional Budget Office, 2005), while many states give credits to small or minority
owned businesses in procurement auctions.
more than 20% would maximize the revenues of the agency.
Krasnokutskaya and Seim (2011) analyze bid preferences in state high-
way procurement auctions using an NS model with heterogeneous
entry costs. Our analysis will be closer to that of ACL in that, like them,
we will keep the entry decisions of stronger bidders fixed when we in-
troduce a bid preference.43Hubbard and Paarsch (2009) analyze the ef-
fects of bid preferences under the FS model assumption that players
know their values, although they assume that players are symmetric
stronger bidders can be large. However, allowing for selection could also change this con-
clusion because the strong bidders that would cease to enter would tend to have higher
costs than those that remain. If there are multiple equlibria in the entry game, as is quite
possible when the entry decisions of both types are endogenous, the effectiveness of bid
preferences may also depend on the equilibrium that is played.
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when preferences are applied. The approach that we use to solve our
auction model with asymmetries, bid preferences and selective entry
extends their approach to a more general setting.

We illustrate the effect of bid preferences by extending the model
considered above to allow for two types of bidders. In our example,
there are exactly Ns = 2 ‘strong’ (s) bidders, with ln(Vi

s) ∼ N(4.5, 0.2),
and Nw=4 ‘weak’ (w) players, with ln(Viw) ∼ N(4.4, 0.2), with both dis-
tributions truncated to [40,190].44 With these parameters, the average
value of a strong bidder is 91.83, the average value of a weak player is
83.06 and the probability that one of the weak players has the highest
value is 0.49.

We assume that the strong bidders and the entering weak bidders
compete in a first-price sealed bid auction for the object, where they
submit bids uncertain about how many (other) weak bidders may
have entered the auction. The bid preference affects the allocation of
the good, but does not affect the payments that are made. For example,
if the proportional bid preference is ρ (e.g., 0.1 or 10%), the auctioneer
allocates the object treating the bids of weak bidders as if they were
multiplied by (1 + ρ), while using the actual bids of strong bidders.
On the other hand, if a weak bidderwins the good based on these inflat-
ed bids, it only pays its actual bid.45

We choose to assume that the strong bidders enter for sure, and that
only the entry decisions of weak bidders, who receive signals before de-
ciding whether to incur an entry cost, K=5, are endogenous. We do so
partly to compare our results to ACL, but also to side-step the issue that
there may be multiple type-symmetric equilibria in the entry game
where the entry of both types is endogenous.46

As in the SASFE considered above, weak bidders will enter if their
signals are above a threshold S0�w , and then in the auction, bidders of
44 For numerical reasons it is convenient to have a lower truncation point that is above
zero. The probability that a value drawn from an untruncated distribution would be less
than 40 or greater than 190 is very small for both types.
45 Note that ACL actually consider a bid subsidy schemewhere actual bids are used to de-
termine the allocation of the good, but favored bidders only pay some proportion, 1

1þρ, of
their bids. While bids will be different, the allocation and payments should be identical
to our model when we consider a bid preference of ρ.
46 Roberts and Sweeting (2013) consider a settingwith two types andmake the equilib-
rium selection assumption that the strong type has the lower entry threshold, on the basis
that there is always exactly one equilibrium of this type and the implication that stronger
types will certainly be more likely to enter is attractive. However, when the weak players
receive bid preferences, the analysis would become more complicated, and the unique-
ness property might change as the size of the bid preference increases.
both types will submit bids according to type-specific bid functions.
We assume that bidders place bids uncertain about the number of
weak players that have entered. The BayesianNash equilibrium consists
of this threshold and type-symmetric bid functions for each type. Define
Hw(v) and Hs(v) as the probabilities that a player of a particular type (w
or s) either does not enter or enters and has a value less than v.47Hw(v)
will therefore depend on the threshold. The probability that aweak bid-
der will win with a bid bw is

Hs β�−1
s bw 1þ ρð Þð Þ

� 	h iNs Hw β�−1
w bwð Þ

� 	h iNw−1

where βw
∗ (v) and βs

∗(v) are the equilibrium bid functions of each type of
bidder and the bw(1+ ρ) term reflects the fact that a strong bidder can
only win if he bids at least bw(1 + ρ). The equilibrium weak bidder bid
function βw

