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B. Incorporating Ambiguity Aversion

In this appendix, we begin with a standard equilibrium concept to solve the game presented in

Section 2.1. We then add ambiguity aversion to this setup and show that it leads to the concept of

distortion equilibrium as we defined it in Section 2.2.

B.1. Sequential Equilibrium

In this subsection, we will consider a sequential equilibrium in this game (Kreps and Wilson (1982)),

which consists of a set of mixed strategies at each information set along with beliefs over nodes at

each set such that actions are sequentially rational, beliefs are formed by Bayes’ rule whenever it

applies, and beliefs are consistent (in the sense defined by Kreps and Wilson) for information sets

that have probability zero in equilibrium. Denote by pi(hi) ∈ [0, 1] the probability that player i

accepts µ over ŷ at information set hi, and let νi(a−i, O|hi) be i’s belief that his opponent played

a−i and the order is O, conditional on being at information set hi. To simplify notation, consider

only player 1 and let ν(1|h) be his belief that he is picking first, at information set h. The expected

utility to player 1 from accepting the alternate distribution µ is

U1(µ|h) = ν(1|h)χ(µ, h) + (1− ν(1|h))Eµ[y]w1(y), (O.1)

where χ(1, h) is the expected profit of player 1 from choosing µ at information set h, conditional on

being first to alter the signal. We can write

χ(µ, h) =
∑
a2∈A2

ν(a2, 1|h)

ν(1|h)
Eµ[y′]EF (a2,y′)[µ′]

{
w1(µ′)p2(a2, y

′, µ′) + w1(y′)
(
1− p2(a2, y

′, µ′)
)}
,

(O.2)

where w1(µ′) is shorthand for Eµ′[y′′]w1(y′′). Of course, the expected utility to player 1 from

accepting the temporary signal ŷ is simply U1(δŷ|h) from (O.1), where δŷ is a distribution that

places probability 1 on ŷ.
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Sequential rationality for player 1 at these information sets, therefore, requires that

p1(a1, y
′, µ) =


1 if U1(µ|h) > U1(δŷ|h)

[0, 1] if U1(µ|h) = U1(δŷ|h)

0 if U1(µ|h) < U1(δŷ|h)

. (O.3)

Bayesian updating requires that

ν(a2, 1|a1, ŷ, µ) = π(a1, a2)(ŷ) · dF (ŷ)(µ) · σ1(a1)σ2(a2)γ

/ ∑
a′2∈A2

π(a1, a
′
2)(ŷ) · dF (ŷ)(µ) · σ1(a1)σ2(a′2)γ

+

∫
µ′

∑
a′2∈A2

π(a1, a
′
2)(ŷ) · dF (ŷ)(µ′) · (1− p2(a2, ŷ, µ

′)) · dF (a2, ŷ)(µ) · σ1(a1)σ2(a′2)(1− γ)

+

∫
µ′

∑
y′∈Y

∑
a′2∈A2

π(a1, a
′
2)(y′) · dF (y′)(µ′) · p2(a2, y

′, µ′) · µ′(ŷ) · dF (a2, ŷ)(µ) · σ1(a1)σ2(a′2)(1− γ)

 . (O.4)

This expression is extensive, but it captures that the game can arrive at the information set (a1, ŷ, µ)

in three ways: (i) player 1 could be first and have been offered the temporary signal ŷ and the

alternate µ, (ii) player 1 could be second, and ŷ may be the signal because player 2 refused to

change it, and (iii) player 1 could be second, and ŷ may be the signal because it was the draw from

player 1’s alternate signal. The probability of reaching this node is zero if σ1(a1) = 0 or if π and

the F ’s are such that either ŷ or µ has probability zero following the action a1. If the probability of

this node is zero due to σ1(a1) = 0, we follow Kreps and Wilson and define ν(a2, 1|a1, ŷ, µ) using

consistency. If certain nodes are not reached due to π or the F ’s, then we can simply ignore them

in constructing the equilibrium.

Finally, the mixed strategies σi ∈ ∆Ai chosen in the first stage of the game (i.e., when playing

G) must by optimal given the future path of play (i.e., p1 and p2 defined in (O.3)). and given the

opponents’ strategy σ−i ∈ ∆A−i. Together with the conditions (O.3), (O.4), and the consistency

requirement from Kreps and Wilson (1982), we have a sequential equilibrium of the game.

