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Abstract
Microscopic structural changes have long been observed in cancer cells and used as a marker
in cancer diagnosis. Recent development of an optical technique, partial-wave spectroscopy
(PWS), enabled more sensitive detection of nanoscale structural changes in early
carcinogenesis in terms of the disorder strength related to density variations. These nanoscale
alterations precede the well-known microscopic morphological changes. We investigate the
influence of nuclear density variations due to chromosome condensation on changes of
disorder strength by computer simulations of model chromosomes. Nuclear configurations
with different degrees of chromosome condensation are realized from simulations of
decondensing chromosomes and the disorder strength is calculated for these nuclear
configurations. We found that the disorder strength increases significantly for configurations
with slightly more condensed chromosomes. Coupled with PWS measurements, the
simulation results suggest that the chromosome condensation and the resulting spatial density
inhomogeneity may represent one of the earliest events in carcinogenesis.

1. Introduction

Structural changes such as heterochromatin aggregation and
chromosome organization are indicated in most cancer cells
and used as a marker in cancer diagnosis [1, 2]. The changes
are more prominent in later stages of carcinogenesis and
are usually detected by conventional histological methods.
Detection of the structural changes at the nanoscale, however,
has been limited by the resolution of light microscopy
and, therefore, has been difficult especially in early stages
of carcinogenesis. The recent development of an optical
technique, partial-wave spectroscopy (PWS), enabled more
sensitive detection of structural changes occurring in early to
late stages of carcinogenesis and has shown a potential for
early diagnosis of cancer in the near future [3, 4]. PWS
measures a statistical property Ld, which is defined as the
product of average density fluctuations and its correlation
length. Throughout this work the property Ld is termed
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the disorder strength following previous work [3]. Statistical
averages of the disorder strength over cells show differences
between normal cells and cancer cells in early stages even
when they are indistinguishable by conventional histological
methods. So far, the diagnostic success of the PWS has been
proven for several types of cancer, including colon, pancreatic
and lung cancers [3, 4].

In order to provide biological understanding of structural
alterations in carcinogenesis, efforts are being made to identify
structural entities and processes that are responsible for the
alteration of the disorder strength, as observed in PWS
measurements. For cell lines studied in the previous work
a significant change in the disorder strength is observed
largely in a cell nucleus [3] and analysis and quantification of
their transmission electron microscopy (TEM) images showed
that mass density fluctuations correlate with a degree of
carcinogenesis in the cell nucleus [5]. Furthermore, it is
evident that there occur nuclear density variations such as
heterochromatin aggregation in many forms of cancer, as
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observed by conventional histological methods in late stages of
carcinogenesis [1]. Therefore, it is reasonable to hypothesize
that changes in nuclear density variations and its correlation,
by chromosome structural changes, give rise to a change in
disorder strength at the nuclear part of the cell.

In this work we aim to confirm the above hypothesis
and investigate how nuclear density variations, especially by
chromosome condensation, influence the disorder strength
in a cell nucleus by computer simulations of model
chromosomes. For this purpose we construct a model
system composed of chromosomes with different degrees
of condensation and calculate its disorder strength. The
structure of chromosomes has been investigated extensively in
recent years by experimental techniques such as fluorescence
in situ hybridization (FISH) [6–8], and chromosome
conformation capture (3C) and other 3C-based techniques
[9–11]. These techniques showed that chromosomes occupy
distinct territories and are distributed non-randomly in a cell
nucleus [7–13]. Detailed understanding of chromosome
structure, however, remains elusive. Furthermore, the
mechanism of chromosome condensation is not clear and,
therefore, the construction of a model nucleus with different
chromosome condensation is not straightforward.

In order to construct a model nucleus with different
degrees of chromosome condensation by compacting the
constituent chromosomes, additional attractions need to be
assumed between chromosome segments in an arbitrary
way due to the lack of our understanding of the
mechanisms responsible for chromosome condensation. In
this work, we circumvent this difficulty by adopting
chromosome configurations generated during decondensation
of compact chromosomes. We simulate the decondensation
of highly compact chromosomes driven by polymer
conformational entropy and excluded volume interactions
between chromosome segments. We assume that a
model nucleus with chromosome configurations generated
at different times of decondensation will have similar
density distributions to those of a biological cell nucleus
that consists of chromosomes with different degrees of
condensation induced by carcinogenesis. We calculate how
the condensed configurations of chromosomes alter average
density variations, and density–density correlation length and
thus disorder strength.

Several models of a chromosome have been proposed that
can reproduce currently available experimental data: the multi-
loop subcompartment model [14], the random loop model
[15] and the decondensing linear polymer model [16] for
the mean square intrachromosome distances measured with
FISH experiments; the crumpled globule model [11, 17]
for the contact probabilities with 3C-based techniques and
the kinkable chromatin fiber model [18] for both properties.
While the other models may be as successful in simulations of
decondensation, we employ the decondensing linear polymer
model in this work since the decondensation of compact
chromosomes has been well studied previously for this
model [16].

The rest of this paper is organized as follows:
interpretation of a disorder strength measured in PWS is

described in section 2, simulation model and methods are
described in section 3 and also in section 4 results are
presented and discussed. Finally, a summary and conclusion
are presented in section 5.

2. Partial-wave (optical) spectroscopy measures the
changes in nanoscale disorder strength in cells in
carcinogenesis

Visible-light microscopy is the means for detection of
morphological changes in cells and is restricted to the
micron and supramicron scales due to the diffraction-limited
resolution. Thus, efforts to understand biological processes
at the nanoscale have been stymied by the lack of practical
means of analysis of cellular nanoscale architecture.

