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Abstract. Low-coherence enhanced backscattering (LEBS) is a depth-selective self-interference phenomenon that
originates from light traveling time-reversed paths in a scattering medium. The depth selectivity of LEBS and
its sensitivity to optical properties of the scattering medium has made it a promising technique for probing the
structure of biological tissue with applications to disease diagnosis and, in particular, precancerous conditions.
The ability to accurately predict the penetration depth of the LEBS signal is important in targeting an optimal tissue
depth for detecting precancerous cells. This prediction is further complicated by the variation in optical properties
of different tissue types. In this paper, the effects of the reduced scattering coefficient (μs’), the phase function and
the instrument spatial coherence length (Lsc) on the LEBS penetration depth are quantified. It is determined that
the LEBS penetration depth is primarily dependent on Lsc, μs’, and the anisotropy factor (g), but has minimal de-
pendence on higher moments of the phase function. An empirical expression, having a similar form as the double
scattering approximation for LEBS, is found to accurately predict the average penetration depth in the multiple
scattering regime. The expression is shown to be accurate for a broad range of experimentally relevant optical
properties and spatial coherence lengths. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3625402]
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1 Introduction

The depth-selective characterization of tissue has many appli-
cations for biomedical research. One important example is the
early detection of epithelial cancers, which account for more
than 95% of all cancer cases. Epithelial layers are typically
less than several hundred micrometers thick, thus requiring the
penetration depth of the signal to be significantly smaller than
the transport mean free path of light. Specialized optical meth-
ods must be employed in order to accomplish this high degree of
depth-selectivity. Furthermore, the epithelial layer thickness can
vary in different organs and locations within an organ. There-
fore, a technique should ideally possess the ability to optimize
the probed penetration depth to best suit the disease being stud-
ied. Proposed mechanisms for rejecting light outside of the tis-
sue layer of interest have included spatial gating,1 polarization
gating,2, 3 directional gating,4 and coherence gating.5–7

Low-coherence enhanced backscattering (LEBS) is a co-
herence gating technique that extends conventional enhanced
backscattering (EBS) by using broadband partial spatial coher-
ence illumination combined with wavelength-resolved detec-
tion. LEBS allows for depth-selective spectroscopy and over-
comes all of the limitations of conventional EBS measurements
from tissue.8 Additionally, the instrument is simpler to imple-
ment than other interferometer-based techniques and a single
measurement can obtain scattering information about a broad
range of penetration depths.9 The depth-selective characteristics
of LEBS have resulted in potential noninvasive cancer screening
approaches for colorectal and pancreatic cancers.10, 11 However,
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the penetration depth of the LEBS signal in these commonly
utilized experimental scenarios is not simple to estimate. Ex-
perimental measurements of the penetration depth can be bur-
dened with the difficulties of measuring samples that are tens of
micrometers thick. Monte Carlo simulations can be used to solve
the equation of radiative transfer and obtain a simulation of
LEBS.12, 13 Although accurate, numerical simulations of LEBS
are typically time consuming and a closed form expression that
can accurately predict the LEBS penetration depth for a large
variety of optical properties and experimental scenarios is of
great value for the purposes of designing and validating LEBS
instruments.

Previous work has resulted in a double-scattering model of
the penetration depth of LEBS which is accurate for spatial co-
herence lengths (Lsc) that are much smaller than the scattering
mean free path (ls).12 This model is informative in demonstrating
how the LEBS penetration depth is determined by the coherence
volume, however, the range of accuracy for the presented ex-
pressions is limited to Lsc values that are atypical for LEBS
experiments in tissue.10, 11 LEBS experiments have utilized Lsc

values ranging from 17 to 140 μm,9 while the double scatter-
ing approximation was demonstrated to be accurate for radial
separations of only 5 μm for tissue-relevant optical properties.
Although the most probable penetration depth was demonstrated
to have approximate agreement between the double scattering
model and numerical results for Lsc < ls, the translation between
the most probable penetration depth and more broadly relevant
average penetration depth is not straightforward. In this work,
we extend this concept to multiple scattering by adjusting the
relative proportion of the lateral and axial contributions to the
coherence volume. The accuracy of the presented expression

1083-3668/2011/16(9)/097006/5/$25.00 C© 2011 SPIE

Journal of Biomedical Optics September 2011 � Vol. 16(9)097006-1

mailto: vt@u.northwestern.edu.