B.2. Adding Ambiguity Aversion

We now add ambiguity-aversion to the payoffs presented in the previous subsection. Throughout

this derivation, restrict attention to signal structures π such that π(a) has full support on Y ; we will

briefly discuss relaxing this restriction at the end of the subsection. As mentioned in Section 2.2,

we assume that agents only know that γ ∈ [0, 1], and that agents believe each F is an element of

∆(∆(Y ))0, or the set of distributions over ∆Y that have full support.

Such an agent, therefore, would evaluate payoffs according to

Ũ1(µ|h) = inf
γ∈[0,1]

F∈∆(∆(Y ))0

ν(1|h)χ(µ, h) + (1− ν(1|h))Eµ[y]w1(y), (O.5)

where ν(1|h) and χ(1|h) are defined as in (O.2) and (O.4), and p2(·) is taken as fixed. By F in
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the infimum we refer to all three different distributions, F, F (a1, ·), F (a2, ·) over alternate signal

distributions. Note that we have to take the infimum instead of the minimum since ∆(∆(Y ))0 is

not a closed set. However, because F is an element in ∆(∆(Y ))0 and we are currently restricting

attention to π such that π(a) has full support on Y , we can ensure that all combinations of (ŷ, µ)

have positive probability following every action profile and every possible ordering.

We are searching for an equilibrium in which (i) pi is determined by sequential rationality (as in

(O.3), with U replaced by Ũ), (ii) pi is either 0 or 1, that is, for simplicity we restrict our attention

to pure strategies in the distortion part of the game, and finally (iii) the actions in the initial

game G are optimal given the value of Ũi. In the remainder of this subsection, we show how these

assumptions motivate the concept of distortion equilibrium (Section 2.2).

Note than, in equilibrium, agent 2 will weakly prefer to distort the signal in favor of an alternate

signal distribution at a history h2 = (a2, y
′, µ′) if Ũ2(µ′|h2) ≥ U2(δy′ |h2). Let us denote the set

D2(y′) = {µ′ ∈ ∆(Y ) : Ũ2(µ′|h2) ≥ U2(δy′ |h2)}, (O.6)

as the set of all µ′ that player 2 will weakly prefer to δy′ . Note that this set is independent of a2.

Finally, we restrict ourselves to a particular tie-breaking rule for all alternate signal distributions

µ′ 6= δy′ : we assume that both agents, when indifferent between distorting and not distorting, choose

to distort the signal.

To obtain an explicit characterization of the equilibrium, we begin by computing the value of

Ũ1(µ|h) in (O.5). This is a convex combination of the set of terms{{
Eµ[y′]EF (a2,y′)[µ′]

[
w1(µ′)p2(a2, y

′, µ′) + w1(y′)
(
1− p2(a2, y

′, µ′)
)]}

a2
,Eµ[y]w1(y)

}
. (O.7)

We have that

min
µ′∈D2(y′)

w1(µ′) ≤ w1(y′) (O.8)

since by construction δy′ ∈ D2(y′). Thus, we can minimize the elements of the set in (O.7)

term-by-term by setting

F (a2, y
′) ≡ β

{
arg min
µ′∈D2(y′)

w1(µ′)

}
, (O.9)

where β{µ} is the distribution that places full mass on µ.

We now regard the global infimum in (O.5). From (O.9) and the tie-breaking rule that {µ′ :

p2(a2, y
′, µ′) = 1} is identically D2(y′), we have that the global infimum (over all allowed F and γ)

in (O.5) is no less than

min

{
Eµ[y′] min

µ′∈D2(y′)
w1(µ′), Eµ[y]w1(y)

}
= Eµ[y′] min

µ′∈D2(y′)
w1(µ′), (O.10)

where the equality follows from (O.8) again. It then suffices to argue that we can find γ such that,

together with the choice of F (a2, y
′) in (O.9), achieves this lower bound. It is easy to see from (O.4)

that setting γ = 1 achieves this bound as long as π(a) has full support for all a, and (O.10) gives an
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expression for Ũ1(µ|h) from (O.5),

