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Abstract—Since the early 1980’s, the enhanced backscattering
(EBS) phenomenon has been well-studied in a large variety
of non-biological materials. Yet, until recently the use of con-
ventional EBS for the characterization of biological tissue has
been fairly limited. In this work we detail the unique ability of
EBS to provide spectroscopic, polarimetric, and depth-resolved
characterization of biological tissue using a simple backscattering
instrument. We first explain the experimental and numerical
procedures used to accurately measure and model the full
azimuthal EBS peak shape in biological tissue. Next we explore
the peak shape and height dependencies for different polarization
channels and spatial coherence of illumination. We then illustrate
the extraordinary sensitivity of EBS to the shape of the scattering
phase function using suspensions of latex microspheres. Finally,
we apply EBS to biological tissue samples in order to measure
optical properties and observe the spatial length-scales at which
backscattering is altered in early colon carcinogenesis.

Index Terms—Enhanced backscattering, polarized light Monte
Carlo, backscattering spectroscopy, cancer detection

I. INTRODUCTION

ENHANCED backscattering (EBS) is a coherence phe-
nomenon in which rays traveling time-reversed paths

within a scattering medium constructively interfere resulting in
an angular intensity peak centered in the exact backscattering
direction [1]–[4]. The shape of the angular EBS peak forms a
Fourier pair with the spatial intensity distribution of backscat-
tered light [5]. As a result, the EBS peak is extremely sensitive
to the optical scattering, absorption, and polarization properties
which alter the spatial intensity distribution of backscattered
light. Utilizing this sensitivity, EBS has been studied in many
substances including aqueous solutions, fractal aggregates [6],
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periodic dielectric slabs [7], amplifying random media [8],
cold atoms [9], and liquid crystals [10].

However, the application of conventional EBS in biological
tissue has been fairly limited [11]–[14] due in large part to
a number of experimental factors which have made EBS in-
convenient for the characterization of weakly scattering multi-
layered media such as biological tissue. These difficulties in-
clude very sharp peaks that are potentially masked by speckle
noise, the inability to acquire spectroscopic measurements, and
the lack of an appropriate model to extract tissue optical prop-
erties. In order to overcome these difficulties, low-coherence
enhanced backscattering (LEBS) which combines spectrally
resolved detection with broadband illumination from a thermal
source was developed in 2004 [15]. This novel application of
EBS enables spectroscopic analysis which can yield valuable
information about nano-scale structural composition as well as
the presence of chromophores (e.g. hemoglobin and melanin)
which are present within the specimen under observation
[16]. In addition, the spatial coherence length (Lsc) of the
illumination can be easily controlled according to the van
Cittert-Zernike theorem [17]. This is advantageous because
it simultaneously reduces the presence of speckle noise while
providing a method to selectively interrogate the optical signal
from within different depths of a sample. It is these benefits
which have helped LEBS become a promising technology for
the early detection of colorectal [18] and pancreatic cancer
[19], [20] by observing alterations in epithelial tissue struc-
ture which are not otherwise identifiable using conventional
histology.

More recently, the study of spectroscopic EBS has been
extended into the fully coherent regime with the development
of affordable broadband lasers [21]. Previously, it had been
shown that if a two-dimensional (backscattering as function of
θx and θy) EBS peak is acquired, the LEBS peak for any Lsc
can be obtained through post-processing without any loss of
information [16]. This means that the LEBS signal originating
from different depths within a biological tissue specimen can
be reconstructed using a single EBS measurement. Therefore,
the most advantageous way to realize the depth-selective
abilities of LEBS is to use fully coherent EBS.

One of the main goals of optical characterization of bi-
ological media is to determine the optical properties of the
tissue under observation. Of primary interest are the scattering
mean free path ls, absorption coefficient µa, anisotropy factor
g = 〈cos(θ)〉, and a second parameter of the scattering phase



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2

function D which we describe in the Methods section. In
order to relate the EBS peak to these optical properties, some
general model is needed. The most commonly used description
of the EBS peak shape was derived by Akkermans et al
using a scalar diffusion approximation [5]. This analytical
formulation provides a reasonable estimation of the peak shape
in the helicity preserving polarization channel, but cannot
predict the complicated azimuthal behavior of the peak in other
polarization channels and does not take into consideration
the shape of the phase function. As an attractive alternative,
polarized light Monte Carlo simulations give an exact solution
to the radiative transfer equation (provided that a sufficient
number of rays are traced). Modeling of the EBS peak using
Monte Carlo simulations is fairly common and demonstrates
an excellent agreement with experiment [12], [22]–[24], [26],
[29], [34], [36]. In addition all effects of partial spatial
coherence illumination and polarization can be described using
this model [16], [25], [26], [30], [34], [36].

In this paper, we first discuss the experimental and numer-
ical methodologies used to accurately measure and model the
EBS peak. Next, we explore the effects of polarization on
the azimuthal shape of the peak using an aqueous suspen-
sion of latex microspheres and demonstrate the extraordinary
sensitivity of EBS to the shape of the phase function. We
then demonstrate the effects of partial coherence illumination
on the shape of the EBS peak as well as its sensitivity to
rays exiting the medium at different spatial locations. Finally,
we demonstrate the application of EBS to biological tissue
and illustrate the usefulness of LEBS for observing alterations
which occur in early stage cancer.

II. MATERIALS AND METHODS

A. Theoretical Overview of EBS

The EBS intensity cone originates from the constructive
interference which occurs between a multiply scattered ray and
its corresponding time-reversed partner (a direct consequence
of the reciprocity theorem). Conceptually, it is useful to under-
stand this effect through analogy with the diffraction pattern
observed in a simple Young’s double pinhole experiment [16],
[22], [25]. Consider a single time-reversed path-pair in which
the exit points of the two rays are separated by some distance.
The diffraction pattern from this single time-reversed path-
pair is simply the Fourier transform of two delta functions,
which gives rise to a sine wave pattern. In a semi-infinite
scattering medium, an infinite number of time-reversed path-
pairs with different spatial separations will combine to form
the EBS peak. As such, under a scalar approximation the EBS
peak is simply the summed diffraction pattern from all possible
sets of time-reversed path-pairs or, in other words, the Fourier
transform of the spatial reflectance profile of light in a random
scattering medium illuminated by an infinitely narrow pencil
beam, Ims(x, y). Here, Ims(x, y) represents the intensity of
multiply scattered light which exits the medium at a position
(x,y) away from where it entered and in a direction that is anti-
parallel to the incident beam. Since rays undergoing single
scattering (Iss) cannot form time-reversed paths, they do not
contribute to the EBS interference signal. Normalizing by the

diffuse baseline which is composed of all orders of scattering,
the two dimensional EBS peak can be represented as [22]:

IEBS(θx, θy) =

∫∫∞
−∞ Ims(x, y)e−jk(θxx+θyy) dxdy∫∫∞
−∞[Ims(x, y) + Iss(x, y)] dxdy

, (1)

Simplifying Eq. 1, the appropriately normalized spatial in-
tensity distribution can be written as p(x, y) and the Fourier
transform operation can be denoted with the F symbol:

IEBS(θx, θy) = F{p(x, y)}, (2)

Under a scalar theory, each path-pair can completely inter-
fere and the predicted peak height reaches a value that is twice
the incoherent baseline (in the absence of single scattering).
However, in reality the vector wave nature of electromagnetic
radiation plays a large role in determining the shape and height
of the EBS peak, as will be demonstrated in the Results
section. In the strictest sense, the reciprocity theorem is only
fully satisfied if the illumination and collection polarizations
states are exactly the same. Thus, to a first approximation
an EBS peak is only expected to appear in the polarization
preserving channels (i.e. linear co-polarized (xx) and helicity
preserving (++)). In this case, each multiply scattered ray
must possess a time-reversed partner which exits with the
same magnitude and accumulated phase. As a result, path-
pairs exiting at any (x,y) separation have perfectly correlated
phase and can fully interfere. However, even in the orthogonal
polarization channels (i.e. linear cross-polarized (xy) and
opposite helicity (+−)) an EBS peak can still be observed
[13], [22], [24], [27]. In this case, the reciprocity theorem no
longer guarantees that each sequence of scattering events is
fully reversible. As a result, light rays which are scattered
into the orthogonal polarized channel may or may not have
a time-reversed partner with which to interfere. In order to
describe the ability of rays arriving at a particular separation
to interfere, we introduce the degree of phase correlation
function pc(x, y) which modulates the shape of Ims(x, y)
for the orthogonal polarization channels. When pc = 1 the
entire portion of intensity arriving at particular separation
can interfere and when pc = 0 none of the intensity can
interfere. Modifying the calculations of Lenke and Maret [28]
for the case of no external magnetic field, pc can be calculated
from the degree of linear (dlp = (xx)−(xy)

(xx)+(xy) ) and circular

(dcp = (++)−(+−)
(++)+(+−) ) polarization:

pcxy(l) =
dlp(l) + dcp(l)

1− dlp(l)

pc+−(l) =
2 · dlp(l)

1− dcp(l)

(3)

where l is the path-length through which rays travels. These
distributions are easily found using polarized Monte Carlo
simulations [22], [28], [29]. In general, pc is nearly 1 for very
short path-lengths. As l increases, a larger proportion of rays
travel through irreversible sequences of scattering events and
pc→ 0 as l→∞ [29]. In addition to the polarization channels
just introduced, we also use the notation (xo) and (+o) to
represent linear illumination with unpolarized collection and
circular illumination with unpolarized collection, respectively.
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For samples such as biological tissue in which the spot
size is not significantly larger than a transport mean free
path (l∗s = ls/(1 − g)) it is necessary to find the effective
spatial intensity distribution of light which remains inside the
illumination spot size. This is because rays which exit outside
of the illumination spot do not have a time-reversed partner
and therefore will not contribute to the EBS interference
signal. Typically the effective intensity distribution within
an illumination spot is found by convolving Ims(x, y) (i.e.
scattering medium spatial impulse-response) with the illumi-
nation spot size [30]. However, the EBS interference signal
is dependent on the relative separations between path-pairs as
opposed to their absolute position within the illumination spot.
As a result, the effective EBS intensity distribution, Ieffms , can
be found by averaging truncated versions of Ims(x, y) from
every position within the illumination spot:

Ieffms (x, y) =

∫∫ Ω
Ims(x, y) ·A(x− α, y − β)dαdβ∫∫ Ω

A(α, β)dαdβ
(4)

where A is a function which represents the illumination spot
size and the area of integration, Ω, is over the area of the
illumination spot. Typically, the illumination spot is a circle
and A is a top hat function (i.e. A = 1 for every position within
the illumination spot and 0 outside). Note that the numerator in
Eq. 4 is different from either a convolution or cross-correlation
operation. This can be simplified as:

Ieffms (x, y) = Ims(x, y)

∫∫∞
−∞A(α, β)A(x− α, y − β)dαdβ∫∫∞

−∞A(α, β)dαdβ

= Ims ·ACF{A} = Ims · s,
(5)

where ACF is the normalized autocorrelation function and
s represents the function which modulates the shape of
Ims(x, y) due to a finite spot size.

Under partial spatial coherence illumination, the interfer-
ence signal is modulated by a coherence function c(x, y)
which attenuates the signal for rays exiting outside of the
spatial coherence area. In other words, c(x, y) works as a
spatial filter that limits the contribution from longer path-pair
separations allowing the measurement to emphasize informa-
tion present at smaller path-pair separations. The regime where
Lsc < l∗s is known as the low-coherence or LEBS regime [15].

Combining the contributions from all of the functions which
modulate the shape of p(x, y) and therefore alter the measur-
able EBS peak we obtain the following equation [29]:

IEBS(θx, θy) = F{p(x, y) · pc(x, y) · s(x, y)

· c(x, y) ·mtf(x, y)}
= F{peff (x, y)},

(6)

where mtf(x, y) represents the modulation transfer function
of the detection system. It is important to note that functions
p and pc are instrinsic sample dependent properties while
functions c, s, and mtf are extrinsic illumination and system
properties [16].

