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Abstract

A profound characteristic of field cancerization is alterations in chromatin packing. This study 

aimed to quantify these alterations using electron microscopy image analysis of buccal mucosa 

cells of laryngeal, esophageal, and lung cancer patients. Analysis was done on normal-appearing 

mucosa, believed to be within the cancerization field, and not tumor itself. Large-scale electron 

microscopy (nanotomy) images were acquired of cancer patients and controls. Within the nuclei, 

the chromatin packing of euchromatin and heterochromatin was characterized. Furthermore, the 

chromatin organization was quantified through chromatin packing density scaling. A significant 

difference was found between the cancer and control groups in the chromatin packing density 

scaling parameter for length scales below the optical diffraction limit (200 nm) in both the 

euchromatin (p = 0.002) and the heterochromatin (p = 0.006). The chromatin packing scaling 

analysis also indicated that the chromatin organization of cancer patients deviated significantly 
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from the control group. They might allow for novel strategies for cancer risk stratification and 

diagnosis with high sensitivity. This could aid clinicians in personalizing screening strategies for 

high-risk patients and follow-up strategies for treated cancer patients.
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upper aerodigestive tract cancer

Introduction

Head and neck (HN), esophageal, and lung cancer are all frequently occurring types of 

tumors (Ferlay et al., 2015; Siegel et al., 2015; Torre et al., 2015). They are often referred 

to as upper aerodigestive tract (UADT) tumors. Worldwide, an estimated more than three 

million new cases were diagnosed in 2018, and more than two million patients died of the 

consequences (Global Cancer Observatory). These three tumor types share the two most 

important risk factors for their development: smoking and for the HN region and esophagus 

also alcohol (Domper Arnal et al., 2015; Malhotra et al., 2016; Marur & Forastiere, 2016). 

Tobacco and alcohol use cause physiological and mutagenic effects on the exposed mucosa 

of the UADT. Unfortunately, a large percentage of UADT tumors are diagnosed in the 

advanced stages of development, often limiting the treatment options and survival chances of 

diseased patients (Kollarova et al., 2007; Horeweg & de Koning, 2014; Siegel et al., 2015). 

Diagnosing more tumors in an early stage of development could have a significant positive 

impact (Hall et al., 1999; Pennathur et al., 2013; Siegel et al., 2015). Patients with early 

stage UADT tumors could benefit from complete surgical resection or curative radiotherapy, 

whereas the treatment of patients with high-stage tumors is sometimes not with curative 

intent (Horeweg & de Koning, 2014).

Early tumor detection by screening asymptomatic high-risk patients holds the potential to 

increase the survival rate of lung cancer patients substantially. Upper aerodigestive tract 

tumors, in theory, appear ideally suited to such screening because of (a) the association of 

identifiable risk factors, (b) the survival advantage of early diagnosis, and (c) the significant 

morbidity and mortality associated with the disease. At present, there are no national 

screening programs for HN, esophageal, or lung cancer in Western countries. Some issues 

screening initiatives are facing is the low sensitivity for early stage tumors, the substantial 

population of at-risk persons, and the risk of overdiagnosing due to false-positive results 

(Domper Arnal et al., 2015; de Koning et al., 2020).

A novel yet effective approach to cancer screening is focused on detecting changes 

in apparently histologically normal tissue described as field cancerization (FC). Field 

carcinogenesis is the notion that a multitude of physiological and nanoscale architectural 

alterations affect an entire organ or tract before ultimately resulting in a focal neoplasm 

in one area of the organ (Roy et al., 2010). There is evidence that FC of HN, lung, 

and esophageal cancers encompasses the entire UADT (Kopelovich et al., 1999). This 

concept is supported by the high incidence of second primary tumors in patients with UADT 

tumors (Krishnatreya et al., 2013; van de Ven et al., 2019). The FC tissue alterations occur 
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superficially in the epithelial layer, the basal membrane, and the vascularized papillary 

layer of the lamina propria. They include alterations in the microvasculature and the tissue 

nanoscale architecture, such as the organization of the chromatin, the cytoskeleton, and the 

size and structure of cell nuclei and organelle (Subramanian et al., 2009b; Evers et al., 

2012). The accurate detection of FC could potentially be used to pre-screen for UADT 

tumors (Kopelovich et al., 1999; Sidransky, 2008; Angadi et al., 2012). Optical techniques 

have proven to be sensitive to detect the changes in the nano-organization of tissue (Roy et 

al., 2011). The detection of FC could potentially be used as a risk-stratification method to 

decrease the population size of persons at risk for UADT tumors.