Ũ1(µ|h) = Eµ[y′] min
µ′∈D2(y′)

w1(µ′). (O.11)

We can apply similar logic to compute the payoff from a (possibly mixed) action α1 in the initial

game G. This payoff is given by

V1(α1, α2) = inf
F (ŷ)∈∆(∆Y )0

(1− β)g1(α)

+ β · Eπ(α)[ŷ]

[
EF (ŷ)[µ] max{Ũ1(µ|(αi, ŷ, µ)), Ũ1(δŷ|(αi, ŷ, µ))}

]
,

where we already used the fact that agent 1 believes to go first (γ = 1).1 Similar computations show

that this expression is minimized when F (ŷ) is such that the second element in the max exceeds the

first. In light of (O.11) this lets us write

V1(α1, α2) = (1− β)g1(α) + β · Eπ(α)[ŷ] min
µ′∈D2(ŷ)

w1(µ′). (O.12)

All the expressions are symmetric for player 2.

We have thus far restricted attention to signal structures π with full support. The role of this

restriction (along with the assumption that F (a2, y) ∈ ∆(∆Y )0) is to allow player 1 to hold the belief

that he is going first with probability 1 to be rationalizable. Without a full support assumption, it

may be possible for player 1 to be certain that he is going second if he is offered a signal ŷ that

has probability zero given his action a1 in the game G—and Bayesian updating beliefs about the

order of distortion will be ill-defined if γ = 1. We can instead derive a distortion equilibrium for

games where the signal structure π does not have full support as a limit of distortion equilibria

for games with the same payoffs but signal structures π′n that do have full support and converge

to π. Such an equilibrium would be identical to the one presented in Section 2.2, We omit the

details, but the rationale is that the only role of π in the expressions above is in (O.12), and that

expression is continuous in π. In this paper we apply the definition in that section to games with

signal structures that do not satisfy this full support assumption.

C. Details of the Extension to an Infinite Horizon

This section contains details of the extension to the infinite horizon model. We first introduce an

alternative equilibrium concept that directly mimicks PPE, which we call PPED, and show its

equivalence with the RDE introduced in Section 7. Second, we prove that PPED payoffs can be

characterized recursively as in APS. Third, we prove Theorem 4 in similar fashion as FL. Fourth,

we introduce the concept of a linear PPE, or PPEL, which is a PPE where continuation values

line on a positively sloped line after each public history; and we show that PPED and PPEL are

essentially equivalent. Finally, we prove our “anti-folk theorem”, Theorem 5.

1The notation Ũ1(µ|(αi, ŷ, µ)) is shorthand for the expectation Eαi[ai]Ũ1(µ|(ai, ŷ, µ)).
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C.1. PPED and RDE

For the purposes of comparison to FL, a more relevant solution concept would be one in which

strategies bear direct resemblance to strategies in FL and FLM. We now formulate such a concept

and show that it is indeed equivalent to recursive distortion equilibria. As in FL, we focus on public

strategies.

Definition O.1 (Public Strategy). A public strategy for player i is a map hi : Y → ∆Ai×D. That

is, a public strategy specifies a (possibly mixed) action αi(y
t−1) and a distortion Di(y

t−1)(·) ∈ D for

each public history yt−1.

Now we want to specify payoffs in this infinitely repeated game directly from public strategies.

As illustrated by our one period example, and the recursive definition above, the “worst case” for

player i occurs when player −i modifies the signal after him. Using this insight, we can define

continuation payoffs: we will prove later that the continuation payoffs so defined are compatible

with the continuation payoffs defined as part of the recursive distortion equilibrium. Fix a public

strategy profile as above and suppose we enter period t+ 1 with public history yt. Define

C(yt) ≡
{(
µ1(yt+s)(y), µ2(yt+s)(y)

)
s≥0

: µi(y
t+s)(y) ∈ Di(y

t+s)(y)
}
.

