Regulating Disclosure: The Value of Discretion

Udayan Vaidya

udayanv@u.northwestern.edu

November 21, 2023

Motivation

- Contracting is personalized
 - ex: credit, insurance, digital marketplaces
- Concern: info + market power \Rightarrow price discrimination
- Information regulation
 - Prohibit / require disclosure (redlining regulation) "preventative"
 - Info ownership & voluntary disclosure (GDPR) "redistributive"
- Which is better?

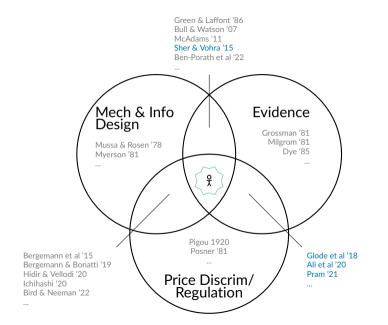
This Paper: Regulating Information Disclosure

- Prohibiting & requiring disclosure \approx info design
- Focus: voluntary disclosure + market power
- Q1: How does voluntary disclosure affect the distribution of surplus?
- Q2: When is voluntary disclosure a good policy tool?
- Framework: regulator with one instrument
 - Consumer's disclosure to monopolistic seller (mech designer)
 - Seller responds to regulation

Results

- Voluntary disclosure \rightarrow bargaining power \rightarrow CS $\uparrow \times$
- Friction: seller tradeoff of incentivizing disclosure vs. optimally pricing
- A1: voluntary disclosure may lead to lowest CS
 - Externality: some consumers benefit at expense of others
- A2: (conditions) voluntary is weakly dominated
 - for any regulator objective
- Policy: seller's response to frictions may undermine policy goals

Literature

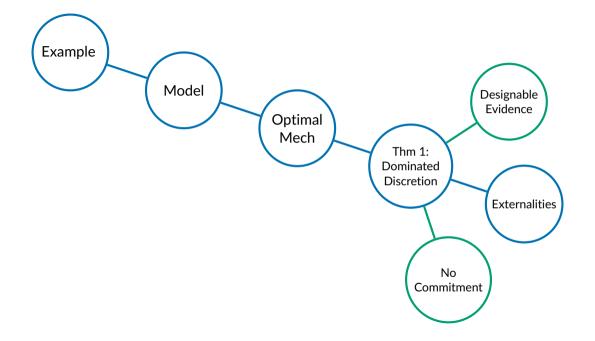


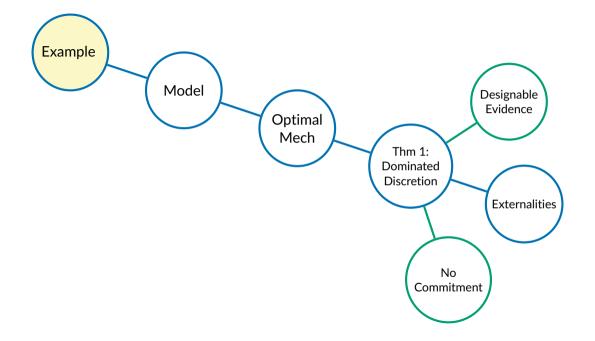
Contribution

- Known: \exists equilibrium where voluntary disclosure > no disclosure
- This paper:
 - Welfare effects of voluntary disclosure with market power
 - Disentangles two effects

$$(voluntary - none) = \underbrace{(voluntary - required)}_{Info Control} + \underbrace{(required - none)}_{Contractible info}$$

- (secondary) methodological, "no value to commitment" results



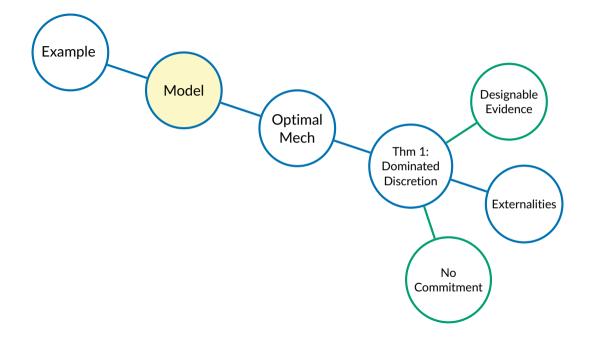


- Locals and MBA Students
- Value $\theta \in \{1, 2, 3\}$
- Student ID cards
- $R(\theta) = revenue$