A technique to assess and visualize the nano-anatomy of tissue, in our case, buccal mucosa, 

is electron microscopy (EM). One of the downsides of EM imaging at high resolution is 

typically a small field of view of a given tissue sample, which makes it difficult to correlate 

changes at high magnification to a wide tissue scale. To tackle this problem, we applied 

large-scale EM (nanotomy), which allows for ultrastructural examination of tissue, cells, 

organelles, and macromolecules in a single dataset (Kuipers et al., 2016; de Boer et al., 

2020). A nanotomy dataset combines thousands of conventional EM images. Moreover, 

the software allows zooming in and out of the image from a total overview to nanoscale 

resolution in a “Google Earth” approach. Using this technique, the large areas of tissue are 

scanned and presented online. A significant advantage of nanotomy over conventional EM is 

unbiased data acquisition, presentation, and sharing at high resolution (Kuipers et al., 2016; 

de Boer et al., 2020).

A promising target to analyze as a possible alteration due to FC is the quantification 

of chromatin organization in the cell nucleus. As the carrier of genetic information, 

chromatin forms and regulates the nano-environment in which transcription happens 

(Phillips-Cremins et al., 2013). Higher-order chromatin organization is essential in 

regulating gene transcription, and abnormalities in such an organization are associated 

with a variety of diseases, including neurological disorders, autoimmune diseases, and 

cancer. While nuclear blebbing and chromatin condensation (>200 nm) has been identified 

by optical microscopy as a hallmark for carcinogenesis, little is known about chromatin 

organization before this stage of progression of cancer at an even smaller length scale 

(Rizvi et al., 2015). Due to the optical diffraction limit of approximately 200 nm, it requires 

super-resolution optical microscopy, nanoscale-sensitive optical spectroscopy, or microscopy 

techniques that utilize different illumination sources with a wavelength smaller than light, 

such as neutrons, electrons, and X-ray (Gerchman & Ramakrishnan, 1987; Le Gros et al., 

2016).

High-resolution electron tomography experiments with DNA-specific staining showed that 

chromatin consists of disordered polymers with a diameter ranging from 5 to 24 nm with 

a differential packing density throughout the nucleus (Ou et al., 2017). A classical polymer 

is expected to exhibit self-similar, fractal behavior across all length scales, and the fractal 

dimension is determined by the balance between polymer–polymer and polymer–solvent 

interaction as well as constraint-processes such as, in the case of chromatin, loop formation 

in part driven by extrusion, transcriptional, and lamin-associated processes (Flory, 1949; 

De Gennes & Gennes, 1979). For chromatin, it has been reported that the chromatin 
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polymer forms spatially segregated packing domains with sub-Mb genomic size, sub-200 

nm physical size, and internal fractal structure (Huang et al., 2020; Virk et al., 2020b). 

The packing configuration plays an important role in regulating gene transcription by 

dictating chromatin accessibility and the diffusion rate of transcriptional reactants such 

as transcription factors (Li et al., 2020; Virk et al., 2020a). Importantly, shown through 

computational modeling, optical studies, and EM studies, the fractal dimension of chromatin 

packing domains has a non-monotonic relationship with active transcription. It also plays 

a critical role in the regulation of transcriptional plasticity of cells and their access to the 

genomic landscape (Li et al., 2020). A mass fractal can be characterized by a power-law 

spatial autocorrelation function (ACF), ACF ∼ r(D–3), with D being the fractal dimension. 

Previous work has shown that the chromatin of more aggressive tumors exhibits an increase 

in the fractal dimension of the chromatin (Cherkezyan et al., 2014).

In this work, we analyzed normal-appearing buccal mucosa from patients with tumors 

elsewhere in the UADT (larynx, esophagus, and lungs). We hypothesized that the ACF and 

the fractal dimension D of patients with cancer differ from the control group. In order to 

utilize the large-scale EM data, we developed a novel convolutional neural network (CNN) 

to segment the nucleus from the tissue bed in grayscale images. We further quantified the 

fractal dimension D of the euchromatin and the heterochromatin independently to investigate 

ultrastructural alterations in the buccal mucosa cells of patients with UADT cancers and 

control subjects. If proven that cancer patients have an altered chromatin packing in the 

mucosa adjacent to their tumor, this may be a step toward the development of novel and 

sensitive tools for cancer screening.