That is, C(yt) specifies a realization of an alternate distribution µ for each public history yt+s and

each temporary signal y. Note that if we specify that the distortion is always such that player 1

distorts first and then player 2 does, then an element c ∈ C induces a probability distribution over

public histories ys via the sequence

yt −→
π(α(yt))

ŷ −→
µ1(yt)(ŷ)

ˆ̂y −→
µ2(yt)(ˆ̂y)

y −→
current public history

(yt, y) ≡ yt+1,

where each arrow represents a draw from the distribution underneath the arrow. Let σ1(yt) : C(yt)→
∆
({
yt+s

}
s≥0

)
be this map. Then let S1(yt) ≡ Imσ1(yt) be its image. Then, the perceived payoff

for player 1 of the public strategy profile, starting from history yt, is

v1(yt) ≡ min
ν∈S1(yt)

{
(1− β) · g1(α(yt)) + (1− β) · Eν

[ ∞∑
s=1

βsg1(α(yt+s))

]}
. (O.13)

For player 2, simply interchange the roles of players 1 and 2 in the above discussion.2 To preserve

the notation from the definition of RDE, given these payoffs v(yt) from histories yt ≡ (yt−1, yt)

onward, define continuation payoffs at yt−1 as w(yt−1, yt) ≡ v(yt).3 Now, define w̃(yt, ·) as in (i) in

2While the continuation payoffs defined as above are technically treated as definitions of the preferences given public
strategies, we should note that they are reasonable given the extensive form game defined in Section 2. There, we
showed that when evaluating payoffs, players fear that γ is such that their opponent always modifies the signal after
they do. This is why when evaluating the payoffs of player 1, we only consider distributions generated when player
2 modifies the signal after player 1 does in the minimization problem. Moreover, note that it is without loss of
generality to only consider µ ∈ Di as part of C since δy ∈ Di(yt−1)(y) for all public histories; as such, the possibility
of the opponent rejecting the proposed signal change is built into the set.

3The distinction between the v(yt−1) and w(yt−1, ·) is pedantic, but it serves to highlight the fact that in an RDE, we
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the definition of recursive distortion equilibrium (Definition 7). We have that the natural consistency

condition is that

Di(y
t−1)(y) ≡

{
µ ∈ ∆Y : Eµ[y′]

[
w̃i(y

t−1, y′)
]
≥ w̃i(yt−1, y)

}
. (O.14)

With this notion, we can define an equilibrium.

Definition O.2 (PPED). A public perfect equilibrium with distortion (PPED) is a public strategy

profile (α,D) such that starting at each public history yt−1,

(i) αi is a best response to α−i and D−i in the subgame following yt−1, using utility vi(y
t−1)

defined in (O.13), and

(ii) D(yt−1)(·) is consistent with the strategy profile as in (O.14).

The connection between a PPED and an RDE is relatively intuitive, as the best response and

consistency conditions in the definition of PPED are exactly as in an RDE. It remains to show that

the minimization problem posited in (O.13) is compatible with the payoffs defined as part of the

RDE. The following result shows that it is.

Theorem O.1. Given an RDE
(
α(yt−1), D(yt−1), w(yt−1)

)
, the public strategy profile

(
α(yt−1), D(yt−1)

)
is a PPED. Conversely, if

(
α(yt−1), D(yt−1)

)
is a PPED, then w(yt−1, yt) ≡ v(yt−1, yt), defined in

(O.13), satisfies the Bellman equation.

Proof. This proof has two pieces. In the first step, we show that an RDE is a PPED. Let the

RDE be denoted
(
α(yt−1), D(yt−1), w(yt−1)

)
. Define C′(yt), S ′i(yt), and σ′i(y

t) as the one-period

analogues of C, Si, and σi from Section 7.4 We claim that w satisfies the difference equation

vi(y
t−1) ≡ wi(yt−2, yt−1) = min

ν∈S′i(yt−1)
(1− β)gi(α(yt−1)) + βEν[y][wi(y

t−1, y)]. (O.15)

It suffices to show that

min
ν∈S′i(yt−1)

Eν[y][wi(y
t−1, y)] = Eπ(α(yt−1))[y][w̃i(y

t−1, y)].

view continuation payoffs as vectors (for each player) at each node, and in a PPED, we view payoffs as a single value
(for each player) at each node. These notions can of course be interchanged freely.