In the following sections where it is useful to observe
the radial intensity distribution we use the rotational sum of
peff (x, y) which we denote as peff (r). This represents the

summed intensity that exits the scattering medium in radial
annuli which is located at a distance r away from its entrance
point:

peff (r) =

2π∫
0

peff (x = rcosφ, y = rsinφ)dφ, (7)

B. Experimental Instrumentation, Data Collection and Pro-
cessing

The schematic for our experimental setup can be found in
other publications [16], [25], [29]. The illumination consists
of two broadband illumination sources which span the entire
regime between complete incoherence and perfect spatial
coherence. In order to obtain partial spatial coherence, a Xenon
lamp (Oriel Instruments) is focused onto an aperture wheel
with six high power tungsten apertures (Lenox laser) ranging
in diameter from 0.25 mm to 1.75 mm. These apertures act as
secondary sources which are collimated by a 200 mm focal
length lens. According to the van-Cittert Zernike theorem,
the coherence function can be obtained by computing the
Fourier transform of the angular intensity distribution of each
secondary source provided that the incident illumination is
completely incoherent [17]. Since circular apertures are used,
the coherence function takes the shape of a first-order Bessel
function of the first kind J1:

c(x, y) =
2J1(

√
x2+y2

Lsc
)

√
x2+y2

Lsc

; Lsc =
λf

πd
, (8)

where λ is the wavelength of illumination, f is the focal
length of the collimating lens, and d is the diameter of
the aperture. The coherence function for each aperture was
verified by measuring the angular intensity distribution with a
mirror directing the illumination beam towards the camera as
well as with a series of Young’s double pinhole experiments
[16]. Infinite spatial coherence is obtained using a broadband
supercontinuum laser source (SuperK Versa, NKT photonics)
coupled into a single mode fiber (Thorlabs; mode field diam-
eter of 4.6 µm at 680 nm) which is then connected to the
aperture wheel. It should be noted that although the single
mode fiber output has a finite beam extent it can be regarded
as spatially coherent, and so the van-Cittert Zernike theorem
no longer applies.

After collimation, the beam passes through an iris which
limits the beam diameter between 2-10 mm in size before
being directed onto the sample. Backscattered light from
the sample is then collected by a 50/50 non-polarizing anti-
reflection coated plate beam splitter before being focused onto
a CCD camera (PIXIS 1024B eXcelon, Princeton Instruments)
by a 100 mm focal length achromatic lens. The alignment of
the camera relative to the focusing lens is controlled with a
motorized translation stage placed under the camera. Optimal
alignment is achieved when the peak height is maximized. A
liquid crystal tunable filter (LCTF, CRi instruments) attached
to the camera separates the light into its component wave-
lengths. This configuration can detect angular backscattering
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of up to 7.5776◦ with 0.0074◦ resolution and wavelengths
between 500 - 720 nm with 20 nm filter bandwidth.

When performing polarization experiments, special atten-
tion should be paid to the polarization effects of all optical
elements within the system. For example, LCTFs are naturally
linear polarizers. It should also be noted that non-polarizing
beam splitters are not perfect for all wavelengths and all
incident angles. As such, it is important to properly normalize
when comparing different polarization states. For a backscat-
tering setup, the optimal configuration is to place a linear
polarizer directly preceding and following the beam splitter
with a removable quarter-wave plate placed between the beam
splitter and the sample. We have found the best configuration
is to orient the analyzer and LCTF so they collect light that is
TE polarized with respect to the plate beam splitter. All linear
and elliptical polarization combinations are then selected by
rotating the illumination polarizer (with quarter-wave plate for
elliptical and without for linear).

Experimental data collection consists of four CCD camera
measurements: 1) scattering sample 2) ambient background
3) reflectance standard (spectralon > 98% reflectance, Ocean
Optics) and 4) flat field. The flat field is collected by illumi-
nating the sample with essentially spatially incoherent light
(Lsc < 10 µm) directly from the xenon lamp and collecting
the linear cross-polarized channel. This measurement config-
uration ensures that the flat field contains no coherent portion
and thus provides a measurement of the isolated incoherent
baseline shape.

To process the data, the scattering sample and reflectance
standard are first background subtracted. The scattering sample
is then normalized by the total unpolarized incoherent intensity
measured from the reflectance standard, and divided by the flat
field which corrects both aberrations in the camera as well as
vignetting in the incoherent baseline which occurs due to rays
which exit the scattering medium outside of the illumination
spot. The EBS peak is obtained by subtracting the incoherent
baseline with a plane fit using data from an annular ring that
is 3 degrees away from the maximum peak intensity.

The unpolarized incoherent intensity with which we nor-
malize the scattering sample is the incoherent backscattered
intensity that would be measured if the illumination and col-
lection were completely unpolarized. The incoherent intensity
for a particular polarization channel is measured by sampling
an angular region on the CCD which is > 3 degrees away
from the maximum peak intensity of the spectralon reflectance
standard. The unpolarized incoherent intensity arriving at the
sample can then be found based on a priori knowledge of the
depolarization characteristics of the reflectance standard, as
well as the amount of intensity lost due to specular reflection
at the sample surface.

Conventionally, the EBS peak for a particular sample is nor-
malized with respect to its own incoherent baseline. However,
we choose to normalize by a reflectance standard because it
makes measurements from different polarization channels and
from samples with different absorption levels and thicknesses
directly comparable. In addition, it avoids the common practice
of placing an aperture at the sample surface in order to reject
light which has traveled outside of the illumination spot [22].

A common experimental difficulty experienced in EBS mea-
surements of either biological tissue or stationary samples is
the presence of large amounts of speckle noise which obscure
the peak [13], [25]. In order to reduce this problem, some sort
of ensemble averaging of the independent speckle patterns is
needed. In LEBS, this is possible without moving the sample
since every coherence area generates its own unique speckle
pattern and there are thousands of coherence areas within
each illumination spot [15]. In EBS, ensemble averaging must
be performed by physically moving the sample. Yoon et al
[13] found that a gentle shaking of the sample was sufficient
to eliminate speckle, but used a rotating electric motor for
increased consistency. For our tissue measurements we use
a small vibration motor attached to the sample stage. This
provides a small amount of motion that does not perturb the
sample, but is sufficient to greatly reduce the speckle signal.
In addition, since we use broadband illumination combined
with spectrally resolved detection, the speckle signal is further
reduced by the short temporal coherence length. Fig. 1a shows
the speckle pattern observed for a stationary colon tissue
section while Fig. 1b shows the speckle reduction obtained
by gently vibrating the same sample.

Fig. 1. (a) Speckle filled EBS measurement from stationary colon tissue. (b)
Speckle reduction obtained with vibration motor placed on sample stage.