Materials and Methods

Subjects

This study was approved by the Medical Ethics Committee of the Erasmus MC 

(MEC-2017–551). Patients were recruited from the departments of “Otorhinolaryngology 

and Head and Neck Surgery,” “Gastroenterology and Hepatology,” and “Pulmonology” of 

the Erasmus MC Cancer Institute. Patients with UADT malignancies and non-oncologic 

control patients were included. In this study, we also include the lungs under the “umbrella 

term” UADT. The oncologic group consisted of patients with primary and untreated HN (all 

laryngeal cancer), esophageal, and lung cancer (all subsites and stages). The non-oncologic 

control group consisted of patients with chronic rhinosinusitis with or without nasal polyps, 

chronic obstructive pulmonary disease, or gastrointestinal diseases. The absence of occult, 

unexpected malignancies in this group was confirmed using an endoscopic examination or 

imaging. Patients with a medical history of malignancies were excluded. All patients signed 

an informed consent form before enrollment in this study. Patient and tumor-specific data 

such as date of birth, sex, substance abuse, tumor stage, and tumor type were collected using 

the electronic medical patient record.

Biopsy Procedure

The buccal mucosa biopsies were performed at the outpatient clinics. The biopsies were 

performed on normal-appearing mucosa and at least 5 cm from the primary tumor. First, 
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local buccal mucosa anesthesia was given with a submucosal injection of approximately 

1 mL xylocaine 2%—adrenaline 1:80.000. Second, the buccal mucosa was slightly turned 

“inside out” manually to have optimal visualization to perform a 2 mm Ø punch biopsy. The 

sample was cut from the subcutaneous tissue with a curved iris scissor without lifting the 

sample with a pair of forceps or tweezers. In this way, no external pressure was applied on 

the biopsy, maintaining the mucosa organization as optimally as possible before placing the 

biopsy in a fixative. Finally, the pressure was applied to the biopsy location with a singular 

gauze for approximately 1 min. Sutures were not needed.

Sample Preparation, Image Acquisition, and Automated Annotation

The sample preparation and image acquisition protocols were described in detail previously 

(Kuipers et al., 2016). In short, fresh buccal mucosa samples were immediately fixated 

in small vials in 3 mL solution of 0.5% paraformaldehyde, 2% glutaraldehyde, and 0.1 

M sodium cacodylate (pH 7.4) and stored at 4°C. They were washed in 0.1 M sodium 

cacodylate and postfixed in 1% osmium tetroxide and 1.5% potassium ferrocyanide. The 

samples were dehydrated in ethanol by incubations in increasing ethanol concentrations. 

They were then embedded in epoxy resin and sectioned with a diamond knife to ultrathin 

sections of ∼80 nm. Sections were mounted on formvar coated copper grids and stained with 

2% uranyl acetate in water and Reynold lead citrate.

Image acquisition was performed with a Supra 55-VM scanning EM (Carl Zeiss AG, 

Oberkochen, Germany) with ATLAS software (Fibics Incorporated, Ottawa, Canada). We 

used scanning EM with an external scan generator capable of acquiring multiple large 

fields of view at high resolution using scanning transmission EM detection. One image 

generated this way is equivalent to the fields of view of ∼100 transmission EM images, 

which significantly reduces the amount of stitching needed. Samples were recorded at a 2.5 

nm pixel size. Scans were stitched, and raw datasets were rendered as HTML files.

Nucleus Segmentation Using a CNN

The CNN employed to segment the nucleus from the large-scale STEM images in this work 

was initially trained with TEM cheek cell electron micrographs by Dravid (2019) (Fig. 1). 

The CNN model is based on the Deep Residual U-Net, a residual learning framework for 

substantially deeper networks. It has shown significant success in segmentation tasks such as 

road extraction (Zhang et al., 2018). The Deep Residual U-net relies on an encoder–decoder 

structure proposed in the original U-Net encoder–decoder model, whereby an image is 

downsampled to its features of interest via the left branch of the model as seen in Figure 1a, 

and then upsampled through the right branch with skip connections propagating details from 

the original image to ultimately produce an accurate segmentation mask (Ronneberger et al., 

2015). The inclusion of residual blocks allows the network to be deeper, leading to higher 

accuracy and less need for additional training data (He et al., 2016).

Each residual block consists of a sequence of batch normalization (BatchNorm), rectified 

linear unit (ReLU), and 3 × 3 convolution. Batch normalization reduces variance by scaling 

down the intermediate input values between operations. This speeds up training by reducing 

jumps in these values and allowing the optimization process to be smoother. The ReLU 
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operation adds nonlinearity to the model to allow for learning more complex features. This 

is an activation function, meaning that it maps intermediate values between operations in the 

model based on a nonlinear function, allowing the model to better discriminate pixels that 

may belong to the amorphous nucleus. The truncated ResBlock of Figure 1 uses 64 filters in 

each convolution. These individual filters learn to detect specific features of the image, such 

as curves or corners. The next two ResBlocks use convolutions with 128 and 256 filters, 

respectively, followed by another block using 512 filters. The decoder proceeds with the 

opposite pattern: 256, 128, then 64 filters. Overall, these convolutions learn features of the 

input TEM image that will contribute to the segmentation.