4That is, only consider choices µi from Di(·)(·) for a single period, and the induced distribution is only over the next
period’s signal.
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Note that by consistency and the definition of w̃, we have

Eπ(α(yt−1))[yt][w̃i(y
t−1, yt)]

= Eπ(α(yt−1))[yt]

[
min

µi∈Di(yt−1)(yt)
Eµi[ŷ]

[
w̃i(y

t−1, ŷ)
]]

= Eπ(α(yt−1))[yt]

[
min

µi∈Di(yt−1)(yt)
Eµi[ŷ]

[
min

µ−i∈D−i(yt−1)(ŷ)
Eµ−i[ˆ̂y]

[
wi(y

t−1, ˆ̂y)
]]]

= min
{µi∈D1(yt−1)(yt)}yt∈Y

min
{µ−i∈D−i(yt−1)(ŷ)}ŷ∈Y

Eπ(α(yt−1))[yt]

[
Eµi[ŷ]

[
Eµ−i[ˆ̂y]

[
wi(y

t−1, ˆ̂y)
]]]

= min
ν∈S′i(yt−1)

Eν[y][wi(y
t−1, y)].

Hence, w from the RDE satisfies equation (O.15). Expanding out the difference equation gives

vi(y
t) = min

ν∈S′i(yt)
(1− β)gi(α(yt)) + βEν[y][wi(y

t, y)]

.

.

.

= min
ν∈Si(yt)

(1− β)gi(α(yt)) + Eν

[
(1− β)

T−1∑
s=1

βsgi(α(yt+s)) + βTwi(y
t+(T−1), yt+T )

]
.

Since wi(y
t+s−1, y) is bounded, letting T →∞ clearly shows that

vi(y
t) = wi(y

t−1, yt) = min
ν∈Si(yt)

{
(1− β)gi(α(yt)) + (1− β)Eν

[ ∞∑
s=1

βsgi(α(yt+s))

]}
.

Hence the continuation values from the RDE match up with the computed continuation values from

the associated PPED. Incentive compatibility and consistency of w as a PPED follow immediately

from conditions (i)–(iii) in the definition of RDE. Hence we have shown that an RDE is also a

PPED.

Now we show the other direction. Let v(yt) be the PPED payoffs from (O.13) and let w(yt−1, yt)

be the associated continuation payoffs. All that is required is to show that w satisfies the difference

equation in (O.15). Noting that the minimization in (O.13) is recursive, it is clear that

vi(y
t) = wi(y

t−1, yt) = min
ν∈Si(yt)

{
(1− β) · gi(α(yt)) + β · Eν[y][wi(y

t, y)]
}
.5

Now by reversing the argument that led us to (O.15), we see that

vi(y
t) = wi(y

t−1, yt) = min
ν∈Si(yt)

{
(1− β) · gi(α(yt)) + β · Eν [wi(y

t, y)]
}

= (1− β) · gi(α(yt)) + β · Eπ(α(yt))[w̃i(y
t, y)].

Consistency and incentive compatibility in the definition of RDE follow immediately from the

5Note that an element of Si gives a distribution over all future public signals, but for the purposes of this equation,
we only worry about the distribution it induces over the next period’s signal.
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corresponding conditions in the definition of PPED. Thus we have shown that a PPED is also an

RDE. It follows that the RDE and PPED formulations are equivalent.

This equivalence helps us develop the APS-style characterization in the next section.

C.2. APS-style Characterization of PPED Payoffs

As in APS, we view a PPED as a pair (α,w) that specifies an action profile α in period 0 along with

continuation payoffs w(y) for all signals y ∈ Y . The enforceability condition from APS is modified

so that incentives are given by an appropriate within-period minimization.

Definition O.3 (D-enforceable). The pair (α, v) of an action profile and a payoff is D-enforceable

with respect to β and a set W of allowed continuation payoffs if there exists D ∈ D2 and a w(y) ∈W
for each y ∈ Y such that

(i) vi = (1− β)gi(α) + βEπ(α)[y]w̃i(y),

(ii) αi ∈ arg maxα′i(1− β)gi(α
′
i, α−i) + βEπ(α′i,α−i)[y]w̃i(y), and

(iii) the triple (w, w̃,D) is consistent.