Turzhitsky et al.: Multiple scattering model for the penetration depth of low-coherence enhanced backscattering

is demonstrated with comparisons to Monte Carlo simulations
utilizing the Mie, Henyey–Greenstein, and more general phase
function obtained from the Whittle–Matérn correlation func-
tion. The results are also presented for cases of co-polarized and
unpolarized light illumination and collection.

2 Methods
A publicly available light Monte Carlo code was modified to
store the maximum penetration depth of each backscattered
ray.14 As described in earlier work, the code was implemented
to simulate the LEBS peak by obtaining the Fourier transform
of the radial reflectance distribution.15, 16 One implementation
of the code was used to simulate Mie theory scattering and
included polarization tracking. In this case, simulations were
performed with sphere sizes having the anisotropy factor (g)
ranging from 0.06 and 0.96. A second implementation of the
code was used to evaluate the effect of varying types of phase
functions on the LEBS penetration depth. In this case, the
scalar-wave version of a general phase function that is based on
the Whittle–Matérn correlation function was implemented.17, 18

F(θ ) = 2(klc)2(m − 1)

1 − [1 + (2klc)2]1−m
· 1

{1 + [2klc sin(θ/2)]2}m
,

(1)

where θ is the scattering angle, k is the wavenumber, and the
two parameters lc and m relate to the correlation length and
functional form of the refractive index correlation function. An
m < 1.5 corresponds to a power law correlation function (this
is the mass fractal regime of light scattering with the fractal
dimension Dmf = 2m), an m of 2 indicates an exponential cor-
relation function, and as m approaches large values, a Gaussian
correlation function is approached.17 Any intermediate cases
are also included as intermediate values of m. When m is 1.5,
Eq. (1) is the well known Henyey–Greenstein phase function,
in which case, g = 〈cos θ〉 = 1 − [

√
1 + 4(klc)2 − 1/2(klc)2].

For other values of m,

1 − g = 1

2 (m − 2) (klc)2 − 2 (m − 1)

(m − 2) {[1 + 4 (klc)2]m−1 − 1} .

(2)

Details on the Whittle–Matérn correlation function and its use
for modeling light scattering can be found elsewhere.17, 18 For
our purposes, Eq. (1) will simply be used as a convenient and
flexible two parameter phase function that can have varying
first and higher order moments.

Due to the scaling property of Monte Carlo simulations, the
output of a single simulation with a given phase function can be
rescaled to obtain any value of ls by simply rescaling all of the
output lengths (e.g., depths, radii, and bin sizes).19 A series of
LEBS peak enhancement factors were calculated from the zero
value of the Fourier transform: E = ILEBS(0) = ∫∫

p(�r )c(�r )d�r ,
where p(�r ) is the two-dimensional backscattering probability
distribution as a function of the exit radius �r , and c(�r ) is
the spatial coherence of illumination.15, 16 For a given optical
property, a saturation curve was constructed for E by limiting
the maximum depth from which rays were reflected. In other
words, the thickness of the medium was modified via post-
processing. The normalized derivative of the saturation curve

yielded the probability distribution as a function of depth, p(z).
The average penetration depth was then calculated according to
the first moment: DP = ∫

z · p (z) dz.

3 Results
Under the double scattering approximation, the penetra-
tion depth has been shown to follow the form Dmp =
a

(
l∗s

)b
(Lsc)1−b, with Dmp being the most probable penetration

depth, l∗s = ls
/

(1 − g), and b being approximately 1/3.12 This
penetration depth can be physically interpreted as being related
to the cube-root of the effective coherence volume as character-
ized by a cylinder with a radius that is proportional to Lsc and a
height that is proportional to ls or l∗s . Here, we build upon this
concept by accounting for the changes in the dimensions of the
coherence volume due to multiple scattering. Thus, we utilize
the same form for the average penetration depth under multiple
scattering but modify the definitions of a and b based on the
empirical fitting of Monte Carlo data:

DP
/

Lsc = a
(
l∗s

/
Lsc

)b
, (3)

a = a1 (1 − g)a2 ,

b = b0 + b1 (1 − g)b2 . (4)

The term a and the power b depend on the anisotropy factor g,
as described by Eq. (4) and the constants in Table 1. The least
square fit was optimized to be accurate within the range of 2
< l∗s /Lsc < 33. For most soft tissues where g is approximately
0.9, a and b can be approximated as constants (see Table 1 for
values). These values depend on whether or not the measurement
configuration utilizes a co-polarized configuration or omits the
polarizers, as approximated with the scalar wave case.