The network was trained for 30 epochs. By the end of every epoch, each training example 

has been fed into the network. Based on these training examples, the network adjusts the 

parameters of the internal operations in order to learn a better mapping between each 

micrograph and its corresponding segmentation. Multiple epochs, or passes through the 

entire dataset, are required for the optimization process to iteratively adjust the parameters. 

The number of epochs was set to 30 in order for the model to learn an effective mapping but 

avoid a neural network’s tendency to “memorize” non-generalizable oddities specific to the 

training examples. This phenomenon, known as “overfitting,” occurs when training for too 

many epochs. Two input micrographs were fed in simultaneously at a time to train the model 

faster than with one input. However, the amount of video memory limits how many inputs 

could be processed at a time to two. The Adam optimization algorithm was then employed 

to adjust the parameters in order to converge to an optimal segmentation model (Kingma & 

Ba, 2014). The learning rate was set to 10−5 to control the magnitude of each optimization 

step and the standard binary cross-entropy loss function was used for monitoring the effect 

of this optimization process on adjusting the model’s performance.

Accuracy was evaluated using the Dice coefficient, which compares which pixels were 

correctly predicted to be the nucleus between the original input and generated segmentation 

mask. Using 300 training examples, an accuracy of 96% was achieved. This was 

implemented in the Keras library with a Tensorflow backend on a machine equipped with an 

NVIDIA GTX 1080, Core i7 CPU, and 32 GB of RAM.

The electron micrographs containing cheek buccal mucosa cells were manually selected 

for downstream nucleus segmentation. Limited by the available RAM, the images were 

first downsized by a factor of 4 before feeding them to the CNN. The output masks were 

upsampled to recover the original resolution. Active contour algorithm (Matlab, MathWorks) 

was used to refine the boundary of the nucleus mask based on the morphological features in 

the original EM images.

Spatial Autocorrelation Function

STEM images of ∼80 nm thin sections were used in the analysis of chromatin packing 

density alterations between cancer patients and controls. The bright-field contrast in STEM 

attenuates following Beer’s law,

I(x, y) = I0e−σρ(x, y)t, (1)
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where I(x, y) is the STEM bright-field image intensity distribution, I0 is the incident beam 

intensity, σ is the absorption coefficient of the biological sample to the incident beam, ρ(x, 
y) is the density distribution, and t is the section thickness. In our experiment, I0 and t were 

controlled to be constant for all images, and we assumed that the biological sample has a 

relative constant σ given current resolution. As a result, only the chromatin density ρ(x, y) 

contributes to the final image intensity I(x, y). To obtain the density fluctuation function, 

ρΔ(x, y), we took the negative logarithm of the STEM images and then subtracted the mean 

value from the image. At the same time, the incident beam intensity I0 is canceled out.

Next, the two-dimensional ACF is calculated from the density fluctuation obtained from the 

STEM images using the Wiener–Khinchine relation (Cherkezyan et al., 2014):

Bρ(x, y) = F−1 F ρΔ(x, y) 2 , (2)

where F−1 and F are the inverse Fourier and the Fourier transform, respectively, and the 

ρΔ represents the fluctuations in the chromatin density. To minimize the noise, a rotational 

average of Bρ(x, y) was taken to obtain the final form of the ACF, Bρ(r), representing 

the correlation of chromatin density as a function of spatial separation r. Notice that 

mathematically, a fractal structure can be characterized by a power-law ACF, Bρ(r) ∼ 
rD−3, with D being the fractal dimension. To analyze the chromatin packing structure from 

the experimental ACF obtained, we fit the ACF to the Whittle–Matérn (WM) family of 

correlation functions (Rogers et al., 2014). WM is defined as the product of a power-law and 

a modified Bessel function of the second kind (K(D–3)/2) of the order (D–3)/2:

Bρ(r) = Aρ
r
ln

D − 3/2
KD − 3/2

r
ln

. (3)

In (3), Aρ, ln, and D are fitting parameters. Aρ is the density fluctuation amplitude; ln 

is correlation length indicating the characteristic length of chromatin heterogeneity; the 

dimension D controls the shape of ACF, such that D →∞ for Gaussian; D = 4 for 

exponential; 3 < D < 4 for stretched exponential; and D < 3 for power-law shape of the 

ACF. Particularly, when D < 3, the biological medium can be considered a mass fractal and 

D takes the special meaning of the fractal dimension.

