
Forward Induction and Dynamic Optimization
under Uncertainty∗

Katherine Hauck and Tiemen Woutersen

September 10, 2023

Abstract

Backward induction is a “workhorse” to solve dynamic optimization prob-
lems. However, this technique assumes full information and works less well
when an individual learns through updating prior beliefs or test results. Infor-
mation sets and beliefs tend to change over time, and it is helpful when dynamic
optimization techniques allow for these changes. Our motivating example is a
doctor who wants optimal treatment for their patients. Over time, the doctor
learns more about the patients, i.e. the doctor updates their prior beliefs, and,
the doctor lets treatment depend on tests. This information uncertainty pre-
vents a standard application of backward induction. To solve this problem, we
integrate the function of interest with respect to the distribution conditional
on the parameters and then integrate again with respect to the prior beliefs.
We allow for both updating prior beliefs and future treatments that depend on
future tests, and we show that this technique is feasible in many contexts.
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1 Introduction

Information sets and beliefs tend to change over time, and this may complicate dy-

namic optimization problems. In particular, backward induction, the “workhorse”

of dynamic optimization, assumes full information and works less well when an indi-

vidual learns through updating prior beliefs or through test results. Our motivating
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example is a doctor who wants optimal treatment for their patients. Over time, the

doctor learns more about the patients, i.e. the doctor updates their prior beliefs,

and, furthermore, the doctor lets treatment depend on test results. The information

uncertainty from prior beliefs and future test results prevents a standard application

of backward induction. To allow for future treatments that will depend on future

tests, we integrate the function of interest with respect to the distribution (condi-

tional on the parameters) and then integrate again with respect to the prior beliefs.

In particular, we specify the distribution of the outcomes as a vector function of the

parameters. We show that the technique we propose is feasible in many contexts

beyond optimal treatment plans by doctors.

Suppose that the results of a medical test determine the subsequent treatment of a

patient. This situation causes what is called an “endogeneity problem” in economics:

the subsequent treatment depends on the test results, so the subsequent treatment

cannot be taken as given. This type of endogeneity problem makes a standard appli-

cation of backward induction difficult because the outcome of the test is only known

in the future. A central feature of backward induction is that one calculates the

subsequent costs from certain states. However, in Bayesian learning, the subsequent

costs may be uncertain and the knowledge about these costs depends on the prior

decisions. We illustrate this using an example.

One way to deal with the uncertainty of future events is to have a prior belief about

the probability of the future event and to employ Bayesian analysis. However, this

method creates a tension if one also uses backward induction. In particular, while

backward induction requires later period information to calculate prior period val-

ues, Bayesian updating uses prior period information to make later period decisions.

We show that in cases of dynamic optimization with information uncertainty, our

methodology, which combines prior beliefs and forward induction, may make these

optimization problems solvable. Further, we show that our method is an effective

way to deal with endogenous paths, such as treatments that depend on test results,

because forward induction can incorporate learning about tests and, more generally,

parameter uncertainty. The method we propose also solves the endogeneity problem

described above in a larger class of maximization of expected utility in sequential

decision problems.
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1.1 Related Literature

This paper relates to several strands of literature. First, this paper builds upon

the dynamic discrete choice literature which incorporates beliefs and learning into

the model. Ackerberg (2003) creates a related dynamic discrete choice model with

beliefs and uses this model to generate predictions in an advertising and consumption

setting. Crawford and Shum (2005), Darden (2020), and Mira (2007) all create models

in which the priors are known to the researcher. Crawford and Shum (2005) apply

their model to prescriptions in the pharmaceutical industry. Darden (2020) applies

his stochastic dynamic model to smoking behavior. Mira (2007) implements his model

with respect to fertility decisions that may impact infant mortality. Covert (2015)

applies a model which includes learning under uncertainty to oil extraction. In a game

theory context, Kamenica and Gentzkow (2011) introduce Bayesian persuasion and

show that a posterior is Bayes plausible if the expected posterior probability equals

the prior predictive distribution.

This paper also relates to Bayesian decision making in medicine. Freedman and

Spiegelhalter (1992) apply Bayesian analysis, with particular attention to the choice

of priors, to a clinical trial for six different treatments of colorectal carcinoma. Insua

et. al (2020) analyze Bayesian design, including both parametric and nonparametric

designs, for life tests and maintenance problems like knee replacements. Ashby and

Smith (2000) consider the decision-making process of pregnant women deciding to

take folic acid supplements. The choice to take folic acid supplements depends on

the uncertain likelihood of a neural tube defect in the fetus, and Ashby and Smith

model this uncertainty in a Bayesian framework. Müller et al. (2007) propose an

algorithm that approximates an infinite dimensional optimal decision rule by a finite

dimensional decision rule.