		$\theta = 1$	$\theta = 2$	$\theta = 3$
Total	Pr	3 7	3 7	$\frac{1}{7}$
	R	1	<u>8</u> 7	<u>3</u> 7
Locals	Pr	3 7	0	$\frac{1}{7}$
	R	4 7	<u>2</u> 7	<u>3</u> 7
MBAs	Pr	0	$\frac{3}{7}$	0
	R	<u>3</u> 7	<u>6</u> 7	0

IDs	Locals	MBAs			$\theta = 1$	$\theta = 2$	heta= 3
Prohibited	2	2	Total	Pr	3 7	<u>3</u> 7	$\frac{1}{7}$
Required	1	2		R	1	<u>8</u> 7	<u>3</u> 7
Voluntary	2	2	Locals	Pr	3 7	0	$\frac{1}{7}$
				R	4 7	<u>2</u> 7	<u>3</u> 7
			MBAs	Pr	0	<u>3</u> 7	0
				R	<u>3</u> 7	<u>6</u> 7	0

IDs	Locals	MBAs				$\theta = 1$	$\theta = 2$	heta= 3
Prohibited	2	2		Total	Pr	3 7	<u>3</u> 7	<u>1</u> 7
Required	1	2			R	1	<u>8</u> 7	3 7
Voluntary	3	2		Locals	Pr	3 7	0	<u>1</u> 7
- Voluntary is dominated				R	4 7	<u>2</u> 7	<u>3</u> 7	
- Externality			MBAs	Pr	0	$\frac{3}{7}$	0	
- Ex-post suboptimality				R	3 7	<u>6</u> 7	0	



Model: Timing & Summary

Seller (she) + Buyer (he) with private valuation and evidence

- 1. Disclosure regulation
- 2. Seller commits to mechanism to maximize revenue
- 3. Buyer's report + disclosure \rightarrow trade and transfer

Unit-Demand Buyer: Info and Preferences

- Valuation: $\theta \in \Theta = [\underline{\theta}, \overline{\theta}] \subseteq \mathbb{R}$
 - Probability of trade, transfer: $(q, t) \in [0, 1] \times \mathbb{R}$
 - Payoff: $q \cdot \theta t$
- Evidence: set of realizations *E* with "null" element $e_0 \in E$
 - Student IDs: $E = (e_0, e_{MBA})$
- Joint distribution over $(\Theta \times E)$
 - Probability p(e)
 - Posterior beliefs $G(\cdot|e) \in \Delta(\Theta)$

Regulation

- Today: "Opt-out" policies
- Regulation is a correspondence $\gamma : E \to 2^E$, where $\gamma(e) \subseteq \{e, e_0\}$
- $\gamma(e)$: the set of allowable disclosures when agent has e
 - Voluntary: $\gamma(\mathbf{e}) = \{\mathbf{e}, \mathbf{e}_0\}$
 - Mandated: $\gamma(e) = \{e\}$
 - Prohibited: $\gamma(\mathbf{e}) = \{\mathbf{e}_0\}$

Seller's Mechanism

- WLOG: direct mechanism, truthful reports & full disclosure

$$q: \Theta \times E \rightarrow [0, 1]$$
 $t: \Theta \times E \rightarrow \mathbb{R}$

- Seller problem:

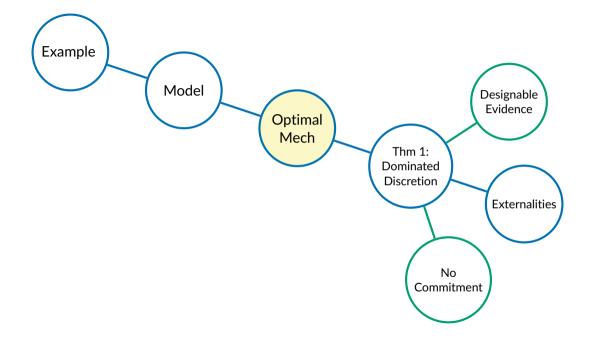
$$\begin{array}{ll} \max_{q,t} & \mathbb{E}_{(\theta,\boldsymbol{e})}[t(\theta,\boldsymbol{e})] \\ s.t. & \mathsf{IC}(\theta,\boldsymbol{e}) & \forall \theta, \boldsymbol{e} \\ & \mathsf{IR}(\theta,\boldsymbol{e}) & \forall \theta, \boldsymbol{e} \end{array}$$