∗ (⋅) will then be determined by the solution to the optimiza-
tion problem

β�
w vð Þ≡ arg max

b
v−bð Þ Hs β�−1

s b 1þ ρð Þð Þ
� 	h iNs Hw β�−1

w bð Þ
� 	h iNw−1

:

The first order condition associated with this optimization problem
gives a differential equation

1− Nw−1ð Þβ�
w
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−Nsβ
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2
4

3
5 ¼ 0

and there is a lower boundary condition where

β�
w rð Þ ¼ r: ð1Þ

In our calculations we assume a type-independent reserve price of
50, although, because we assume that two strong bidders enter, this re-
serve almost never binds. There is also an endogenously determined

upper boundary condition where β�
w V
� � ¼ b. Similar equations define
47 Of course, we are assuming that the strong type enters for sure.



Table 4
Value of K that Leads to an Average of 1.5 Weak Players Entering, with No
Bid Preference, as a Function of α.

Degree of Selection (α) Required Entry Cost (K̂)

0.01 0.523
0.05 0.575
0.1 0.655
0.2 0.847
0.3 1.066
0.4 1.297
0.5 1.536
0.6 1.776
0.7 2.017
0.8 2.255
0.9 2.484
0.95 2.591
0.99 2.669
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the equilibrium bid function for strong bidders, except that the upper

boundary condition will be that β�
s V
� � ¼ 1þ ρð Þb.

S0�w is determined by the zero profit condition

Z b

r
β�
w
−1 bð Þ−b

� 	
f wv β�

w
−1 bð ÞjS0�w

� 	
Hs β�−1

s b 1þ ρð Þð Þ
� 	h iNs Hw β�−1

w bð Þ
� 	h iNw−1

db ¼ K;

ð2Þ

where f v
w(⋅|s) is the conditional density of a weak bidder’s value, com-

puted using Bayes’ Rule, given she receives a signal s.
To illustrate the effect of selection on the optimal level of bid prefer-

ence, we consider the following problem: suppose that a researcher has
data from a set of identical auctions where there is no preference
scheme, and he wants to know how a particular level of bid preference
would change outcomes. We are interested in how his answer may de-
pend on the assumed value of α. To do this exercise, we change the
value of K so that, when we change α, we keep the expected number
ofweak bidderswith nopreference fixed.48 This effectively involves set-
ting S0�w, solving the equilibrium bidding game, and then identifying the
level of K that makes the zero-profit condition (Eq. (2)) hold. By doing
so, we can also illustrate how changing α affects the level of K that a re-
searcher would likely estimate.49 However, this approach does create
some differences to the results presented in previous sections. In partic-
ular, in the model with symmetric bidders and fixed K, seller revenues
decreased with selection, as fewer players entered. Now that we are
holding entry fixed, seller revenues tend to increase with selection as
the entrants tend to have higher values.

To solve for the bid functions, we use the Mathematical Program-
ming with Equilibrium Constraints (MPEC) approach (Su and Judd,
2012; Hubbard and Paarsch, 2009), where we use the AMPL program-
ming language and the SNOPT solver. We express the inverse bid func-
tions of each type as a linear combination of the first P Chebyshev

polynomials (we use P = 25), scaled to the interval r; b
h i

. When we

are solving the model with no bid preference, S0�w is set to get the right
amount of entry by weak players, and the choice variables in our pro-
gramming problem are, therefore, 2P Chebyshev coefficients, K and

the value of the upper boundary condition for weak entrants (b).
48 One could also, of course, examine how outcomes change, as a function of the level of
bid preference, keeping K fixed and allowing the amount of weak player entry to change
with the degree of selection. In our example, when we hold K fixed, the amount of weak
bidder entrywith no bid preference can change quite dramaticallywithα, and this change
has a large effect on outcomes. We view our formulation as a more natural way to illus-
trate how a researcher’s conclusions about the optimal level of bid preferencewould be af-
fected by his assumptions about selection in a setting where weak bidders already
frequently participate in auctions.
49 Of course, if the researcher was actually estimating the model, he would also be esti-
mating the distribution of values, and these would also be affected by the assumed α. For
our illustration, we assume that the researcher knows the true value distributions.
When we solve the model with a bid preference, we take K as fixed,
but also solve for the equilibrium entry threshold, S0�w.