C. Modeling light propagation in biological tissue with the
Whittle-Matérn family of correlation functions

In order to understand and parameterize the propagation of
light within a random scattering medium, certain assumptions
about that sample’s composition must be made. In biomedical
applications, the Henyey-Greenstein phase function which was
originally developed for the light scattering of interstellar
dust is commonly used to model the propagation of light
within biological tissue. However, in its basic form this is
only a single parameter scalar approximation of the phase
function which does not incorporate the effects of polarization.
As an alternative, Mie theory can be used to fully model
the effects of polarization in a sample composed entirely of
spherical particles. This can be very useful for experimental
validation purposes or when modeling biological tissue as a
composition of cells with a limited number of different sizes.
However, with structures ranging in size from a few tens of
nanometers (e.g. chromatin fibers, ribosomes, cytoskeleton and
other macromolecular structures) to microns (e.g. organelles
in cells, collagen fibers in connective tissue matrix) to tens
of microns (e.g. cells) light scattering in intact biological
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tissue may be better described as a continuous distribution of
refractive index (RI) fluctuations [31]. Therefore, as a model
to describe the expected RI correlation function Bn(r) within
biological tissue we use a three-parameter model based on the
Whittle-Matérn family of correlation functions [32]–[34]:

Bn(r) = dn2(
r

lc
)

D−3
2 KD−3

2
(
r

lc
) (9)

where KD−3 is the modified Bessel function of the second
kind with order D − 3, lc describes the length scale of
tissue heterogeneity, dn2 is the variance of the fluctuating
portion of RI, and D is a parameter which describes the
shape of the correlation function [32]. Beginning when D is
∞, the function is Gaussian in shape. As D decreases, the
contribution of smaller length-scales becomes more prominent
and the function takes the form of a decaying exponential
(with lc being the exponential decay rate) when D = 4. When
0 < D < 3, the function exhibits a power law distribution
for r � lc and is by definition a fractal in which the
fractal dimension is D. Thus, the Whittle-Matérn family of
correlation functions encompasses many realistic distributions
of scattering length-scales present in biological tissue.

According to the Wiener-Khinchin theorem, the power spec-
tral density Φn(κ) at spatial frequency is the Fourier transform
of Bn(r):

Φn(κ) =
dn2l3c

(1 + κ2l2c)
D
2

, (10)

Applying the Born approximation for linear polarized plane
wave illumination, the differential scattering cross section per
unit volume can be calculated as [32], [35]:

σ(θ, φ) = 2πk4(1− sin2θ · cos2φ)Φn(2k sin
θ

2
) (11)

where θ is the polar angle, φ is the azimuthal angle with φ = 0
oriented in the direction of the polarization vector, k is the
wavenumber within the scattering medium. The phase function
can then be found by normalizing Eq. 11 such that the integral
over all solid angle is equal to unity. In the following section
we use the Stokes vector formalism to generalize this result
for any polarization.

The scattering coefficient (µs = 1/ls) can be found by
integrating σ(θ, φ) over all solid angle. In biological tissue
with klc � 1 the dependencies of µs can be simplified as
[36]:

µs ∝

{
dn2k(klc)

3−D for D< 2
dn2k2lc for D> 2

, (12)

Similarly, the dependencies of g can be found by computing
the average cosine of the polar scattering angle 〈cos(θ)〉 :

g ∝


0 for D< 2
1− (klc)

2−D for 2< D< 4
1− (klc)

−2 for D> 4
, (13)

From the dependencies of µs and g we can find the reduced
scattering coefficient (µ∗s = µs · (1− g) = 1/l∗s ) :

µ∗s ∝

{
dn2k(klc)

3−D for D< 4
dn2/lc for D> 4

, (14)

Optically it is useful to describe tissue in terms of a RI cor-
relation function, since RI fluctuations give rise to scattering.
Alternatively, RI fluctuations can also be described in terms
of mass density fluctuations. This is because according to the
Gladstone-Dale relationship, RI (n) is a linear function of local
mass density (ρ) [37]:

n = nm + αs · ρ, (15)

where nm is the RI in the surrounding medium and αs is
the specific refractive increment (cm3/g) with values between
∼0.17 to 0.2 for biological materials (e.g. proteins, lipids, car-
bohydrates). This relationship is valid in biological materials
for ρ up to ∼ 50% [38]. Therefore, the shape of Bn(r) also
provides information about the distribution of mass within the
specimen.

D. Polarized light Monte Carlo simulations
Monte Carlo simulations provide an invaluable method

to solve the radiative transfer equation when an analytical
solution is either difficult or impossible to obtain. In the
following paragraphs, we discuss the implementation of po-
larized light Monte Carlo simulations of Ims(x, y) for two
cases: 1) discrete spherical particles (Mie) and 2) media with
a continuous distribution of RI fluctuations (Whittle-Matérn,
WM). We use the Mie simulations to validate our experimental
procedure and explore the shape of the peak for different
polarizations using well-controlled particle sizes, while we
use the WM simulations to describe measurements of intact
tissue. Both of these codes are based on modifications to the
open source meridian plane polarized light Monte Carlo code
developed by Ramella-Roman et al [41]. These modified codes
can be found on our laboratory website [39].

Our scattering medium is modeled as a thick slab of fixed
concentration and geometry with an l∗s of 100 µm and slab
thickness that is 10 l∗s . This geometry limits transmission
through the slab to less than 2% of the incident number of
rays. Samples with other values of l∗s are obtained by rescaling
the positions in the grid. In the case of the Mie simulations
we account for dispersion of both water and polystyrene [40],
[42]. Once the medium parameters are specified, an infinitely
narrow collimated beam is directed into the scattering medium
oriented orthogonally to the surface and initiated with a
polarization state described by the Stokes vector. At each
scattering event, the Stokes vector is updated according to [41]:

Ss = R(γ)M(θ)R(φ)So, (16)

where So is the incident stokes vector [Io, Qo, Uo, Vo],
R(φ) is a rotation matrix that rotates the reference frame
into the scattering plane, M(θ) is the Mueller matrix for a
single scattering event, R(γ) is a rotation matrix that rotates
the reference frame back to the meridian plane, and Ss is
the resulting scattered stokes vector [Is, Qs, Us, Vs]. The
phase function, F (θ, φ) can be found by performing the matrix
operation M(θ)R(φ)So and finding the resulting total intensity
component:

F (θ, φ) = m11(θ) · Io +m12(θ) · (Qo cos 2φ+ Uo sin 2φ)