- Mechanism induces outcome $O: \Theta \to \Delta([0, 1] \times \mathbb{R})$
- Regulator preference \succeq over outcomes

Model: Timing & Summary

Monopoly seller & unit-demand buyer (θ , e)

- 1. Disclosure regulation
- 2. Seller commits to mechanism to maximize revenue
- 3. Buyer's report + disclosure \rightarrow trade and transfer



Optimal Mechanism Characterization

- Involuntary disclosure (no discretion): posted price for each $e \in E$
- Voluntary disclosure: ?
- Construction Steps:
 - 1. Characterize extreme points of IC mechanisms
 - 2. Identify seller's value function and recover optimal prices 😶

Analysis: Simplifying the Problem

- Consider $E = (e_0, e_1)$ and voluntary disclosure
- Notation: $q_i(\theta) := q(\theta, e_i)$ and $t_i(\theta) := t(\theta, e_i)$
- Sufficient: two kinds of IC constraints, no double-deviations
 - 1. "within *e*": (θ, e) doesn't misreport to $(\theta', e) \Leftrightarrow$ envelope + monotonicity

$$U_i(heta) = heta oldsymbol{q}_i(heta) - t_i(heta) = U_i(ar{ heta}) + \int_{ar{ heta}}^{ heta} oldsymbol{q}_i(oldsymbol{s}) doldsymbol{s}$$

2. "across *e*": (θ, e_1) doesn't misreport to $(\theta, e_0) \Leftrightarrow U_1(\theta) \ge U_0(\theta)$

Program

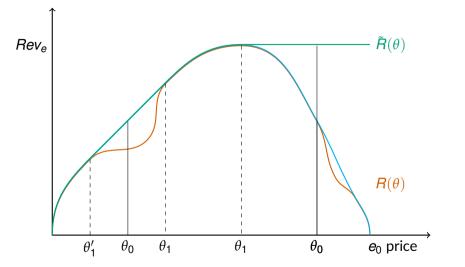
- Remaining: $(U_i(\cdot))_{i=0,1}$
 - $\begin{array}{ll} \max_{U_i(\cdot)} & \mathbb{E}[\text{virtual surplus}] \\ \textbf{s.t.} & \textbf{U}_i(\cdot) \text{ increasing, convex, and } \textbf{U}'_i \in [0, 1] \\ & \textbf{U}_1(\theta) \geq \textbf{U}_0(\theta) \quad \forall \theta \\ & \textbf{U}_0(\underline{\theta}) \geq \textbf{0} \end{array}$

- Friction
- x Usual approach: study dual
- Obs: objective is linear and constraint set is convex \rightarrow extreme points
 - Disclosure constraint related to a "majorization" constraint

Optimal Mechanism with Voluntary Disclosure

- No disclosure (e_0): posted price
- Disclosure ($e \neq e_0$): alternative posted price with probabilistic discount
 - = randomization over at-most two prices

Thought Experiment: Max Revenue Given Non-Disclosure Price



Seller's Value Function

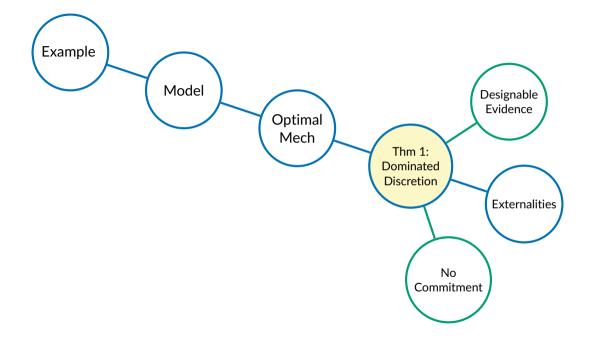
- $R_{e}(\theta) := \text{posted-price revenue} := \theta(1 G(\theta \mid e)) \cdot p(e)$
- $\tilde{R}_{e}(\theta) :=$ monotone concave envelope of R_{e}
 - Smallest concave and non-decreasing function above Re
- **Prop:** $\tilde{R}_{e}(\theta_{0})$ is the max revenue from *e* given a fixed price θ_{0}
- Corr: Seller's revenue = $\max_{\theta_0} R_0(\theta_0) + \sum_e \tilde{R}_e(\theta_0)$
- ! Simplifies to 1-dimensional maximization