Table 4 shows how the level of K, K̂ , required to rationalize why 1.5
weak bidders enter on average changes with α. In this part of the anal-
ysis we consider values of α from 0.01 to 0.99, without solving for the
polar cases. Consistent with the logic outlined in footnote 2.2, weak
players are more willing to enter when signals are less informative, so
that as α increases, entry costs must also increase to explain why

some of these players choose to remain out. The change in K̂ is large:
moving from α= 0.01 to α=0.99, increases the required K by a factor
of 5, from 0.6% of a weak player’s mean value to over 3.2%. This pattern
may also explain why researchers typically estimate entry costs that
seem implausibly high when they assume NS.50

Given these values of K, we analyze how bid preferences impact
auction outcomes, as a function of α. To do so, we consider a finite
set of different levels of bid preferences, ρ = {0, 0.025, 0.05, 0.075,
0.1, 0.125, 0.15, 0.175, 0.2}. We then solve the model, including the

equilibrium bid functions of each type, for each α; K̂ αð Þ;ρ
� 	

combi-

nation. We then simulate 100,000 outcomes for each case in order
to calculate expected outcomes.

Fig. 8 shows four expected outcome measures. Consistent with the
logic of optimal auctions, which is developed in the context of models
with exogenous entry, the seller’s revenues (8(a)) can be increased
using bid preferences. In addition to making existing weak entrants
more likely to win the auction, which should cause strong bidders to
shade their bids less, a bid preference will also encourage more weak
players to enter. This entry effect will encourage both weak and strong
bidders to bid more aggressively. Fig. 8(b) shows how bid preferences
affect weak bidder entry for different degrees of selection, with larger
effects as α increases.

The most striking finding is that the level of bid preference that is
predicted to maximize the seller’s expected revenues is much smaller
when entry is assumed to be very selective. This suggests that any find-
ing that large bid preferences are optimal when NS is assumed may be
very sensitive to that assumption. For the lowest α that we consider
(0.01), the revenue-maximizing preference is ρ= 0.025; for values be-
tween 0.05 and 0.5 the revenue-maximizing preference is ρ = 0.05;
whereas, for α = 0.9, for example, ρ = 0.125 is optimal. The fact that
large bid preferences are optimal when the degree of selection is small
reflects the fact that, in this case, a preference has a large effect on bid-
der entry (7(b)), and that the additional entrants that are drawn in will
tend to have value distributions that are similar to those that would
enter without a preference, so that they will tend to be equal competi-
tors to the inframarginal entrants. In contrast, when entry is selective,
the new entrants will tend to have relatively low values, and the effect
on incumbent bidding will be more limited. As an illustration, Fig. 9
shows how the equilibrium bid functions of both types change when a
bid preference of ρ = 0.1 is introduced for α = 0.1 (9(a)) and α = 0.9
(9(b)). Considering a strong bidder with a value of 120, the increase in
the bid that follows from the bid preference is one percentage point
larger when α = 0.9 than when α = 0.1 (5.2% vs. 4.1%). The decrease
in the weak bidder’s bid is approximately one-half-of-one percentage
point smaller (2.1% vs. 2.6%). These differences naturally make the use
of a larger bid preference, even though it may allocate the good to a
50 For example, ACL estimate mean entry costs for a sample of US Forest Service timber
auctions of $7.54/mbf, compared to the Roberts and Sweeting (2013) estimate of $2.05/
mbf when they allow for selection (although these estimates are based on different sam-
ples of data) and a forester’s estimate of entry costs of around $3/mbf. Bajari et al. (2010)
and Krasnokutskaya and Seim (2011) estimate that average entry costs into highway pro-
curement auctions are 4.5% and 3% respectively of the engineer’s estimate of the cost of
completing the contract. These are also significantly higher than those of Bhattacharya
et al. (2014) (1.5%), also in a highway procurement context, and most industry estimates
(Park and Chapin, 1992; Halpin, 2005) that lie in the range 0.25-2%.



51 The one exception to this is for values of α above 0.95 when large bid preferences are
in place.
52 When there is no preference, the amount of weak bidder entry is the same regardless
of the degree of selection. When preferences are introduced, the amount of weak bidder
entry increases by less when more selection is assumed.
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Fig. 8. Effect of bid preferences in a model with asymmetric bidders.
Note: In these figures K varies with α so that the expected entry of weak bidders when there is no preference is constant.
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bidder with a lower nominal bid, more attractive when there is less
selection.