+m13(θ) · (Uo cos 2φ−Qo sin 2φ) +m14(θ) · Vo,
(17)
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where mij are elements of the Mueller matrix for a single
scattering event. For the case of spherical particles, the Mueller
matrix can be calculated according to Mie theory and takes
the form [43]:

M(θ) =


m11(θ) m12(θ) 0 0
m12(θ) m11(θ) 0 0

0 0 m33(θ) m34(θ)
0 0 −m34(θ) m33(θ)

 , (18)

For the WM simulations, the Mueller matrix takes the form
[44]:

M(θ) =
π

4
k4Φn(2k sin

θ

2
) ·

1 + cos2(θ) cos2(θ)− 1 0 0
cos2(θ)− 1 1 + cos2(θ) 0 0

0 0 2 cos θ 0
0 0 0 2 cos θ

 ,
(19)

After a multiply scattered ray exits the medium, the (x,y)
position are tracked according to the position of the last
scattering event within the medium in a two-dimensional grid
whose dimensions are chosen prior to running the simulation
[34]. Rays which exit outside of the grid are stored in the
peripheral pixels and are used to properly normalize the data.
Single scattering rays are stored in a separate array. To increase
the efficiency of the simulations we track all rays which exit
within 10 degrees around the exact backscattering angle since
it was found that Ims(x, y) changes negligibly within this
range [34].

Fig. 2. Example of different Mie and WM phase functions for g = 0.9.
(a) The Mie phase function for two different diameter spheres. (b) The WM
phase function for different values of D.

We conclude this section by observing the differences
between the Mie and WM phase functions as shown in Fig.
2. Fig. 2a shows the Mie phase function for two spheres with
different size parameter (ka) but the same g of 0.9. Both Mie
phase functions exhibit oscillations in the scattering angle that
are characteristic of scattering from spheres. However, while
g is the same in each case, the sphere with larger ka has
many higher order oscillations which are capable of altering
Ims(x, y) [25], [34]. On the other hand, with the WM phase
function shown in Fig. 2b we can independently control the
width of the phase function by specifying g and the shape of
the phase function by specifying D. Thus by modeling light
scattering with the WM family of correlation functions we can

both obtain a more physical understanding of the composition
of biological tissue and a more flexible two-parameter phase
function. The general trends of the WM phase function and
Ims(x, y) can be found in detail in another publication [34].

III. RESULTS

A. Reduction of Enhancement Factor

Using Monte Carlo simulations we first observe two prop-
erties which reduce the EBS enhancement factor (i.e. the
relative height of the peak at x = y = 0) from its theoretical
value of 2: single scattering and polarization. Fig. 3a shows
the Monte Carlo simulation of the multiple scattering ratio
(MSR = Ims

Iss+Ims
) for the different polarization channels as

a function of g. For the helicity preserving (++) and linear
cross polarized (xy) channels MSR is identically equal to 1
since these channels reject single scattered light. However,
for other channels, MSR is dependent on the shape of the
phase function. For Rayleigh scatterers (i.e. ka∼1) with g =
0, MSR is 0.8357, 0.7514, and 0.7342 for the un-polarized,
linear co polarized (xx), and opposite helicity (+−) channels,
respectively. Performing a Beer’s law calculation of the single
scattered intensity which reaches the medium surface, it can
be found that for unpolarized light the MSR should equal
5/6, giving our result less than 0.3 % error. The lower MSR
observed for the (xx) and (+−) channels results from a
rotation of a portion of the multiply scattered light into the
opposite channels. As g increases, the phase function becomes
more forward directed and the MSR approaches 1 for all
channels.

Fig. 3. (a) Monte Carlo simulations to determine the multiple scattering
ratio for backscattered light in different polarization channels as function of
g. (b) Shows the theoretical EBS enhancement factor for different polarization
channels as a function of g.

Fig. 3b shows the theoretical EBS enhancement for different
polarization channels obtained using the calculations described
by Lenke and Maret, and exhibits a qualitative match with their
simulation results [22]. The reduction from the ideal value of
2 results from the combined effect of single scattered light and
irreversible scattering rotations of intensity into the orthogonal
polarization channels. For the (++) channel, single scattering
is completely suppressed and each time-reversed pair is fully
reversible according to the reciprocity theorem. As such, the
theoretical enhancement factor in this channel is identically
equal to 2 for all g. For the (xx) channel, the reduction
in enhancement factor is due solely to single scattering and
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therefore follows the shape of the MSR shown in Fig. 3a.
The strong reduction in the enhancement factor for the (xy)
and (+−) channels occurs because only a small percentage of
the initial polarized intensity is transferred into the orthogonal
channels through a fully reversible path.

As a quantitative validation of our Monte Carlo results, we
compare our values of the enhancement factor for Rayleigh
scatterers with those calculated by Mishchenko using a sep-
arate numerical technique. Table I shows an excellent agree-
ment between our results and those obtained by Mishchenko
(rounded to four decimal points) [27].

While the theoretical values for the enhancement factor in
different polarization channels is well accepted, experimentally
measured peaks rarely reach the expected value [5], [22],
[45]; although excellent agreement has been reported [46]. In
addition to the causes discussed above, other reasons such as
finite beam spot size, finite sample thickness, imaging system
resolution, and speckle noise have often been implicated in
reducing the EBS peak from its theoretical value. However,
even when all of these factors are considered our experiments
fail to achieve the theoretical enhancement factor. As a demon-
stration, Fig. 4 shows the (++) channel measured from a
suspension of 0.65 µm diameter microspheres in water with
l∗s µm = 205 = 205 µm and g = 0.86 at 633 nm. In this
experiment, the illumination spot size and sample thickness
were maintained at > 30 times l∗s . In order to reject rays
which exit outside of the illumination spot, an aperture with
the same diameter as the illumination spot was placed directly
over the sample. Fig. 4a shows the peak when the sample
was normalized by its own baseline while Fig. 4b shows the
peak when normalized by the unpolarized incoherent intensity
as measured from the spectralon reflectance standard. Both of
these plots show independent normalizations, and in each case
the experimentally measured peak is lower than the theoreti-
cally predicted one. In order to achieve agreement, we must
scale the theoretical peaks by a constant multiplicative value
of 0.65 for each normalization. This type of one-parameter fit
is commonly used in EBS [22], [45], [47], [48] and LEBS
literature [16], [25], [34], [48]. Within the range of optical
properties expected from tissue it has previously been observed
that a single multiplicative value provides excellent agreement
between experiment and Monte Carlo [25]. In addition, in
this publication we observe that the same scaling factor (used
to achieve the best agreement with theory) is the same for
each polarization channel and as such all channels are directly
comparable and combinable. The origin of this scaling factor
is still not well understood but is actively being pursued.