Empirical Consequences

- Voluntary disclosure \rightarrow price variation (randomization)
- Empirically: mixed findings on price discrimination vs price variation
 - Price variation is a result of price discrimination
 - Comparing average prices insufficient
 - Observed prices not ex-post optimal

Disparate Effects on Consumer Surplus

- Consumer surplus: compared to a full-disclosure benchmark
 - Consumers without evidence (weakly) harmed
 - Consumers with evidence (weakly) benefit
- ightarrow Data ownership may hurt privacy-conscious consumers through prices



No Value to Discretion in Regular Environments

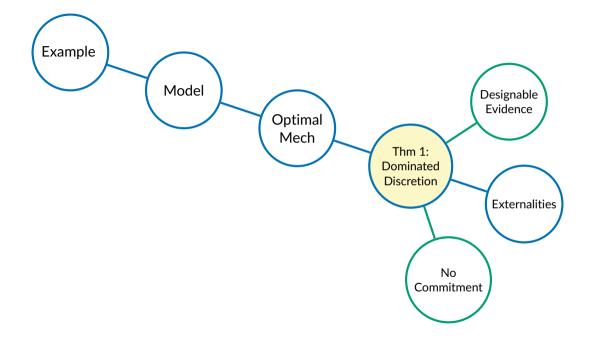
- [Assumption] Regularity: R_e is concave for all $e \in E$
- Non-discretionary: $\Gamma^{ND} = \{\gamma : |\gamma(e)| = 1 \quad \forall e \in E\}$
- Discretionary: $\Gamma^{D} = \Gamma \setminus \Gamma^{ND}$
- $O(\gamma)$: outcome in seller-optimal mechanism under γ
- Thm: Assume regularity. All outcomes are achievable without discretion.

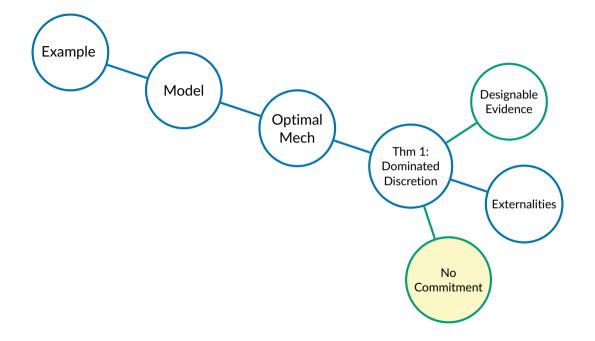
$$igcup_{\gamma\in\Gamma^{\mathcal{D}}}\mathcal{O}(\gamma)\subseteqigcup_{\gamma\in\Gamma^{\mathcal{ND}}}\mathcal{O}(\gamma)$$

- Intuition: concavity \implies no randomization & ex-post optimality

Consequences of Regularity

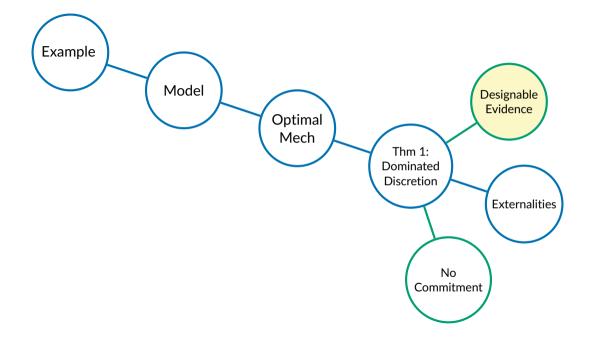
- Corr: for any regulator \succeq , WLOG no discretion
 - No additional benefit to giving consumers the option to disclose
 - \Rightarrow Should focus on what must be disclosed (contractible)
- Consumers w/o evidence (e₀) worst-off under voluntary
- In irregular cases, voluntary disclosure may be uniquely optimal *realized*
 - Necessary: R_e non-concave for some $e \neq e_0$
- Interpretation: seller acts as-if some disclosure is required [Formal]





