Robust Contracting for Search

with Théo Durandard (UIUC) and Boli Xu (lowa)

November 21, 2023

A Tale of Two Distilleries

(a) Mystic Farm \& Distillery

(b) Buffalo Trace

- "We will pay you for a call option with strike price $\$ \times$ " - Buffalo Trace
- "No. Why try new things if there's no upside?" - Mystic

Question and Preview of Results

- Q: How to finance / incentivize innovation with little knowledge of the alternatives
- Results focus on debt contracts
- Properties: minimal distortion, co-monotonicity of payoffs
- Provide the principal's best payoff guarantee

Literature

- Finance-oriented literature: Townsend (1979), Innes (1990), Chang (1990), Krasa and Villamil (2000), Attar and Campioni (2001), Hebert (2018), Min (2020)...
- Robust contracting: Hurwicz and Shapiro (1978), Bergemann and Morris (2005), Chassang (2013), Carroll $(2015,2019)$, Kambhampati et al (2023), ...
- Contribution: linking dynamic moral hazard (search) to debt contracts

Model Setup

- Principal (Investor) and Agent (Entrepreneur)
- Principal controls access to a "room" (production or distribution capability)
- Agent enters the room... does something...
and exits the room holding a prize (expected profits from an idea)
- Prior to entry, principal writes a contract which describes how the prize is split
- Goal: write a contract that maximizes the principal's take of the prize

The Room Where It Happens: Weitzman Search

- Inside the room are boxes (potential ideas or projects)
- Agent performs unmonitored Weitzman search (with recall)
- Box: (c, F)
- Cost $c \in \mathbb{R}^{+}$, unverifiable and privately borne by the Agent
- Prize $x \in X:=\left[0, X^{\max }\right]$
- $F \in \Delta(X)$, atomless and full support

Weitzman Search

- Agent's optimal strategy:
- Order boxes from highest to lowest index
- Stop if prize exceeds remaining indices
- Index r (reservation value) of (c, F) solves

$$
c=\int[x-r]^{+} d F(x)
$$

- with contract w, the index r^{w} solves

$$
c=\int\left[w(x)-r^{w}\right]^{+} d F(x)
$$

\Rightarrow Generates distribution over X

Timing and Information

- Principal knows $\mathcal{A}_{0}=\left(c_{0}, F_{0}\right)$
- Wage contract $w: X \rightarrow \mathbb{R}^{+}$
- Limited liability: $0 \leq x \leq w(x)$
- Agent learns set of projects $\mathcal{A}=\left\{\left(c_{i}, F_{i}\right)_{i=0}^{k}\right\}$
- $\mathcal{A} \supseteq \mathcal{A}_{0}$
- Agent searches over \mathcal{A}, presents one prize x to principal
- Principal wants a payoff guarantee against all $\mathcal{A} \supseteq \mathcal{A}_{0}$

Principal's Robust Objective

Given contract w and realized boxes \mathcal{A}, Principal's payoff is

$$
\begin{aligned}
V_{P}(w \mid \mathcal{A}):= & \mathbf{E}_{\sigma(\mathcal{A}, w)}[x-w(x)] \\
& \sigma(\mathcal{A}, w): \text { agent-optimal search given }(\mathcal{A}, w)
\end{aligned}
$$

Principal evaluates contracts based on their payoff guarantee

$$
V_{P}:=\sup _{w} \inf _{\mathcal{A} \supseteq \mathcal{A}_{0}} V_{P}(w \mid \mathcal{A})
$$

Desirable Features of Contracts

- What leads a contract to perform well regardless of \mathcal{A} ?
- Some potentially desirable features:
- no incentive for the Agent to stop early - "minimal distortions"
- if agent prefers \mathcal{A} to \mathcal{A}^{\prime}, then principal does too - "co-monotonicity"

Two Robustness Properties

- w is order-preserving if for all $\left(c_{1}, F_{1}\right)$ and $\left(c_{2}, F_{2}\right)$,

$$
r_{1} \geq r_{2}>0 \quad \& \quad r_{2}^{w}>0 \Longrightarrow r_{1}^{w} \geq r_{2}^{w}
$$