2 Proposition and Examples

The uncertainty facing a doctor or another decision maker includes parameter un-

certainty, which can be formalized using Bayesian analysis. Further, the outcome

of interest may depend on future tests or other intermediate outcomes. We call the

cases of parameter uncertainty or intermediate outcome uncertainty “information un-
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certainty.” Such information uncertainty may prevent the application of backward

induction as a tool for solving dynamic optimization problems. We find the following

procedure to be feasible and efficient in the sense that it uses all information.

We write the function of interest without conditioning on intermediate outcomes.

Next, we integrate the function of interest with respect to the distribution conditional

on the parameters and then integrate it again with respect to the prior belief. In

simple cases (see the survival function in example 4), this integration is equivalent to

integrating with respect to the prior predictive distribution. However, in example 1,

our procedure is not equivalent to integrating with respect to the prior distribution.

Further, our calculations do not require the priors to be updated for every outcome,

and this feature will be helpful in the examples below.

Proposition: Backward induction may not be feasible in dynamic optimization prob-

lems with information uncertainty. However, in such cases, forward induction and

Bayesian learning may still be feasible.

We prove the proposition by stating examples of the impracticality of backward

induction (example 3) and of the feasibility of forward induction in all examples.

Example 1: Medical Treatment

Let Y ∈ {0, 1} denote whether a medical treatment is a success. Further, the

probability of a success is p and the prior on p is uniform on the interval [0,1].

At t = 0, the doctor wants to know the probability of a successful treatment.

Suppose the test results, which can inform treatment decisions, are only available at

t = 1. Let W denote the test result, where W ∈ {0, 1}. Let P (W = 1) = p
2
, and

P (W = 0) = 1 − p
2
. When the doctor observes the test result W , they can update

their prior. Suppose that the treatment is done when W = 1 and the treatment is

not done otherwise. At t = 0, the probability of a successful treatment is∫ 1

0

p

2
· p dp =

1

6
.

Note that the prior predictive distribution of Y (using just the prior on p) is not

helpful to solve the optimization problem here because the test and the outcome of

the operation both depend on the same unobserved p.

4



Begin at t = 0

Y1 Y2

Z1 Z2

End at t = 3

A

A

B

B

0

0

B A

Figure 1: City Distances Example

Example 2: Traveling between Cities (or Health Outcomes)

Figure 1 shows a simple example which can be understood as depicting the cost

of traveling between different cities. At t = 0, the agent has a prior belief about

the travel costs A and B, and they choose between traveling to city Y1, which incurs

cost A, and traveling to city Z1, which incurs cost B. Let A|α ∼ N(α, 1) and let

B|β ∼ N(β, 1), where π(α) ∼ N(0, 1) and π(β) ∼ N(0, 1). The prior beliefs are

independent. Further, A|α and B|β are independent. Going to a Yi city always

incurs cost A, and going to be Zi city always incurs cost B, where i ∈ {1, 2}. The

priors do not imply whether α or β is lower, so without loss of generality, assume

that the agent first chooses to travel to Y1. When A is large, in particular larger than

the threshold τ , then the agent will opt to incur the cost B in the second period.

Therefore, the total cost for traveling from “Begin” to “End” in Figure 1 is

Cost = A+ 1(A < τ) · A+ 1(A > τ) ·B.

In expectation, this cost is

E(Cost) =

∫ τ

−∞

∫ τ

−∞
{a+ 1(a < τ) · a+ 1(a > τ) · b}f(a)f(b) da db.

The prior predictive distribution of A is f(a) =
∫∞
−∞ ϕ(a − α)ϕ(α) dα, where ϕ(·)

is the density of the standard normal. This result gives that the prior predictive
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Figure 2: City Distances Example with Learning

distribution is normally distributed with mean zero and variance two, which yields

E(Cost) =

∫ τ

−∞
a · f(a) da =

∫ τ

−∞

a · exp{−a2

4
}

√
2 ·

√
2π

da

=
− exp{−a2

4
}

√
π

∣∣∣∣τ
−∞

=
− exp{−τ2

4
}

√
π

.

Choosing τ = 0 minimizes the expected cost.

We can extend the above example by adding cities Y3, Y4, Z3, and Z4. Let A
∗ be

the cost of traveling to Y3 (Y4) from Y2 or Z2 (Y3 or Z3), and let B∗ be the cost of

traveling to Z3 (Z4) from Y2 or Z2 (Y3 or Z3). Let A
∗ and B∗ be known. In this case,

forward induction requires fewer calculations than backward induction.