Each nucleus was segmented using the CNN. As heterochromatin and euchromatin are 

genetically distinct and have a different affinity to osmium and uranyl/lead staining, they 

were segmented from the nucleus using automated grayscale thresholding. In special cases 

where the chromatin in the cell nucleus was composed primarily of the euchromatin, we 

did not conduct ACF analysis for the heterochromatin, as the resulting ACF would not have 

been representative of the true statistics of the chromatin packing. Mean ACF was calculated 

from all the cells of the same patient for both euchromatin and heterochromatin. For each 

mean ACF, the D value for euchromatin and heterochromatin was obtained by WM fitting 

from r = 79 nm to r = 200 nm in correspondence to the section thickness. In particular, the 

fitting range of D is constrained by 5/3 ≤ D ≤ 4, the boundary values represent physiological 

values reported in published work (Cherkezyan et al., 2014). In addition, the D value was 
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also calculated for each cell. Overall, 253 cells from 20 patients were analyzed (control: 

Npatient = 6, Ncell = 68; lung cancer: Npatient = 1, Ncell = 10; esophagus cancer: Npatient = 6, 

Ncell = 78; HN cancer: Npatient = 7, Ncell = 97). Figure 2 summarizes the methods utilized for 

the image analysis and evaluating D.

Statistical Analysis

The quantitative variables were non-normally distributed, and thus, the values were 

expressed as the median and interquartile range (IQR). Differences between groups were 

analyzed with the Mann–Whitney U-test. Categorical data were reported as frequencies and 

percentages and differences between groups were analyzed using the chi-squared test or 

Fisher’s exact test. For ACF analysis, a two-sample Kolmogorov–Smirnov (K-S) test was 

performed to evaluate the difference of ACF values between the control and cancer groups, 

as the K-S test is sensitive not only the median of the ACFs but also to the shape, which is 

the characteristic of the underlying structure of chromatin packing. For D values calculated 

from mean ACFs per patient, a two-sided Wilcoxon rank-sum test was employed. For D 
values calculated from individual ACF per cell, student t-test was used. Statistical analysis 

was performed using SPSS (IBM Corp., Armonk, NY, USA) and MATLAB (MathWorks, 

Natick, MA, USA). The cut-off for significance was set at p < 0.05.

Results

Large-Scale EM Datasets for Buccal Mucosa Biopsies

Normal appearing buccal mucosa biopsies from 20 patients were included in this study: 

14 patients with cancer (7 HN, 6 esophageal, and 1 lung cancer) and 6 non-oncologic 

controls. Their baseline characteristics are presented in Table 1. There was a non-significant 

difference in the percentage of males between the cancer and control groups (66.7 and 

78.6%). The median age between the cancer and control groups was also similar (69.0 

[IQR 66.0–72.8] versus 62.0 [IQR 57.2–74.5] years). Only the HN cancer group had a 

significantly higher amount of pack years than the control group. Six patients (42.9%) of the 

cancer group had a stage I, two patients (14.3%) a stage II, five patients (35.7%) a stage III, 

and one patient (7.1%) a stage IV carcinoma.

The large-scale EM datasets of the buccal mucosa biopsies are available to view online at 

http://www.nanotomy.org/OA/. The nanotomy images show the non-keratinizing epithelial 

layer of the buccal mucosa and the superficial part of the lamina propria including the 

capillaries. The basal layer is located in between the two layers (Fig. 3).

Nucleus Segmentation Pipeline with a Pre-Trained CNN

Figure 1 shows the implemented residual U-Net architecture. A 640 × 640 × 1 grayscale 

EM image with a cheek cell nucleus is downsampled through convolutions within each 

residual block, ResBloc (Fig. 1b) is employed to obtain a smaller-scale image consisting 

of the features of interest that can benefit the accuracy of the model. The right side of the 

model CNN consists of upsampling operations, which restore the size of the image. The skip 

connections pass fine details, which are lost through downsampling, over to the right side of 
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the network to relay the structure of the STEM micrograph in the final binary segmentation 

mask.