The (No-)Value of Commitment

- Disclosure game
 - 1. Buyer makes cheap-talk report θ and disclosure e
 - 2. Seller best-responds with a posted price
 - 3. Buyer chooses to purchase or not
- Thm: (Regularity) \exists pure-strategy eqm with same revenue as optimal mech
- Thm: (R_0 concave) \exists mixed-strategy eqm with same revenue as optimal mech
 - "No value to commitment" result based on distributional assumptions Pend



Regulator-Designed Evidence

- Regulator may be able to design the information content of evidence
 - Index inputs and weights (e.g., credit scores)
 - Coarsen or refine existing information
- Fix prior $F \in \Delta(\Theta)$
- Regulator can additionally choose *E*, and joint dist over $(\Theta \times E)$
- $\mathcal{G} :=$ all feasible posterior beliefs distributions

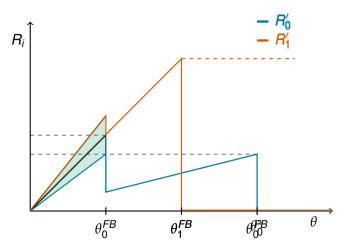
Theorem 2: WLOG Full Disclosure

- Full disclosure: $\gamma^{F}(e) = \{e\}$ for all $e \in E$
- Theorem: Full Disclosure is WLOG (no regularity)

$$\bigcup_{\boldsymbol{G}\in\mathcal{G}}\boldsymbol{O}(\boldsymbol{\gamma}^{\boldsymbol{F}},\boldsymbol{G})=\bigcup_{\boldsymbol{\gamma}\in\boldsymbol{\Gamma}}\left(\bigcup_{\boldsymbol{G}\in\mathcal{G}}\boldsymbol{O}(\boldsymbol{\gamma},\boldsymbol{G})\right)$$

- \supseteq by construction
 - Key: information rents to higher θ and e replicated by changing joint distribution
 - Challenge: need to preserve prior distribution of buyers
 - Approach: work directly in space of price-revenue curves Example Skip

Sketch: Voluntary to Full Disclosure

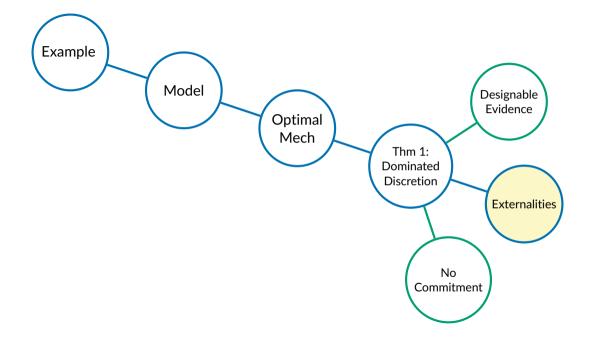


To Check:

- Bayes plausibility
- Valid CDF operations
- θ_1^{FB} optimal

Interpretation

- Evidence design and disclosure regulation are substitutes
 - ! Not true in all environments 🕨
- Full disclosure \implies market segmentation
- Voluntary disclosure \implies *endogenous* market segmentation



Externalities Under Voluntary Disclosure

- Dye ('85) evidence structure & voluntary disclosure
 - $E = \Theta \cup \{e_0\}$; precise *identifying* evidence for each θ
 - with prob $p(\theta)$, type θ has e_{θ} and otherwise e_0
- Prop: if $p' \ge p$, all consumers are (weakly) worse under p' than p
 - Any subset of having more evidence hurts all consumers
- \Rightarrow Banning disclosure (p = 0) always improves CS over voluntary disclosure
 - Extends to general SM preferences $u(x, \theta)$, $v(x, \theta)$

Conclusion + Ongoing Work

- Disclosure regulation to monopolistic seller
- Seller's response to additional frictions may undermine policy goals
- Info ownership & voluntary disclosure not a laissez faire solution
- Ongoing work:
 - Limited regulator knowledge 🕩
 - Endogenous evidence acquisition
 - Disclosure regulation + other policy instruments

THANK YOU!