Definition O.4. For any set W ⊆ R2,

BD(β,W ) ≡
{

(1− β)g(α) + βEπ(α)[y]w̃(y) : (α, v) is D-enforceable with respect to W
}
.

We say a set W is D-self generating (D-SG) if W ⊆ BD(β,W ).

Lemma O.1. If W is bounded and D-SG, then W ⊆ ED(β).

Proof. We show that any v ∈W can be supported as an RDE. Since v ∈W , there exists (α,w,D)

that D-enforces v. In particular,

v = (1− β)g(α) + βEπ(α) [w̃(y)]

with w(y) ∈W . Since W is self-generating, for each v(y0) = w(y0) there exists (α(y0), w(y0), D(y0))

with w(y0, y1) ∈ Y which enforces v(y0). Iterating this process forward, we will have a sequence

{(α(yt), w(yt), D(yt))}t≥1. Since v(yt−1) is D-enforced by (α(yt−1), w(yt−1), D(yt−1)) and W is a

bounded set (so that the w(yt) are bounded), this exactly shows that the constructed sequence

{(α(yt), w(yt), D(yt))}t≥1 is an RDE and thus a PPED by Theorem O.1.

As in APS, we see that ED(β) is the largest fixed point of the BD(β, ·) operator.

Lemma O.2. ED(β) = BD(β,ED(β)).

Proof. The fact that ED(β) ⊆ BD(β,ED(β)) follows trivially from the recursive structure of the

PPED. In particular, after any y0 the continuation strategies are again a PPED. Thus v(y0) ∈ ED(β)

for all y0 ∈ Y . Thus it is clear that ED(β) ⊆ BD(β,ED(β)).

Now note that if v ∈ BD(β,ED(β)), then it is enforceable with continuation payoffs that are

from PPEDs and thus is clearly a PPED. Thus, ED(β) ⊇ BD(β,ED(β)) so that we have the

equivalence.
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C.3. Proof of Theorem 4 (Characterizing the Limit PPED Set)

Proof. The proof of this theorem follows that of Theorem 3.1 in FL very closely. First, we prove

that ED(β) ⊆ QP . Suppose it does not hold. Then, we can find λ ∈ R2, β ∈ (0, 1), and v ∈ ED(β)

so that λ · v ≡ k > k∗A(λ). Let E∗D(β) be the convex hull of ED(β). Let k be the maximal score in

E∗D(β) in direction λ. Note that k > k∗P (β). Since the score function is linear, there exists v ∈ ED(β)

with λ · v = k. Then by the fact that ED(β) ⊆ BD(β,ED(β)), we know that v is enforceable with

continuation values w(y) in ED(β). But, the score k is maximal, so we know that λ · v ≥ λ · w(y).

Hence the value of the programming problem is at least k > k∗P (β), which is a contradiction.

We now move to the second claim. Suppose QP has full dimension and pick a smooth convex

set W in the interior of QP . It is sufficient to prove that for any such set W and any v ∈W there

is an open set U 3 v and a β such that U ⊆ BD(β,W ). This is easy if point v lies in the interior of

W (by using a static Nash equilibrium), so focus on v on the boundary of W . Let λ be the unique

vector orthogonal to the tangent of W at v, let H(λ, k) be the half-space {v′ : λ · v′ ≤ k}, and let

α be an action profile which enforces the score k∗(λ) in direction λ. Then, for some β′ and ε > 0,

(α, v) can be enforced with respect to H(λ, k − ε); that is, in particular,

vi = (1− β′)gi(α) + β′Eπ(α)[y]w̃i(y),

with w(y) ∈ H(λ, k− ε). This holds since the map from w to w̃ is translation-preserving.6 Thus, for

all β′′ ≥ β′, (α, v) can be enforced with respect to the half-plane H(λ, k − β′(1− β′′)/β′′(1− β′)ε)
so that all continuation values are in an κ(1− β′′)-ball around v (for some constant κ > 0), because

the map from w to w̃ is scaling-invariant. As W is smooth, this means that there is some large

β < 1 so that (α, v) is enforceable with respect to continuation values in the interior of W . Moving

around the continuation values in a small neighborhood yields the desired open neighborhood U

containing v.