Characterizing Chromatin Packing Using ACF for Cheek Cells in the Control and Cancer 
Groups

We utilized the grayscale image intensity in the STEM micrographs to characterize 

the spatial heterogeneity of chromatin density distribution. We quantified the relative 

magnitudes and length scales of all spatial fluctuations in the degree of chromatin 

compaction via its ACF, Bρ(r). Upon comparison of chromatin density correlation between 

the controls and cases representing various cancers, we have found a qualitative difference 

in chromatin packing at subdiffractional length scales (Figs. 4a, 4b). Using K-S tests, 

we confirmed that the ACFs for the overall control (n = 6) and cancer groups (n = 

14) are statistically significantly different (p < 0.001) for both the euchromatin and the 

heterochromatin at all length scales. The mean ACFs for individual diagnostic groups are 

shown in Figures 4c and 4d.

Quantifying Chromatin Packing Alterations Using Packing Scaling Factor D

We further quantified the chromatin packing scaling D below the optical diffraction limit in 

terms of D by fitting the ACFs to WM-family of functionals (Fig. 5). The fitting range was 

chosen to be from 80 to 200 nm (optical diffraction limit). As the resin sections for STEM 

imaging have a similar finite thickness of around 80 nm, the ACF will overestimate the 

correlation of chromatin density fluctuation below this length scale due to the projection 

average. For the overall control group, we obtained a median D value of 1.72 (IQR 

1.67–1.90) for the euchromatin and 2.24 (IQR 1.67–2.41) for the heterochromatin. For 

the overall cancer group, we obtained a median D value of 2.24 (IQR 2.12–2.48) for 

the euchromatin and 3.00 (IQR 2.52–4) for the heterochromatin. We employed Wilcoxon 

rank-sum to quantify the alteration in D distribution for the control and the cancer groups 

and obtained a significant statistical difference for both the euchromatin (p = 0.002) and 

the heterochromatin (p = 0.005). Particularly, 5/3 < D < 3 is indicative of underlying 

massfractal chromatin structure, D > 3 suggests a non-fractal distribution of chromatin 

density that is consistent with a stretched exponential function. Significantly, we observed 

that cancer patients showed an increase in median packing scaling D by 26.6% for the 

euchromatin, and by 33.9% for the heterochromatin. In addition, the median value of D for 

the heterochromatin of the cancer patients equals 3, suggesting a fundamental alteration in 

chromatin packing, which can have a substantial effect in regulating gene transcription and 

phenotypic plasticity (Virk et al., 2020a). Since a small number of patients were employed 

in the analysis, we further quantified the chromatin packing scaling for every cell within 

each group and evaluated the statistical difference between control patients and cancer 

patients (Figs. 5e, 5f). Overall, we observed a significant difference between chromatin 

packing scaling for the control group (n = 76) and the cancer group (n = 219) in both the 

euchromatin (p = 0.010) and the heterochromatin (p = 0.007).
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Discussion

This study is, to our knowledge, the first to utilize large-scale EM images to investigate 

FC tissue changes associated with cancer of the UADT. We aimed to investigate whether 

these changes could be used to discriminate cancer patients from controls. Utilizing 

spatial correlation function analysis, we characterized chromatin packing below the optical 

diffraction limit and identified significant changes between the control and cancer groups 

in both the euchromatin and the heterochromatin contents. Moreover, we showed that the 

difference in fractal dimensions calculated from the spatial correlation function agrees with 

the well-known hallmarks of cancer but manifested at a much smaller length scale. These 

results highlight that the alterations in chromatin observed in the field of a tumor represent 

an early stage event of carcinogenesis.

Elevated D is a hallmark of cancer cells and has been reported through multiple lines of 

work using Partial-Wave Spectroscopic (PWS) microscopy in colorectal, lung, and breast 

cancers (Subramanian et al., 2009a; Gladstein et al., 2018). From a theoretical perspective, 

the spatial arrangement of chromatin packing affects large-scale gene expression patterns 

through a number of physical regulators, such as chromatin volume concentration, accessible 

surface area, and chromatin packing scaling D (Huang et al., 2020; Virk et al., 2020a). 

Particularly, chromatin with an increased D in the tumor field can select for a higher 

transcriptional and adaptive potential. This ability, in turn, may facilitate the prognosis 

of tumor cells independent of tumor type, stage, demographic factors, and molecular 

transformations (Virk et al., 2020a). Recently, utilizing EM, Cherkezyan et al. reported the 

existence of significant alterations in chromatin packing in the colorectal cancer field in both 

human and animal models (Cherkezyan et al., 2014). They identified a profound shift of 

chromatin organization: the chromatin of cancer subjects had chromatin with a higher fractal 

dimension or, in some cases, adopted a non-fractal configuration, while the control subjects 

had a normal fractal chromatin structure. In the same vein, optical nanosensing showed an 

increase in the fractal dimension of chromatin in the field cancerization associated with a 

variety of malignancies (Bauer et al., 2017). In the present study, we have also identified 

similar alterations in chromatin packing comparing the cancer group with the control group.