Fig. 4. Rotational average of the (++) EBS peak for a microsphere phantom
with l∗s = 205 µm and g = 0.87 measured at 633 nm. (a) Peak obtained
when normalized by the samples own diffuse baseline. (b) Peak obtained
when normalized by the unpolarized incoherent intensity. In each case the
theoretical peak must be scaled by 0.65 to obtain a match with experiment.

B. Azimuthal Dependencies

In order to understand the effect of polarization on the
azimuthal shape of the EBS peak, we studied the suspension
of latex microspheres described above. Fig. 5 displays the
comparison between the experimentally measured and Monte
Carlo simulated 2D angular EBS intensity peak for the (xx),
(++), (xy), and (+−) polarization channels. For the (++)
and (+−) channels the peak is azimuthally symmetric while
for the (xx) and (xy) channels the peak is azimuthally
asymmetric. These observations can be understood by con-
sidering the general shape of the phase function for po-
larized illumination. In Fig. 6 we show the dipole phase
function for linear and circular polarized illumination along
with the corresponding Monte Carlo simulated Ims(x, y) with
unpolarized collection. Under circularly polarized illumination
(Fig.6a), the phase function is rotationally symmetric about the
azimuthal angle. As a result, the (+o) channel representing
circular illumination with unpolarized collection (Fig. 6b) is
also be rotationally symmetric. On the other hand, under linear
polarized illumination (Fig. 6c), the phase function has a
reduced probability in the direction of the polarization vector
due to the dipole radiation pattern or dipole factor and less
intensity will be scattered in the direction of the polarization
vector. As a result, in the (xo) channel representing linear
illumination with unpolarized collection (Fig. 6d) Ims(x, y)
has increased intensity in a direction that is orthogonal to
the incident polarization direction. After Fourier transform,
this results in an EBS peak which is elongated in a direction
that is parallel to the polarization direction (Fig. 9b,d).
The (++) and (+−) channels achieved by decomposing the
(+o) channel are also azimuthally symmetric since there is
nothing to break the symmetry. However, decomposing the
(xo) channel into the (xx) and (xy) channels results in more
complicated dependencies. Since light is transferred into the
cross polarized channel most efficiently at 45◦ with respect
to the x and y axes, the (xy) component exhibits a ’four
leaf clover’ or ’X’ pattern [22], [24]. The remainder of rays
which are not depolarized into the cross channel will then
form the (xx) component. As a result, the (xx) peak is in
general elongated in the direction of the polarization, but also
shows decreased intensity in the diagonal directions due to
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Fig. 5. Comparison of the experimental EBS intensity peak with Monte Carlo
simulation for the (xx), (++), (xy) and (+−) polarization channels. The
sample was a suspension of latex microspheres with g = 0.87 and ls* = 205
µm at 633 nm illumination. The first column shows the experimental peaks
while the second column shows the Monte Carlo simulated peaks. Simulation
scaled by 0.65 to obtain a match with experiment.

depolarization.
As a final remark about the effects of polarization on the

azimuthal EBS shape, it should be noted that in the absence of
optical activity or preferred scattering direction due to sample
structural orientation, the backscattering Mueller matrix is
symmetric [49]. As a result, if we reverse the illumination
and collection polarizers in our EBS instrument, the resulting
peak must be the same. This means for example, that the (xo)
channel gives the same result as the (ox) channel representing
unpolarized illumination with linear polarized collection.

C. Partial Spatial Coherence Illumination - LEBS

As discussed in theoretical overview section, the effect of
partial spatial coherence illumination (used in LEBS) can be
understood as a filtering operation in the spatial domain. With

Fig. 6. Correspondence between the scattering phase function (a,c) and the
Monte Carlo Ims(x, y) (b,d) for a medium composed of rayleigh scatterers.
(a) Phase function for light with circular polarization in the x-y plane and (b)
the resulting Ims(x,y) for the (+o) channel. (c) Phase function for light with
linear along the x-axis and (d) the resulting Ims(x,y) for the (xo) channel. For
each phase function rendering, the scattering particle is location at the origin.

decreasing Lsc, the radial extent of the c(r) filter is also
decreased resulting in the attenuation of higher frequency in-
formation. Because of this, the very sharp EBS peak becomes
shorter and more rounded as Lsc decreases. The alteration
of the peak shape for different Lsc can be seen in Fig. 7a
which shows the rotational average of the (++) channel.
Likewise, thinking in a more physical fashion the c(r) filter
preserves the optical signal originating from short transport
paths while rejecting the signal from very long transport paths.
Thus by altering Lsc, LEBS provides a method to selectively
isolate the optical signal originating from the length-scales
in which we are interested in. It is important to note that
within the spatial coherence area, p(r) can still be accurately
obtained as shown in Fig. 7b [16]. One way to demonstrate
the ability of LEBS to extract the features of p(r) at different
exit radii is through the observation of the enhancement factor.
According to the Fourier relationship between p(r) and LEBS,
the enhancement factor is simply

∫∞
0
p(r) · c(r)dr and so

provides a measurement of the total coherent intensity which
falls within c(r). For a particular illumination geometry the
shape of c(r) is fixed, and any changes in the enhancement
factor must be attributed to the shape and height of p(r).