C.4. Proof of Theorem 5 (Anti-Folk Theorem)

Proof. Suppose there existed an action profile a with g(a) ∈ QD and g(a) on the Pareto frontier of

V ∗. Then, a has full score in some direction λ� 0, that is, kD(a, λ) = λ · g(a). By the definition

of kD in (4), this requires that all continuation values w̃(y) lie on the hyperplane defined by λ, so

λ · w̃(y) = λ · g(a) for all y. This, however, is impossible for values w̃(y) that lie on a positively

sloped line, unless the values are equal, i.e. w̃(y) = w̃(y′) for all y and y′. If continuation values were

equal, then they could not provide any incentives to enforce a, so a would have to be a stage game

Nash equilibrium. This was ruled out in the statement of Theorem 5 and completes the proof.

C.5. Proof of Theorem 6

We first formally define kL and QL.

6By “translation-preserving” we mean that if (w, w̃,D) is a consistent triple, then (w+ e, w̃+ e,D) is also a consistent
triple, where w+ e denotes adding the ordered pair (e1, e2) to each w(y). The only thing one needs to do here is shift
the set of optimal w’s from the score problem k∗(λ) a little bit towards W until v is enforceable. The w̃’s merely
“follow” the w’s.
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Definition O.5 (Linearly Enforceable). A pair (α, v) is said to be linearly enforceable with respect

to (β,W ) if there exists w(y) ∈W lying on a positively sloped line such that

(i) v = (1− β)g(α) + βEπ(α)[y][w(y)] and

(ii) αi ∈ arg maxα′i

{
(1− β)g(α′i, α−i[y]) + βEπ(α′i,α−i)

[w(y)]
}

.

For any set W ⊆ R2, let

BL(β,W ) ≡
{
v = (1− β)g(α) + βEπ(α)[y]w(y) : (α, v) is linearly enforceable with respect to W

}
.

A set W ⊆ R2 is said to be linearly self-generating if W ⊆ BL(β,W ). Let EL(β) be the set of

payoffs of totally linear PPEs. Then, analogously to Lemma O.1, we have

Lemma O.3. If W is bounded and linearly self-generating then W ⊆ EL(β).

As before, we also have EL(β) = BL(β,EL(β)) so that EL(β) is the largest fixed point of the

BL operator. Using this APS characterization, we get a corresponding programming problem. For

a strategy profile α and a direction λ ∈ R2, define kL(α, λ, β) as the value of the program

sup
v,w(y)

λ · v

s.t. v = (1− β)g(α) + βEπ(α)[y]w(y)

vi = (1− β)gi (ai, α−i) + βEπ(ai,α−i)[y]wi(y) ∀ai ∈ suppαi

vi ≥ (1− β)gi (ai, α−i) + βEπ(ai,α−i)[y]wi(y) ∀ai ∈ Ai
λ · v ≥ λ · w(y) ∀y ∈ Y
w(y) lies on a line with slope in (0,∞).

(O.16)

Define k∗L(λ, β) ≡ supα kL(α, λ, β).7 As before kL(α, λ, β) is independent of β by a standard scaling

argument. We can show as before that if QL is defined analogously to QD in Theorem 4, i.e.,

QL ≡
⋂
λ∈R2

{
v ∈ R2 : λ · v ≤ k∗L(λ)

}
, (O.17)

then the analogous result to Theorem 4 holds as well.

We now prove Theorem 6. We do this in three steps. First, we prove that EL(β) ⊆ ED(β),

then that QL ⊆ QD, and finally that for any payoff profile vNE ∈ R2 of the stage game, QD ∩ {v ≥
vNE} ⊆ QL.