It is important to recognize that Eqs. (3) and (4) include the
first moment of the phase function (g) but do not account for
higher moments. However, earlier numerical studies have shown
that the angular distribution of the LEBS peak (e.g., the angular
peak width) has a significant dependence on higher moments
of the phase function.15 For example, the Mie phase function
with a g of 0.9 results in a different LEBS peak width than the
Henyey–Greenstein phase function with an identical value of g.
The effect of higher moments on the LEBS penetration depth

Table 1 Values of constants from Eq. (2).

Constant Unpolarized Co-polarized

∼a (g = 0.9) 1.415 1.329

∼b (g = 0.9) 0.4773 0.4620

a1 1.071 0.9479

a2 –0.1208 –0.1468

b0 0.3000 0.3182

b1 0.5101 0.5523

b2 0.4589 0.5842

Journal of Biomedical Optics September 2011 � Vol. 16(9)097006-2



Turzhitsky et al.: Multiple scattering model for the penetration depth of low-coherence enhanced backscattering

0

200

400

600

800

1000

0 500 1000 1500 2000

P
e

n
e

tr
a

ti
o

n
 d

e
p

th
 (µ

m
)

Transport mean free path, ls* (µm)

0

200

400

600

0 500 1000 1500 2000

P
e

n
e

tr
a

ti
o

n
 D

e
p

th
  (

µ
m

)

Transport mean free path, ls*(µm)

H.-G.

m=1.3

m=1.7

Model

0

200

400

600

1.1 1.3 1.5 1.7 1.9 2.1

P
e

n
e

tr
a

ti
o

n
 D

e
p

th
 (µ

m
)

m

M.C.

Model

(c)(a) (b) M.C.

Model

0.2 0.5 0.8 0.9 0.95g

 

Fig. 1 Comparison of penetration depths from scalar Monte Carlo simulations based on the Henyey–Greenstein and Whittle–Matérn phase function.
(a) Comparison of three phase functions with g = 0.9 but varying higher moments. (b) The dependence of the penetration on m (l∗s = 1000 μm,
g = 0.9, Lsc = 60 μm). (c) Penetration depth versus l∗s for five values of g (Lsc = 60 μm, m = 1.5).

can be evaluated with the scalar Whittle–Matérn phase function
described by Eq. (1). The first moment of the phase function,
g, is obtained from Eq. (2). We can modify higher moments
of the phase function by varying m for a fixed value of g.18, 20

This results in phase functions that have a different shape but an
identical anisotropy factor. Figure 1(a) is a comparison of pen-
etration depths from three phase functions with varying shapes
but an identical anisotropy factor (g = 0.9). The penetration
depths from the Henyey–Greenstein phase function and phase
functions with m values of 1.3 and 1.7 are nearly identical.
Figure 1(b) is a plot of the penetration depth as a function
of m for l∗s = 1000 μm and g = 0.9. The average deviation
from the model for the entire range of m values shown is 4.5%.
Figure 1(c) shows the dependence of the penetration depth on
l∗s for several values of g and an Lsc value 60 μm based on
Monte Carlo simulations that utilize the Henyey–Greenstein
phase function. For small values of l∗s , the penetration depth
does not have a strong dependence on g. This is because the
coherence area is large enough to capture multiply scattered
diffuse light that only contains information about the transport
mean free path of the medium. On the other hand, when l∗s >

Lsc, there is a clear dependence of the penetration depth on g
due to the selection of light paths that enter and exit the medium
at small separation distances. The model (solid lines) closely
predicts the LEBS penetration depth for the entire range of
properties shown. The results in Fig. 1 indicate that the first mo-

ment of the phase function (g) has the most significant effect on
the LEBS penetration depth, with higher order moments having
a minor contribution. It is therefore justifiable to neglect higher
order moments of the phase function in model estimates of the
LEBS penetration depth, as this amount of error is acceptable
for most applications.