Fig. 8a shows the experimental LEBS enhancement factor
obtained with different Lsc using the microsphere suspension
described in Fig. 4. As expected, with increasing Lsc a larger
proportion of the p(r) falls within c(r) and therefore the
enhancement factor monotonically increases. The fact that the
enhancement factor scales with Lsc for all polarization chan-
nels confirms that the observed angular intensity distributions
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Fig. 7. Demonstration of the effect of partial spatial coherence illumination
on the EBS peak (i.e. LEBS). (a) Rotational average of the (++) EBS
peak for a sample illuminated with different Lsc. (b) p(r) as measured from
different Lsc. In each case the solid lines represent Monte Carlo simulations
and the symbols represent the experiment. The insets are magnified views
showing the distributions at small values of angle and radius. Simulation
scaled by 0.65 to obtain a match with experiment.

in each of these channels are indeed accurately interpreted
as resulting from a coherent interference phenomenon. One
interesting aspect of the trends in Fig. 8a is the crossover
that occurs between the (xx) and (++) channels at ∼ 95
µm Lsc as well as the one that occurs between the (xy) and
(+−) channels at ∼ 80 µm Lsc. This result is explained by
observing the Monte Carlo simulated p(r)s shown in Fig. 8b
and noting the similar crossovers which occurs at ∼ 80 µm exit
radius. The crossover in enhancement identifies the location in
which the total coherent intensity in the different polarization
channels is identical. One of the important benefits of using

Fig. 8. (a) Enhancement factor for the different polarization channels
when the microsphere suspension is illuminated with light of different Lsc.
Solid lines represent Monte Carlo simulations and the symbols represent the
experiment (this includes the EBS values on the right). (b) the corresponding
p(r) for each polarization channel in a. Arrows indicate the location of the
crossovers discussed in the text. Simulation scaled by 0.65 to obtain a match
with experiment.

LEBS is that it provides the ability to focus on the low-order
scattering events in which information about the shape of the
phase function is preserved [25], [34]. Consider the LEBS
peaks shown in Fig. 9 which shows the (xo) channel obtained
by summing the (xx) and (xy) components. As discussed
above, the peak exhibits an elongation in the direction of
the polarization as a result of the dipole factor in the phase
function. When g is low (Fig. 9a) the dipole factor is very
prominent and there is a high degree of anisotropy in the

observed LEBS peak (Fig. 9b). With increasing g, the phase
function becomes more forward directed and the contribution
of the dipole factor is reduced (Fig. 9c). As a result, the LEBS
peak mimics the phase function and becomes more rotationally
symmetric (Fig. 9d). In order to quantify this anisotropy we

Fig. 9. Illustration of the sensitivity of (L)EBS to the shape of the phase
function. (a) Linear polarized phase function with g = 0.27 for microspheres
with 0.20 µm diameter at 680 nm and (b) LEBS measurement (Lsc = 173
µm). (c) Linear polarized phase function with g = 0.86 for microspheres with
0.65 µm diameter at 680 nm and corresponding LEBS measurement (d). The
insets in b and d depict scaled Monte Carlo simulations. Simulation scaled
by 0.65 to obtain a match with experiment.

measure the intensity dispersed in a direction orthogonal to the
polarization as a ratio to the intensity dispersed in a direction
parallel to the polarization, which we denote as the azimuthal
anisotropy ratio (AAR). In Fig. 10a, the AAR for the phase
function (red) is calculated according to Mie theory, the AAR
for LEBS (blue) is calculated by converting the LEBS peak
for Lsc = 161 µm to p(x, y), and the AAR for EBS (green)
by converting to the full length p(x, y). In each case, the
AAR monotonically decreases with g, approaching a value
of 1 for g = 1. Experimental measurements of suspensions
with g = 0.07, 0.32, 0.72, and 0.87 show excellent agreement
with Monte Carlo for both the EBS and LEBS case. However,
using LEBS we can better focus on the low order scattering
events and obtain greater sensitivity to g (Fig. 10b).

D. Measurement of optical properties in biological tissue

In this section we demonstrate experimental measurements
of biological tissue using broadband EBS. As a first example
we show measurements taken from the medullary cavity of
a chicken thigh bone using the (++) polarization channel
in Fig. 11. As discussed in the previous sections the (++)
channel is expected to be azimuthally symmetric. However,
the high level of structural orientation in thigh bone leads
to a preferred direction of scattering (anisotropic scattering)
[51]. This fact needs to be considered when using EBS to
quantify highly oriented biological structures such as bone,
muscle, skin, or artery [51]. Fig. 11a shows the azimuthally
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Fig. 10. Comparison between the AAR for the phase function and p(x, y).(a)
AAR for the phase function, p(x, y) measured from LEBS (Lsc = 173µm),
and p(x, y) measured from EBS as a function of g. (b) Plot of AAR for EBS
and LEBS vs. AAR for the phase function shows a monotonic relationship.
LEBS exhibits an increased sensitivity to the shape of the phase function.

symmetric EBS peak obtained by rotating the sample during
measurement. Fig. 11b,c shows the anisotropic peak measured
for a stationary bone oriented in two different directions.
For these measurements, light is preferentially scattered in a
spatial direction that is parallel to bone axis. After Fourier
transformation the EBS peak is elongated orthogonal to this
direction.

Fig. 11. EBS measurements from the medullary cavity of a chicken thigh
bone using (++) polarization. The arrow in the lower right hand side indicates
the orientation of the major bone axis. (a) rotating sample (b) bone oriented
in the +45◦ direction (c) bone oriented in the horizontal direction

Next we provide an estimate for g, ls, D, and to-
tal Hemoglobin (Hb) concentration measured from a fresh
chicken liver specimen. The corresponding EBS measurements
for each polarization channel are shown in Fig. 12a-e. These
measurements use 700 nm illumination so that the attenuation
of longer path-lengths is not greatly altered by Hb absorption.
The two dimensional peaks for each polarization channel
exhibit the characteristic azimuthal dependencies discussed
above and show no apparent alterations in shape from local
anisotropies in tissue structure. This occurs because even
though the local p(x, y) for a particular location on the tissue
surface may be preferentially skewed in a certain direction due
to tissue structure, these random distributions are completely
averaged over the 6 mm spot size.

To determine the optical scattering properties we perform
a bounded minimization (tissue relevant regime: g = 0.7-
0.98, ls = 5-1000 µm, D = 2-4) which minimizes the sum
of squared error between the experimentally measured (xx)
EBS peak and a database of WM simulations. The resulting
fit gives g = 0.95, ls = 52.5 µm, and D = 2.2. The values
of g and ls fall within the range obtained from liver tissue in

other publications [50] and the value of D indicates that liver
tissue exhibits mass fractal geometry. The corresponding WM
simulated EBS peaks are displayed in the insets of Fig. 12a-d.
Fig. 12f shows the WM phase function corresponding to our
chicken liver sample with D = 2.2 and g = 0.95.