A previous series of studies by our group had the same aim as the present study: 

discriminating cancer patients from controls by detecting FC tissue changes (Bugter et 

al., 2018a, 2018b, 2019). In these studies, in vivo multidiameter single-fiber reflectance 

(MDSFR) spectroscopy measurements were performed on the buccal mucosa of a larger 

cohort of UADT cancer patients, including 20 included in the present study. This provides 

an opportunity to compare the EM images analysis results with the scattering results from 

optical spectroscopy. A logical hypothesis would be that an increased D in cell nuclei will 

correlate with an increased power of scattering of light during spectroscopic measurements. 

Though not significantly different, we indeed found a tendency for the scattering power of 

μ’s to be higher for cancer patients. Possibly, this difference was not significant because, 

although the patients included were the same, the measured tissue volumes were not. In the 

EM study, the cell nuclei were segmented and isolated, while in the spectroscopic studies, 

the optical properties of the complete cells of the mucosal top layer were averaged. By 

studying the ultrastructural changes in chromatin organization, it is possible to detect the 
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initial stages of various kinds of cancers. It is important to note that in this work, instead 

of a single cancer model, we assessed three types of cancers and their controls: head/neck, 

esophageal, and lung cancer. The direction of alterations in chromatin packing in terms of D 
is consistent for all cancer groups compared with the control group. This probably reflects 

the fact that these three organs that encompass the UADT all have their embryological origin 

in the early foregut (Metzger et al., 2011). The UADT also encompasses the oral cavity 

which is a predominant and prevalent site of development of (pre)malignancies, because it 

comes into direct contact with many carcinogens.

Although not explored in this work, there are several implications of an increasing D in 

chromatin packing in FC. Besides buccal mucosa cells investigated in this work, there is 

a plethora of different types of cells along the spectrum of differentiation within buccal 

mucosa imaged in the large-scale EM dataset. A similar trend in chromatin packing for basal 

and pickle layers is expected. Therefore, this dataset gives us the opportunity to study the 

effects of differentiation progression on higher-order chromatin organization. It is expected 

that as the phenotypic plasticity decreases during differentiation, the chromatin packing 

scaling would also decrease. Although the CNN was trained to segment the nucleus of 

epithelial cells, transfer learning can be implemented to tune the CNN to adapt quickly to 

other types of cells.

The clinical applicability of the method and results described in the present study will 

probably not be in the shape of a diagnostic tool for routine use. At present, the analysis is 

too time-consuming and not cost-effective. However, our findings did confirm the presence 

of ultrastructural field effect changes in the buccal mucosa of patients with distant UADT 

tumors and that these changes can be used to differentiate them from non-oncologic 

controls. This paves the way for existing optical techniques, like MDSFR spectroscopy 

or PWS microscopy to utilize and quantify these changes so that they may be applied in 

clinical practice. These techniques are easy-to-use, fast, and noninvasive and might be used 

to screen for distant tumors or aid surgeons in achieving adequate tumor resection margins.

There are several limitations to our study design that should be considered. First, the number 

of patients included was limited, and more patients need to be recruited to validate our 

current findings. This was especially true for the lung cancer group with only one patient. 

Second, the segmentation of the euchromatin and the heterochromatin relies solely on the 

EM image intensity. Labeling molecular markers, such as histone modifications, are required 

for a more rigorous and accurate separation of those two compartments. The resin sections 

of tissue biopsy in our study have a finite thickness of ∼80 nm, and projections instead of 3D 

tomography of the sections were used. Due to the intensity averaging along the z-direction, 

the ACFs calculated from the projection images do not reflect the chromatin packing at 

length scales below the thickness of the section, and therefore, restricted our analysis to 

larger length scales. In order to investigate the chromatin alterations at a finer scale, future 

studies can incorporate thinner sections or electron tomography.
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Conclusions

We identify significant quantitative nanoscale alterations in chromatin packing in FC for 