7Programs (4) and (O.16) may bear resemblance to the program suggested in Fudenberg, Levine, and Takahashi
(2007) (FLT), since we have an additional constraint on the continuation payoffs. Note, however, that the results
in this section are not simply applications of FLT. FLT computes the limit set of payoffs from A0-PPEs, which
place constraints on the actions allowed in equilibrium after any public history. The programs in our setup place
restrictions on the continuation payoffs that do not map to simple restrictions on actions. A difference between totally
linear PPEs and strongly symmetric PPEs is important here. The method in FLT applies to strongly symmetric
PPEs since the same restriction on actions can be placed after each public history; for totally linear PPEs, since the
slope and intercept of the continuation values can be different at each history, there is no such restriction on actions
that applies globally after each public history.
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Step 1. Choose v ∈ EL(β) and let σ be a linear PPE with payoff v. Let α be the action in the first

period. Let w(y) be the continuation payoffs after signal y realizes. Then note that w(y) ∈ EL(β)

since any subgame of a linear PPE is also a linear PPE. Now choose w̃(y) = w(y) and back out the

correspondence D from the consistency requirement so that (w, w̃,D) are consistent. Finally, since

no player has an incentive to deviate in the first period of σ we know that

αi ∈ arg max
ai

(1− β)gi(ai, α−i) + βEπ(ai,α−i)[y][wi(y)].

Now, since w ≡ w̃, this is exactly says that (α, v) is D-enforceable by (w, w̃,D). This shows that

EL(β) ⊆ ED(β).

Step 2. To show QL ⊆ QP , we simply compare Programs (4) and (O.16). Fix α. Let (v, {w(y)})
be feasible in (O.16). Then, setting w̃(y) = w(y) and determining D from (3) gives us a feasible set

(v, {w(y)}, D) in (4) since w(y) already lie on a line of positive slope. Thus, kD(α, λ, β) ≥ kL(α, λ)

and thus k∗D(λ) ≥ k∗L(λ) for all λ, meaning QL ⊆ QD.

Step 3. We first prove the following helpful lemma.

Lemma O.4. If (w, w̃,D) is consistent, w(y) ∈W for all y ∈ Y , and W is convex and meet-closed

(i.e., the meet of any set of points in W is also in W ), then w̃(y) ∈W for all y ∈ Y .

Proof. We already know that {w̃(y)} is linear with a positive slope. Hence the points are Pareto-

ranked. If {w̃(y)} is a singleton then Di(y) = ∆(Y ) for all y ∈ Y , and thus w̃(y) =
∧
{w(y)}y∈Y ∈W .

Now suppose {w̃(y)} has at least two distinct points. Let w̃(y0) be the Pareto-worst point. Then

we know that Di(y0) = ∆(Y ), so that we still have

w̃(y0) =
∧
{w(y)}y∈Y ∈W,

since W was assumed to be meet-closed. Now let w̃(y1) be the Pareto-best point, and let Y ′ ⊂ Y
be the set of signals such w̃(y) = w̃(y1) for only y ∈ Y ′. Then we know that Di(y) = ∆(Y ′) for all

y ∈ Y ′. But then using the definition of w̃ we exactly have

w̃(y′) =
∧
{w(y)}y∈Y ′ ∈W

when y′ ∈ Y . Thus, w̃(y1) ∈W as well. All other points of w̃ lie in a line between w̃(y0) and w̃(y1),

both of which lie in W . Since W is convex, we have the result.

Now we prove Step 3. Suppose either λ1 ≥ 0 or λ2 ≥ 0. Fix α and consider a triple (v, {w(y)}, D)

that is feasible in Program (4). Since the half plane H(λ, λ · v) ≡ {w′ ∈ R2 : λ · w′ ≤ λ · v} is

meet-closed, Lemma O.4 says that w̃(y) ∈ H(λ, λ · v) for all y as well. It follows that (v, {w̃(y)})
is feasible in Program (O.16), meaning kL(α, λ) ≥ kD(α, λ), or k∗L(λ) ≥ k∗D(λ). For λ1 < 0 and

λ2 < 0, we know that k∗L(λ) ≥ vNE , since vNE is supported by a Nash equilibrium.
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To conclude the proof of Theorem 6, note that

L(vNE) ⊆
⋂

{λ:λ1<0 and λ2<0}

H(λ, λ · vNE) ∩
⋂

{λ:λ1≥0 or λ2≥0}

H(λ, k∗D(λ))

⊆
⋂
λ

{
w′ ∈ R2 : λ · w′ ≤ k∗D(λ)

}
= QL.
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