Example 3: Exploring while Traveling

The value of learning can also be put into this framework, which is illustrated in

Figure 2. Let the priors on α and β and the distribution of A|α and B|β be the same

as in example 2. In a learning context, when an agent has an opportunity to learn

more about the costs A and B, they may do so in order to minimize the expected

total cost, even if this learning means they may incur a higher cost in the immediate

period.

In the example illustrated by Figure 2, the choice of path depends on information

learned along the way, which complicates backward induction. This complication

arises because backward induction necessarily uses later period information to cal-

culate prior period values, while Bayesian updating uses prior period information to

make later period decisions.
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In this example, the priors on α and β do not imply a choice between Y1 or Z1.

Suppose the individual first travels to Y1 at cost A. If the cost A is below a threshold

τL, then this individual will travel to Y2 at cost A, and finally to Y3 at cost A. Note

that learning the value A is informative beyond updating a prior on α. However, if

the cost A is above the threshold τL, then the individual will travel from Y1 to Z2

and will learn B. The last decision of the individual depends on whether A or B is

smaller. The following function gives the cost of traveling,

H(A,B, τL) = A+ 1(A ≤ τL) · 2 · A+ 1(A > τL) · {B +min(A,B)}.

In this example, we can use the prior predictive distribution because the priors on α

and β are independent. In the appendix, we show that the expectation of H(A,B, τL)

as a function of τL can be written as

H(τL) = −{1 + Φ(τL/
√
2)}

exp{− τ2L
4
}

√
π

− 2
1− Φ(τL)√

2π
.

The choice of the threshold τL that minimizes the expected cost is τL = −0.39. This

example shows that learning A and B is informative beyond updating the priors on α

and β, as in the previous example. Further, learning B is useful in this case because

A and B appear in the final decision. The value derived from this learning causes the

threshold τL to be lower than the threshold τ = 0 in the last example, illustrating

the value of increasing the information set.

This example also illustrates the challenge for backward induction. For backward

induction, one needs to calculate the travel cost from Y2 onward. This travel cost

depends on B. However, one does not know if B is known or whether to rely on the

prior on B. The same holds for the travel cost from Z2 onward. Forward induction

does not have this issue, and that is why we recommend it in dynamic models with

learning.

Example 4: Survival Function

The following example illustrates forward induction in continuous time. Let T

denote the survival time of a patient, and let ST (t|α) denote the survival function
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conditional on the parameter α, where

ST (t|α) = Pr(T ≥ t|α) = exp(−αt).

Let π(α) denote the prior on α at t = 0, where π(α) = exp(−α). Then the prior

predictive survival function is

ST (t) =

∫ ∞

0

ST (t|α)π(α) dα

=

∫ ∞

0

exp(−αt) · exp(−α) dα

=
1

t+ 1
.

Suppose that the patient is still alive at time τ . Then the patient and their doctor

may also be interested in the survival function that conditions on survival up to τ.

Survival up to τ is an endogenous event because this survival is correlated with T .

Fortunately, Bayesian analysis that uses the survival functions and the initial prior

can easily handle this endogeneity problem. Let Y denote the survival time after τ .

Then this survival function is

SY (y) = Pr(T ≥ τ + y|T ≥ τ)

=
Pr(T ≥ τ + y)

Pr(T ≥ τ)
.

Using the survival function above yields

SY (y) =
ST (τ + y)

ST (τ)

=
τ + 1

τ + 1 + y
.

In this example, it is feasible to update the prior for every τ. Note, however, that

the calculations above do not require this.
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3 Conclusion

In many decision-making scenarios, agents experience information uncertainty and

learn new information over time. An example of such a scenario is when doctors are

uncertain about a patient’s diagnosis and learn more information via test results. In

this case, doctors have a prior belief about a patient’s diagnosis and update this belief

based on the results of the test. Such information uncertainty presents a problem in

backward induction.

We propose a method to address this issue. Instead of using backward induction

to solve dynamic optimization problems, which include updating prior beliefs, we

propose an algorithm which uses forward induction. We specify the distribution of

the outcomes as a vector function of the parameters, and the function of interest is

integrated with respect to the distribution conditional on the parameters and then in-

tegrated again with respect to the prior. In simple cases, this integration is equivalent

to integrating with respect to the prior predictive distribution. This approach solves

the endogeneity problem of later period decisions depending on earlier period infor-

mation because forward induction can incorporate learning about parameter values.