Fig. 8(c) shows that the effect that preferences have on total surplus
is fairly independent of the assumed degree of selection. Even though
preferences will make strong bidders shade their bids less and weak
bidders shade their bids more, all of the preferences that we consider
tend to increase the probability that the good is allocated to a weak en-
trant that does not have the highest value (8(d)), while simultaneously
tending to increase entry costs. The former effect is larger when there is
assumed to be more selection, which offsets the fact that the social cost
of increased entry is lower when there is more selection because, to
hold the level of weak bidder entry fixed, K is smaller.

As noted above, one motivation for using bid preferences is to
achieve a distributional objective that weak players should win more
often. While bid preferences do have this effect, with or without selec-
tion, it is also noticeable that when more selection is assumed, the
probability that a weaker player wins also rises.51 As a point of compar-
ison, the probability that a weak player has the highest value is 0.49,
which is only slightly greater than the probability that a weak player
wins when α takes on the lowest value that we consider and there is
no bid preference. This reflects that the fact that, even though the ex-
pected amount of weaker bidder entry is (weakly) lower with selection
given the way that we are changing K,

52 selection leads to the weaker
players that are most able to win entering. This suggests that a seller
with distributional objectives might try to achieve them by increasing
selection (for example, by providing potential buyers with better



54 Li and Zheng (2009) compare themodel fit of anNSmodel with a common entry cost,
anNSmodelwith heterogeneous entry costs and anFSmodelwith a commonentry cost in
a procurement setting, whereas Li and Zheng (2011) compare the fit of the first and last
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Fig. 9. Bid functions with and without a 10% bid preference.
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information about the good being sold), rather than, or in addition to,
introducing bid preferences.

7. Measuring selection

The previous results suggest that the degree of selection can signifi-
cantly affect both the direction and the size of gains from changing an
auction design. These results, however, would be of limited value if
we cannot identify how selective the entry process is in different real-
world contexts. Fortunately, there has been significant progress in the
last few yearswhen it comes to the identification and estimation of auc-
tionmodels with endogenous and selective entry.We highlight some of
the most significant contributions in this section.

The primitives of our model that a researcher would like to estimate
in order to do interesting counterfactuals, such as evaluating different
auction designs, are the joint distribution of players’ values and signals,
and the level of entry costs. Assuming that players are symmetric, the
data is assumed to contain the number of players, the number of en-
trants, and some information on the bids of entrants. The fundamental
identification problems are that we never observe signals directly and
that, with selection, the distribution of entrants’ values, which should
map into their bids, will be different from the distribution of values in
the population. However, at least some of these problems occur in
other economic settings where there is selection. The intuition from
these settings is that we can potentially identify the population effects
and the degree of selection when there is some exogenous source of
variation in which, or how many, agents choose to enter. The same
logic holds in the current setting, although there is an additional layer
of complexity introduced by the fact that entry rules and bidding behav-
ior should be determined by the equilibrium of a multi-agent game
rather than by a single agent optimization problem.53
53 For example, when some exogenous variable affects the equilibrium amount of entry,
it may also affect equilibrium bidding strategies in first-price auction contexts.
The focus of work on non-parametric identification and testing has
been on models of first-price or second-price button auctions (where
it may be possible to observe the bids of multiple entrants) and poten-
tial entrants are symmetric. Symmetry implies that variation in the
amount of entry then comes from variation in auction-level variables,
such as the number of potential entrants, the reserve price or the level
of entry costs. Marmer et al. (2013) show that one can non-
parametrically distinguish the NS, FS, and partially selective entry
models using exogenous variation in the number of potential bidders
and estimates of the quantiles of the value distributions of entrants con-
ditional on the number of potential entrants (which can be calculated
from inverting bid functions, whichwill be specific to the number of po-
tential entrants, using the methodology proposed by Guerre et al.,
2000).54 The basic intuition is that under NS these quantiles should be
invariant to the number of potential entrants, whereas with selection
the quantiles should tend to increase with the number of potential en-
trants as the equilibrium signal threshold for entry should rise. Under
FS, where bidders will only enter if their values are above the threshold,
the shift in the lower quantiles of the distribution of values should be
particularly sharp.