Appendix

General Preferences

- Preferences: $u(x, \theta) t$, $v(x, \theta) + t$
- Supermodularity: $u_{x\theta} \ge 0$
- $x^{FB}(\theta) := \operatorname{argmax}_{x} u(x, \theta) + v(x, \theta)$ increasing in θ
- Dye evidence: with prob $p(\theta)$, the type can be *perfectly* disclosed
- Prop: With voluntary disclosure, consumer surplus decreases in *p*
- Banning disclosure (p = 0) improves CS over *any* voluntary disclosure \rightarrow Back

General Evidence Structures

- Evidence: poset (E, \triangleright)
- $e' \triangleright e$ means e' can be misreported as e
- There exists an \triangleright -minimal element of *E* called e_0
- $L(e) := \{e' \in E : e \triangleright e'\}$
- Regulation $\gamma: E \rightarrow 2^E$:
 - (Feasibility) $\gamma(\mathbf{e}) \subseteq L(\mathbf{e})$
 - (Transitivity) ${\it e}''\in \gamma({\it e}')$ and ${\it e}'\in \gamma({\it e})$ implies ${\it e}''\in \gamma({\it e})$
 - (Normality) ${\it e}', {\it e}'' \in \gamma({\it e})$ implies ${\it e}' \lor {\it e}'' \in \gamma({\it e})$
- Theorems 1 and 2 hold.

 Back

Failure of Theorem 2

	x	У	Ζ
θ_1		(5,0)	(2,2)
θ_2		(1,1)	(2,2)

Table: Payoffs under which Theorem 2 fails

- Suppose type θ_1 can claim to be θ_2 but not conversely
- Optimal: $\theta_1 \rightarrow \frac{1}{2}y + \frac{1}{2}z, \quad \theta_2 \rightarrow x$
- But, under any mandated disclosure policy, z is never optimal Back

Example: Optimal Discretion

Peet's 2.0: Valuable Discretion

- $\Theta = \{1, 2, 3\}$

- Student IDs
- $R(\theta) = \text{posted price revenue}$

_			$\theta = 1$	$\theta = 2$	$\theta = 3$
_	Total	Pr	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
_		R	1	4 3	1
	Locals	Pr	0	$\frac{1}{3}$	0
_		R	$\frac{1}{3}$	<u>2</u> 3	0
	MBAs	Pr	$\frac{1}{3}$	0	$\frac{1}{3}$
		R	<u>2</u> 3	<u>2</u> 3	1

Peet's 2.0: Valuable Discretion

Opt mech. p	rices					$\theta = 1$	$\theta = 2$	$\theta = 3$
IDs	Locals	MBAs		Total	Pr	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
105	LOCAIS	MDAS			R	1	$\frac{4}{3}$	1
Prohibited	2	2					1	
Required	2	3		Locals	Pr	0	$\frac{1}{3}$	0
Requireu					R	$\frac{1}{3}$	$\frac{2}{3}$	0
Voluntary	2	$(\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 3)$			_		-	1
Development			MBAs	Pr	$\frac{1}{3}$	0	$\frac{1}{3}$	
- Randomization				R	<u>2</u> 3	<u>2</u> 3	1	

- Voluntary max. efficiency
- MBA CS \uparrow (w/ ϵ change) \rightarrow back

Peet's 2.0: Voluntary to Full Disclosure

$$e_0$$
 e_1 Voluntary2 $(\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 3)$

same outcome w mandate:

T.

-
$$e_0: (\frac{1}{6}, \frac{1}{3}, \frac{1}{3})$$

- $e_1: (\frac{1}{6}, 0, 0)$

		$\theta = 1$	$\theta = 2$	$\theta = 3$
prior	Pr	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
	R	1	4 3	1
e_0	Pr	0	$\frac{1}{3}$	0
	R	$\frac{1}{3}$	<u>2</u> 3	0
<i>e</i> ₁	Pr	$\frac{1}{3}$	0	$\frac{1}{3}$
	R	<u>2</u> 3	<u>2</u> 3	1