- w does not change the order of projects (so long as they are still profitable)
- w is aligned if for all \mathcal{A}_{0} where $\mathbf{E}_{F_{0}}[w(x)]-c_{0} \geq 0$,

$$
\mathcal{A} \supseteq \mathcal{A}_{0} \Longrightarrow V_{P}(w \mid \mathcal{A}) \geq V_{P}\left(w \mid \mathcal{A}_{0}\right)
$$

- Enlarging the set of projects always benefits the principal

Debt Contracts

- A z-debt contract is the contract where $w(x)=[x-z]^{+}$
- Below z, the Principal takes everything
- Above z, the Agent gets $x-z$ and is the "residual claimant"

Equivalence

Proposition: TFAE

1. w is order-preserving
2. w is aligned
3. w is a debt contract

Key Observation

- Reservation value: $\quad c=\int[x-r]^{+} d F(x)$
- z-Debt contract: $\quad w(x)=[x-z]^{+}$
- Debt contract exactly mirrors the index!
- If w is a z-debt contract, then for any box, $\quad r^{w}=r-z$

Intuition for Equivalence

Proposition: TFAE

1. w is order-preserving
2. w is aligned
3. w is a debt contract
with a z-debt contract, $r^{w}=r-z$
Proof sketches:

- $(3) \Longrightarrow$ (1) immediate
- $(3) \Longrightarrow(2)$ coupling argument; what if \mathcal{A}_{0} not searched?
- Converses: by construction; a new project $\left(c^{\prime}, \delta_{x^{\prime}}\right)$ crowds out existing ones

Back to Robust Optimization

$$
\begin{aligned}
V_{P}:=\sup _{w} & \inf _{\mathcal{A} \supseteq \mathcal{A}_{0}} \mathbf{E}_{\sigma}[x-w(x)] \\
& \sigma: \text { agent-optimal search given }(\mathcal{A}, w)
\end{aligned}
$$

Optimality of Debt Contracts

- Theorem: Let r_{0} be the index of $\left(c_{0}, F_{0}\right)$.

The r_{0}-debt contract is robustly optimal.

- Proof sketch:
- By alignment, the worst-case is $\mathcal{A}=\mathcal{A}_{0}$
- When $\mathcal{A}=\mathcal{A}_{0}$, the Principal gets first-best because $r_{0}^{w}=0$

Comments

- Debt contract $=$ giving Agent a call option with strike price z
- Result holds regardless of principal's allowable mechanisms
- e.g., screening the agent, multiple disclosures
- Debt contract weakly dominates selling the firm
- Limited liability not so important for this result

Linear Contracts?

- Consider $w(x)=\alpha x$, where $\alpha=\frac{c_{0}}{\mathrm{E}_{F_{0}}[x]}$
- When $\mathcal{A}=\mathcal{A}_{0}$, principal gets first best....but worst-case payoff is 0
- Agent strictly prefers $(0, \epsilon)$ and then stopping for any $\epsilon>0$
- Linear contracts are strictly suboptimal
- In this environment, worry about low-value safe projects crowding out risky ones
- Remark: Principal's payoff guarantee is higher when the agent can search

Uniqueness?

- Not quite.
- Recall, V_{P} is guarantee from the optimal debt contract
- Proposition: A contract w is robustly optimal if and only if

1. $w(x)=0$ for all $x \leq V_{P}$
2. $\mathbf{E}_{F_{0}}[w(x)]=c_{0}$

- Every optimal contract has a minimal debt level

Takeaways \& Extensions

- Ongoing work and extensions:
- When $\left|\mathcal{A}_{0}\right|>1$, a mixture of debt and equity may be optimal
- Agent's strategic disclosure of \mathcal{A}_{0}
- Takeaways
- Debt contracts provide payoff guarantees when moral hazard is dynamic
! Optimal contract resembles index - natural extensions to other settings

THANK YOU!