One can also derive other tests of the polarmodels from some of the
results described above (see Coey et al., 2014 for further examples). For
example, under theNS assumption, expected revenues should fall as the
number of potential entrants increases. While models with selection do
not necessarily have a positive relationship, a rejection of a negative
models in the context of high-bid timber auctions. They find that the FS model provides
a better fit in the timber setting, whereas they find that the common entry cost NS model
fits best in the procurement setting.
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relationship, based on exogenous variation in the number of potential
entrants, could lead one to reject the NSmodel, as could an observation
that there is some but incomplete entry by bidders of multiple types
when potential bidders are asymmetric.55

Gentry and Li (2014) consider, more explicitly, the problem of
whether the joint distribution of values and signals is identified. They
prove point identificationwhen there is continuous and exogenous var-
iation in the equilibrium entry threshold, for example due to an observ-
able source of variation in the entry costs or exogenous variation in the
reserve price. On the other hand, when there is only discrete variation,
for example due to variation in the number of players, the joint distribu-
tion may only be bounded, but, of course, with enough variation these
bounds may be quite tight.56 They show that these results can be ex-
tended to settings where there is unobserved auction heterogeneity,
which may also affect the observed number of potential entrants, as
long as some exogenous variation in factors affecting entry remains.
Of course, once the joint distribution of values and signals is identified,
entry costs are identified from the fact that a player that receives the
threshold signal should be indifferent to entering.

Roberts and Sweeting (2015), Roberts and Sweeting (2013) and
Bhattacharya et al. (2014) currently provide themain empirical applica-
tions where models of selective entry are estimated. In all three cases a
fully parametric approach is taken, partly because of the need to control
for covariates, but also to address the fact that exogenous sources of var-
iation in the entry thresholds are typically limited in practice. Roberts
and Sweeting (2015) and Roberts and Sweeting (2013) estimate a
model of second-price auctions using data from US Forest Service tim-
ber auctions in the Pacific Northwest. Like ACL and Athey et al. (2011),
they allow for asymmetries between sawmills and logging companies,
and for unobserved auction heterogeneity. From a modeling perspec-
tive, asymmetries between bidder types provide both a potential oppor-
tunity and a problem for identifying the parameters. The opportunity
comes from the fact that variation in the number (or characteristics)
of players of one type should lead to variation in the entry strategies
of other types of players, providing a new source of identification. In-
deed, as Gentry and Li (2014) note, when there is continuous variation
in player types, as might be created for example by the distance of a po-
tential bidder’s depot to a construction site, as is often observed in high-
way paving auctions, or from a sawmill to the location of the tract in a
timber auction (as in Li and Zhang, forthcoming), this can lead to
point identification of the model. On the other hand, there may bemul-
tiple equilibria even when one restricts oneself to strategies that are
symmetric within-type, requiring an equilibrium selection assumption
(usually that only one equilibrium is played in the data given a set of ob-
served auction andpotential bidder characteristics) or an estimation ap-
proach to dealwith the incompleteness of themodel (Tamer, 2003) that
multiplicity can generate. In an environment with two types that differ
only in the location parameters of their value distributions, one can
show that therewill always be exactly one equilibriumwhere the stron-
ger type has a lower entry threshold implying that they are more likely
to enter. Assuming that this is the equilibrium that is played, Roberts
and Sweeting (2015) and Roberts and Sweeting (2013) estimate a
55 In a type-symmetric equilibriumwithmultiple bidder types underNS, players of a giv-
en typemust either all mix over entry, enterwith certainty, or not enter for sure. However,
with a commonK, itwill generically not be possible to have two types, with different value
distributions, that are bothwilling tomix. Therefore observing some but incomplete entry
bymore than one type can be used to reject the NSmodel, although this conclusion is de-
pendent on the assumption that only type-symmetric equilibria are played.
56 In the absence of unobserved heterogeneity, one intuition for why the model is iden-
tified is thatwhen there are fewpotential entrants or entry costs are very low, all potential
bidders should choose to enter with high probability. In this case, we have - in essence -
exogenous entry and standard results for the identification of value distributionswill hold
(Athey andHaile, 2006). As potential competition rises or a shifter of entry costs increases,
one can then identify the average level of entry costs and the degree of selection fromhow
the amount of observed entry and the value distribution of entrants change.
random coefficients model of the structural parameters. They find that
the mean value of α for the auctions in their sample is 0.6, indicating
moderately selective entry and potentially significant gains from using
non-standard designs.57