Intuitively, this algorithm (using forward induction) performs better than backward

induction in some cases of dynamic optimization with learning because both forward

induction and Bayesian updating use prior period information to make later period

decisions. In particular, the method we propose can be applied to solve dynamic

optimization problems in which agents learn through test results, such as doctors

updating their beliefs based on medical tests and using those updated beliefs to make

treatment decisions. Another example is a manager making investment decisions and

learning more about revenue potential and costs.
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A Appendix

As in the main text, consider the function

H(A,B, τL) = A+ 1(A ≤ τL) · 2 · A+ 1(A > τL) · {B +min(A,B)}

= A+ 1(A ≤ τL) · 2 · A+ 1(A > τL) ·B + 1(A > τL) · 1(B < A) ·B

+1(τL < A < B) · A.

In this case, we can use the prior predictive distribution because the priors on α

and β are independent. These prior predictive distributions are normal distributions

with mean zero and variance two; let f(a) and f(b) denote the densities of these

distributions. When evaluating E{H(A,B, τL)}, note that E(A) = E(B) = 0 and

E(B|A) = 0 for all A so E{1(A > τL) ·B} = 0. Thus, two terms in the last equation

have expectation zero. Further, note that

E{1(A ≤ τ) · A} =

∫ τL

−∞
a · f(a)da =

∫ τL

−∞
a
exp{−a2

4
}

√
2
√
2π

dα

= −
exp{−a2

4
}

√
π

|τL−∞ = −
exp{− τ2L

4
}

√
π

.

Similarly, we can calculate the expectation of 1(A > τL) · 1(B < A) · B by first

calculating that an expectation conditional on A. In particular,

E{1(B < A) ·B|A} = −
exp{−A2

4
}

√
π

E{1(A > τL) · 1(B < A) ·B} = E[1(A > τL) · E{1(B < A) ·B|A}]
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= E[1(A > τL) · {−
exp{−A2

4
}

√
π

}]

= −
∫ ∞

τL

exp{−a2

4
}

√
π

exp{−a2

4
}

√
2
√
2π

da

= − 1√
2π

∫ ∞

τL

exp{−a2

2
}

√
2π

da

= −1− Φ(τL)√
2π

.

Further, we calculate the expectation of 1(τL < A < B) · A by first conditioning on

B and B ≥ τL. This conditional expectation is

E{1(τL < A < B) · A|B,B ≥ τL} =

∫ B

τL

a · f(a)da =

∫ B

τL

a
exp{−a2

4
}

√
2
√
2π

dα

= −
exp{−a2

4
}

√
π

|BτL

= −
exp{−B2

4
}

√
π

+
exp{− τ2L

4
}

√
π

.

This gives

E{1(τL < A < B) · A|B} = 1(B ≥ τL) · [−
exp{−B2

4
}

√
π

+
exp{− τ2L

4
}

√
π

].

Next, consider the unconditional expectation,

E{1(τL < A < B) · A} = E[E{1(τL < A < B) · A|B}]

= E[1(B ≥ τL) · {−
exp{−B2

4
}

√
π

+
exp{− τ2L

4
}

√
π

}]

Note that we showed above that E[1(A > τL) · {−
exp{−A2

4
}√

π
}] = −1−Φ(τ)√

2π
so

E[1(B ≥ τL) · {−
exp{−B2

4
}

√
π

}] = −1− Φ(τL)√
2π

.
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Further,

E[1(B ≥ τL) · {
exp{− τ2L

4
}

√
π

}] = {1− Φ(τL/
√
2)}{

exp{− τ2L
4
}

√
π

}.

Combining the last two equations yields

E{1(τL < A < B) · A} = −1− Φ(τL)√
2π

+ {1− Φ(τL/
√
2)}{

exp{− τ2L
4
}

√
π

}.

We can now consider the function H(τL) = E{H(A,B, τL)},

H(τL) = E[1(A ≤ τL) · 2 · A+ 1(A > τL) · {B +min(A,B)}]

= −2
exp{− τ2L

4
}

√
π

− 1− Φ(τL)√
2π

− 1− Φ(τL)√
2π

+ {1− Φ(τL/
√
2)}{

exp{− τ2L
4
}

√
π

}

= −
exp{− τ2L

4
}

√
π

− 2
1− Φ(τL)√

2π

− Φ(τL/
√
2){

exp{− τ2L
4
}

√
π

}

= −{1 + Φ(τL/
√
2)}

exp{− τ2L
4
}

√
π

− 2
1− Φ(τL)√

2π

The argument that minimizes H(τL) is approximately τL = −0.39.
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