UADT cancers. Through large-scale EM datasets and high-throughput image processing 

using CNN, we confirm that the ultrastructural field effect changes of the nuclear 

organization are a hallmark of cancer. We propose that the CNN segmentation pipeline 

and the downstream nanoscale nuclear abnormalities identified here can be employed as 

biomarkers for FC. The large-scale EM nanotomy datasets combined with semi-automated 

data analysis might overcome previous clinical applicability issues, such as the long duration 

of the analysis. Optical techniques like MDSFR spectroscopy or PWS microscopy could 

also utilize the abnormalities in chromatin packing for the diagnosis and risk stratification of 

cancer.
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Fig. 1. 
Architecture of the CNN employed in segmenting the nucleus. (a) The U-net is one 

classic way to arrange these operations in a logical way for transforming images, that is, 

segmenting, denoising, or performing super-resolution. In a U-net, several convolutional 

blocks with nonlinear functions at the end, referred to as Res-blocks (b) in the figure 

which will be detailed next, are arranged in a sequence. After each block, the image is 

downsampled which allows for convolution to be performed at a higher and higher level in 

the image. After three convolutions and downsamples, the transformed image is then passed 

to the right-hand side of the network and upsampled iteratively. After each upsample, the 

fine details are passed back into the image through a skip-connection before being convolved 

with a new set of filters and output into a binary mask. Figure reproduced from Virk et al. 

(2020b) with permission.
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Fig. 2. 
Workflow of obtaining chromatin packing D from an STEM image of a cheek cell. 

The nucleus is segmented using the CNN trained specifically for this task with electron 

micrographs. The masks for euchromatin and heterochromatin are further created from 

the mask for the nucleus using automatic grayscale intensity thresholding. While the 

heterochromatin is mainly located in the periphery of the nucleus, some penetrates the 

nuclear interior space. On the other hand, the euchromatin primarily distributes in the 

interior of the nucleus. 2D ACF is calculated for both euchromatin and heterochromatin 
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separately, and the rotational average is employed to remove the noise from the ACF curve. 

Mean ACF is obtained by averaging ACFs of individual cells for each patient, and WM 

fitting is used to quantify chromatin packing in terms of D. The fitting range is from r = 

80 nm to r = 200 nm, as the section has a finite thickness of 80 nm, and the ACF curve is 

smoothed for length scales below 80 nm due to projection.
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Fig. 3. 
Nanotomy of buccal mucosa of an esophageal cancer patient. A large area of 0.2 × 

0.4 mm is recorded that 2.5 nm pixel size. This allows to compare histological known 

landmarks up to macromolecular complexes. (a) Overview allows to discriminate layers 

of the epithelium of the mucosa: stratum basale, stratum spinosum, stratum intermedium, 

and stratum superficiale (for reference to the different layers, see Sokol et al., 2015). (b) 

Zooming in allows to recognize a vene, melanocytes (mel), and other mesoscale structures. 

(c) Further zooming discerns other cell types such as an erythrocyte (ery); organelles such 
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as nuclei (N), desmosomes (desm), as well as a desmosome cluster (DC). At the maximum 

resolution, macromolecules such as intermediate filaments (IUF), nuclear pore complexes 

(NPC), as well as euchromatin (euCh) and heterochromatin (htCh) can be identified. Note 

that this is a poor presentation of the data present: all data are available at high resolution 

in zoomable datasets via http://www.nanotomy.org/OA/Bugter2020BOE/index.html. The 

dataset used for this figure is 2016–194. Bars: 100, 10, 1, and 0.2 um.
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Fig. 4. 
Differentiation of control versus cancer cells based on chromatin packing alterations using 

ACF analysis. ACFs for the euchromatin (a) and the heterochromatin (b) for the all control 

(blue) and the all cancer (red) groups show distinct chromatin packing within 80 nm < r 
< 200 nm (purple shaded region) with p < 0.001. The breakdown of ACFs by diagnosis is 

shown in (c) for the euchromatin and (d) for the heterochromatin. The ACFs were calculated 

from averaging the mean ACFs per patient, and the error bars represent the standard error.
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Fig. 5. 
Quantifying chromatin packing alterations using packing scaling D. Mean ACF per patient 

was employed in calculating D within the length scales under the diffraction limit. For all 

control and cancer patients, the difference in D is statistically significant for the euchromatin 

(a) with p-value = 0.002 and the heterochromatin (b) with p-value = 0.005. For each 

diagnostics category, the head/neck cancer shows a significant difference compared to the 

control group, while the esophageal only exhibits moderate difference for the euchromatin 

(c) with p-value = 0.015 for H/N cancer and p-value = 0.004 for esophageal cancer and 
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the heterochromatin (d) with p-value = 0.003 for H/N cancer and p-value = 0.037 for 

esophageal cancer. Chromatin packing scaling distribution calculated from each cell for (e) 

the euchromatin and (f) the heterochromatin. The black line denotes the mean value and the 

red line represents the median value.
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