Fig. 12. Experimental EBS measurement from a chicken liver sample at
700 nm illumination. (a-d) shows the EBS peaks in the (xx), (xy), (++),
and (+−) polarization channels, respectively. (e) Rotational averages of each
polarization channel with symbols representing experiment. The WM fit is
shown in solid lines for the (xx) and (++) channels. (f) WM phase function
for g = 0.95 and D = 2.2. Simulation scaled by 0.65 to obtain a match with
experiment.

The quantification of optical absorption is obtained through
spectroscopic (530-700 nm) analysis of LEBS enhancement
factor. Using the post-processing algorithm discussed in de-
tail in another publication [16] we observe the enhancement
spectrum for different Lsc in Fig. 13a. In each spectrum, the
intensity dips due to Hb absorption are clearly visible. With
increasing Lsc (as indicated by the arrow) the path-length
through which the light rays travel also increases. As a result,
a larger absorption dip is visible for larger Lsc. Using a Beer’s
law algorithm [16], we quantify the amount of total Hb (THb,
i.e. oxy + deoxy) absorption using a variable, α (mol/L*cm),
which represents the product of Hb concentration and average
ray path-length. The excellent algorithm fit is represented by
the blue curves in Fig. 13a. The resulting value is seen to
increase with increasing Lsc as shown in in Fig. 13b. In
order to convert the LEBS α parameter to total hemoglobin
concentration we divide by the average path-length obtained
through WM Monte Carlo simulations and convert to units
of g/L. Because our tissue sample is fairly homogenous we
found that hemoglobin concentration is nearly flat across all
Lsc. Using the spectrum from the EBS regime (i.e. Lsc →∞),
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we obtain a hemoglobin concentration of 1.85 g/L.

Fig. 13. Spectroscopic LEBS analysis to quantify optical absorption. (a)
LEBS enhancement spectrum recorded from chicken liver along with the
theoretical Hb absorption fit. The arrow indicates the spectrum measured with
increasing Lsc. (b) Total Hb α parameter for increasing Lsc.

E. Measurement of p(r) in field carcinogenesis
While liver is a fairly homogeneous tissue and can be well-

modeled as a single effective medium, in more layered tissue
structures it is useful to convert the experimental EBS peaks
to p(r) through inverse Fourier transform to gain better insight
into how the tissue is structured. Since rays exiting at larger
radial separations on average tend to travel deeper within the
sample, we can infer information about the depth-profile of
the optical signal by observing p(r) at different exit radii. In
Fig. 14 we use this capability to demonstrate the sensitivity of
EBS to the subtle (i.e. histologically undetectable) alterations
in the structure of colonic mucosa that occur as a result
of field carcinogenesis (the concept that alterations which
lead to neoplastic growth in one section of an organ are
also detectable in the rest of that organ). For this study, a
minimum of 5 LEBS measurements (Lsc = 166 µm at 650
nm with (xx) polarization) were acquired from the epithelial
side of histologically normal-appearing human rectal biopsies
collected in accordance with the institutional review board
at NorthShore University HealthSystems. The thickness of
each biopsy was maintained at 1 mm using a glass coverslip
placed over a 1 mm spacer. Fig. 14a shows the comparison
between the average p(r) measured from 11 patients harboring
an advanced adenoma (AA, size 10 mm diameter) and 39
control patients with no apparent dysplasia. Qualitatively, the
two distributions look very similar since the optical properties
and structure is similar between the two samples. However,
in accordance with previous findings p(r) is lower for the
AA group, suggesting that µ∗s may be reduced as the patient
progresses towards a more cancerous state [18], [25].

To determine the location of the maximal difference in p(r)
we subtract the two distributions (AA-control) as displayed in
Fig. 14b. The largest difference in shape occurs at an exit
radius of 40 µm indicating that the observed changes are
caused by low-order scattering events that interrogate the most
superficial layers of colonic mucosa.

IV. DISCUSSION AND CONCLUSION

The ultimate goal of optical characterization of layered
media such as biological tissue is to solve the so-called inverse

Fig. 14. Measurement of p(r) from rectal biopsies using LEBS with Lsc =
166 µm at 650 nm with (xx) polarization. (a) average p(r) measured from
rectal biopsy. Compares 11 advanced adenomas (AA) vs. 39 control patients.
(b) Difference (AA-control) between p(r)’s shown in panel a.

problem in which depth-resolved measurements of the full
shape of the differential scattering cross section is combined
with information about the concentrations of different chro-
mophores. While this is a difficult goal to achieve, having
more ways in which to view the problem provides more
opportunities to fully characterize the sample properties. In
this paper we have presented the unique ability of EBS to
provide polarimetric, spectroscopic, and depth-resolved char-
acterization of biological tissue using an easy to implement
backscattering instrument. We have shown an extraordinary
sensitivity to the shape of the scattering phase function, with
capability to distinguish higher order parameters than the
anisotropy factor.

LEBS has shown great promise for the early detection
of colorectal and pancreatic cancer by sensing alterations
in tissue structure caused by field carcinogenesis which are
not otherwise detectable using conventional methods. This is
hypothesized to occur because LEBS selectively interrogates
p(x, y) at subdiffusion length-scales in which information
about the superficial layers of tissue as well as the phase
function are not obscured by higher order scattering. In this
publication, we further corroborate this hypothesis with the
demonstration that in colon cancer p(r) is maximally altered at
a very small length-scale (∼ 40 µm) which would be difficult
to sense using a typical diffuse backscattering probe.

Still, there are situations in which it is more opportune to
use EBS as opposed to LEBS, and vice versa. As a research
aid in which one specialized instrument is desired for a wide
range of applications, EBS is the better choice. This is because
1) the laser source provides more efficient coupling of light
onto the sample and therefore better SNR and 2) EBS enables
full measurement of p(x, y), with no loss of information at
small length-scales [16]. On the other hand, since EBS requires
a broadband laser source and an extremely sensitive CCD
detector it would be prohibitively expensive and complicated
to implement as a population-wide cancer screening modality.
Therefore, as a diagnostic medical device which is specifically
optimized to detect the changes that occur in early cancer
carcinogenesis, LEBS is the better choice.

Currently, our WM Monte Carlo simulations are only valid
for modeling homogeneous media with random RI fluctua-
tions. Future progress in the use of EBS for tissue charac-
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terization will be focused on developing numerical models of
layered media to better understand the potential to resolve each
optical property as a function of depth.
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