Bhattacharya et al. (2014) estimate a parametric model of selective
entry into low bid procurement auctions with symmetric bidders.
They also estimate that entry is moderately selective (mean value of α
is 0.5) and they use the approach of Gentzkow and Shapiro (2014) to il-
lustrate which moments of the data parametrically identify the param-
eters. The results are broadly consistentwith the intuition fromMarmer
et al. (2013) and Gentry and Li (2014) in that changes in the number of
realized entrants as the number of potential entrants varies play an im-
portant role in determining the degree of selection. All of these papers
take a full information approach to estimation in the sense that it is nec-
essary to be able to solve the selective entry and bidding games as part
of the estimation process. The results in Gentry and Li (2014) suggest
that it may be feasible to use a two-stage approach to estimating selec-
tion models with real-world data. It would also be interesting to inves-
tigate how the Haile and Tamer (2003) inequality-based approach to
estimating open-outcry auctionmodels, which assumes a fixed number
of bidders, could be applied to settings with endogenous and selective
entry.

8. Conclusion

This article has argued that it is important to account for the selectiv-
ity, aswell as the endogeneity, of entrywhen trying to evaluate different
auction designs in real-world settings. In the particular example consid-
ered an increase in the degree of selection tends to increase both the ef-
ficiency and revenue gains from deviating from the ‘standard auction
with simultaneous and free entry’ format, and it also tends to reduce
the value, to the seller, of large bid preferences in settingswhere bidders
are naturally asymmetric. Recent advances in the empirical literature
make it feasible to estimate parametric models of selective entry, and
to argue that the degree of selection is non-parametrically identified.

In our discussion we have largely treated the degree of selection as a
fixed parameter, rather than some feature of the auction that the de-
signer gets to choose. In practice, in many settings the seller makes
choices aboutwhat informationwill be provided to potentially interest-
ed parties, and it may be able to hire third parties who could provide in-
dependent assessments of the object being auctioned, with the aim that
bidders can make more informed choices. When entry costs are fixed,
increasing the degree of selection tends to increase efficiency but reduce
the seller’s revenues by reducing entry/competition and increasing in-
formation rents. However, if providing better information also reduces
entry costs, so that the amount of entry is maintained, as in Section 6,
then the change may increase both efficiency and revenues. Under-
standing how auction design, including features that are often ignored
in the literature, such as the information distributed to potential bid-
ders, affects both entry costs and selection seems to us to be an impor-
tant direction for future research. It would also be interesting to extend
our framework to allow for the possibility that there is a common value
element in players’ valuations. In this case, it may be even more desir-
able for the seller to regulate entry, in order to reduce the effects of
the winner’s curse, but it is an open question as to what type of mecha-
nisms might achieve this type of control in the most efficient way.

The discussion also has some relevance for how to think about entry
in non-auction settings. A key feature of the selective entrymodel is that
marginal and inframarginal entrants are not necessarily alike, whereas
it is quite common in entry settings to assume either that entrants
only find out any unobserved characteristics post-entry or that the un-
observed characteristics that they do observe simply reflect differences
57 It is worth noting that, at the estimated parameters, there is only a single equilibrium
because the mills tend to have values that are sufficiently high that only an equilibrium
where they are more likely to enter can be supported.
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in fixed or sunk entry costs.58 This will matter in any setting where the
analysis of a policy change, such as liberalizing regulation, divesting
plants to a new entrant or allowing a merger, may depend on how
strong a competitor a firm that is not currently in the market is likely
to be. In Roberts and Sweeting (2012) we consider the effects of selec-
tion in the context of airlinemergers (making an assumption that corre-
sponds to the FSmodel laid out above), a settingwhere it is often argued
that the ability of carriers that do not currently serve a route between
particular pairs of cities or airports to enter could constrain any route-
level market power created by carrier mergers. Of course, this approach
could be pushed further to allow for partially selective entry in the way
considered here.

One can also raise a broader methodological point about how we
should think about entry. One reason why both the theoretical and
the empirical auction literatures have been so successful is that the
structure of the game that the bidders are playing can be observed
and exactly specified within the model. On the other hand, in few set-
tings canwe really claim to know theway that the entry game is played,
even in a setting like an auction where the ‘market’ that can be entered
is clearly defined. When we lack direct information on how a game is
played, it is tempting to model it in a way that is as convenient as pos-
sible in terms of deriving results, even if the resulting formulation has
features that seem unlikely to be true – such as no selection. We hope
that the results in this article provide an illustration of how this type
of simplifying assumption could lead a researcher to quite misleading
conclusions.
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