Tissue phantom experiments of LEBS most often use
polystyrene microsphere suspensions, and are more accurately
modeled with the Mie theory phase function than the Henyey–
Greenstein or Whittle–Matérn phase functions. Furthermore,
Mie theory-based simulations allow for the possibility of
accounting for the polarization state of backscattered light.
Figure 2 compares simulations that utilize the Mie theory phase
function with predictions of the model. Unpolarized light simu-
lations using the Mie phase function are compared to simulations
that utilize the Henyey–Greenstein phase function in Figs. 2(a)
and 2(b). Figure 2(a) shows a plot of the LEBS penetration depth
as a function of g for unpolarized light simulations that utilize
the Mie theory phase function, Henyey–Greenstein phase func-
tion simulations, and the model. The anisotropy factor for the
Mie theory phase function is determined by selecting the diam-
eter of the particle, while higher order moments of the phase
function are unconstrained. Higher values of g correspond to
larger diameter spheres in the Mie theory-based simulations
shown. Figure 2(b) shows the same phase function comparison
for the exponent on l∗s /Lsc from Eq. (4). This exponent can be
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Fig. 2 LEBS penetration depth for spherical particles. (a) LEBS penetration depth as a function of g: a comparison of the described model, simulations
employing the unpolarized light Mie phase function, and simulations employing the Henyey–Greenstein phase function. (b) Dependence of exponent
b from Eq. (4) for the same cases as shown in (a). (c) Comparison of Mie theory-based Monte Carlo simulations utilizing co-polarized illumination
and collection with the model.
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Fig. 3 Dependence of penetration depth on the three determining parameters l∗s , g, and Lsc. Monte Carlo data are shown as symbols and model is
shown as black lines. The percentage error between the model and Monte Carlo obtained penetration depth is shown at the bottom of each panel.
The dependence of penetration depth on l∗s is shown in (a) for Lsc = 60 μm and g = 0.93. The dependence of penetration depth on g is shown in
(b) for l∗s = 1000 μm and Lsc = 60 μm. The dependence of the penetration depth on Lsc is shown in (c) for l∗s = 1000 μm and g = 0.93. The Monte
Carlo results shown utilize the Mie phase function with co-polarized illumination and collection.

interpreted as the relative radius to depth ratio of the coherence
volume within the scattering medium. It is important to point out
that the exponent, b, has a significant dependence on g and this
dependence is well-modeled with Eq. (4). These results again
suggest that the effect of the type of phase function plays a mi-
nor role in determining the penetration depth. Figure 2(b) shows
that b decreases with increasing g suggesting that the spatial
coherence has a larger influence in determining the penetration
depth for large values of g. Figure 2(c) shows the agreement
between the model and the often used co-polarized illumina-
tion/collection geometry, as simulated with the Mie theory phase
function.

A demonstration of the trends that influence the penetration
depth of the LEBS signal is illustrated in Fig. 3. The penetra-
tion depth increases with increasing l∗s , as shown in Fig. 3(a).
The LEBS penetration depth is approximately proportional to
lsb, where b < 1, in contrast to conventional EBS which has a
penetration depth that is directly proportional to ls. Figure 3(b)
shows the dependence of the penetration depth on g. Interest-
ingly, the penetration depth decreases for higher values of the
anisotropy factor, an effect that is likely due to the increased
number of scattering events that accompany a decrease in ls
(higher g and constant l∗s results in smaller ls). The influence of
a smaller value of ls outweighs the forward-directed property of
the phase function. Figure 3(c) demonstrates the possibility of
adjusting the penetration depth by selecting an Lsc. The penetra-
tion depth is proportional to Lsc

1-b. Again, b approaches 1 in the
limiting case where Lsc approaches ∞ (the conventional EBS
regime). The errors between the simulation and model are plot-
ted at the bottom of each panel. In all of the cases the error is less
than 10%.

4 Conclusions
In summary, a simple model for the penetration depth of LEBS
that is valid for tissue relevant properties and previously used
experimental instruments was presented. It was found that the
penetration depth of light contributing to the LEBS peak is
primarily dependent on l∗s , Lsc, and g with a small effect of higher
order moments of the phase function. A generalized model with

a similar form to the double scattering approximation was shown
to agree with Monte Carlo simulations for both the scalar wave
and polarized light case. The maximum error of the model is
estimated to be approximately 10%, being sufficient for either
system design or approximate data interpretation of acquired
tissue measurements because most tissue layers have a relatively
large thickness relative to their depth location. Additionally, the
penetration depth distribution from LEBS is a broad function12

and a 10% error is small relative to the width of this distribution.
Thus, we anticipate that the presented model will aid in LEBS
system design and allow for a better understanding of the depth
location of cancerous and precancerous alterations that have
previously been observed in human tissue by providing simple
and accurate estimations of the average penetration depth of the
LEBS signal.
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