Recently developed PWS enables us to image and quantify
nanoscale intracellular refractive index fluctuations in terms
of its disorder strength, Ld = 〈�n2〉 × lc, where �n is
the local fluctuating part of the intracellular refractive index
which depends on the local concentration of cell solids, (e.g.,
chromosomes, etc) and lc is its correlation length which
depends on the size of the intracellular solids. In order to assess
the nanoscale density fluctuations, PWS utilized a fundamental
principle of mesoscopic light transport theory that the signal
in 1D arising due to the multiple interferences of light waves
reflected from weak refractive index fluctuations is sensitive
to any length scale of refractive index fluctuations (for details
see [3, 4]). Because an optical refractive index is a linear
function of the local density of intracellular solids (proteins,
lipids, DNA, RNA, etc), the spectrum of a 1D scattering signal
contains information about spatial variations of density at
length scales that are well below the wavelength. PWS results
have shown that under realistic experimental conditions the
limit of sensitivity of PWS to lc is under 20 nm to any higher
length scales [3].

It has been shown that the optical refractive index (n)
is linearly proportional to the local mass density (ρ) of
intracellular macromolecules such as proteins, lipids, DNA
and RNA, i.e. n = n0 + �n = n0 + α�ρ, where n0 is
the refractive index of the medium surrounding a scattering
structure, ρ is the local density of solids and α is a
proportionality constant which is approximately the same
α ∼ 0.18 for majority of the scattering substances found
in living cells [19, 20]. The above relationship provides a
direct link between the mass density fluctuations in a cell and
the corresponding refractive index fluctuations. Therefore,
quantification of the mass density fluctuations implies the
quantification of the refractive index fluctuations or the optical
properties. Therefore, we can write �n = α�ρ and thus the
disorder strength can be defined as

Ld ∝ 〈�ρ2〉 × lc, (1)

where �ρ is the local density variation and lc is its correlation
length.

3. Simulation model and methods

Chromosomes in a cell nucleus are modeled as a decondensing
linear polymer. A similar model was employed to study
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Figure 1. A set of snapshots of model chromosomes during the course of decondensation, created using VMD [25]. Eight chromosomes of
∼10 Mbp, each represented by a different color, are located in a cubic simulation box with a length of 1.6 μm, and τBD is the unit of time in
Brownian dynamics simulations.

the chromosome decondensation and organization in the
interphase nucleus recently by Rosa and Everaers [16]. Each
model chromosome consists of 3400 segments with a diameter
of 30 nm, mimicking the chromatin fiber with a thickness of
30 nm at physiological salt concentrations [21]. Each segment
represents ∼3 kbp of DNA in chromatin and, therefore, each
chromosome has DNA contents of ∼10 Mbp. A symbol σ

represents the segment diameter of 30 nm and is used as a unit
of length in this work.

Initially, eight compact chromosomes are located in a
cubic simulation box with a length of ∼1.6 μm (equivalent
to 52.2σ ). As Brownian dynamics (BD) simulations
start, the compact chromosomes decondense, mimicking the
chromosome decondensation during interphase. Nuclear
configurations at different times during the course of
decondensation are saved, for which density variations and
disorder strength are calculated. The statistical properties
are calculated by averaging over 20 different realizations
obtained from simulations starting from 20 independent initial
configurations. The system is evolved using conventional
BD [22] without hydrodynamic interactions using GROMACS
version 4.0.5 with a use of tabulated interaction functions [23].
At each time step �t, the position ri(t) of a particle i is updated
via

ri (t + �t) = ri (t) +
D0Fi (t)

kBT
�t + Ri (�t), (2)

where Fi(t) is the total force acting on the particle i, and Ri(�t)
is a random displacement with a Gaussian distribution function
with zero mean and variance–covariance 〈Ri(�t)Rj (�t)〉 =
2D0�tδij . D0 is the diffusion coefficient of the chromosome
segment in pure solvent and sets the time scale by a definition
of the unit of time τBD = σ 2/D0. A time step �t = 10−4 τBD

is used for all the simulations. A total of 2 ×108 time steps
(2 × 104 τBD) are run for each of 20 simulations. The total
force Fi(t) is given by the gradient of Utotal, where Utotal is the
sum of bonded and non-bonded interactions described below.

Each chromosome segment interacts with other segments
by repulsive Lennard–Jones potential of the form

Ur(r) =
⎧⎨
⎩

4ε

[(σ

r

)12
−

(σ

r

)6
]

+ ε 0 < r < rc

0 elsewhere,
(3)

where ε is a Lennard–Jones well depth and set to kBT, and
rc = 21/6σ . Bonded segments in a chromosome interact with
a combination of finite extension nonlinear elastic (FENE)
potential

Ub(r) = − 1
2kbR

2
b ln[1 − (r/Rb)

2] (4)

and the repulsive Lennard–Jones potential given in (3). In (4),
kb = 30kBT/σ 2 and Rb = 1.5σ to prevent bonds in polymers
from crossing each other [24]. The stiffness of the polymer
is taken into account by the harmonic angle potential for an
angle θ formed by consecutive three segments:

Uθ(r) = 1
2kθ (θ − θ0)

2, (5)

where kθ = 4kBT and θ0 = π . For the given kθ , the persistence
length is calculated to be 120 nm.

The disorder strength Ld , defined in (1), is obtained by
calculating density variations 〈�ρ2〉 and its correlation length
lc in the model nucleus. For their calculation, the cubic
simulation box is divided into subcells of �x × �y × �z.
Since the minimum length scale in the model is σ as defined
by the diameter of chromosome segments, we vary �x = �y
between 2σ and 8σ corresponding to �x = �y = 60–240 nm.
However, �z is fixed as σ (= 30 nm) so that the density–
density correlation function in the z direction is calculated at
more frequent intervals. We have confirmed that qualitative
conclusions on the disorder strength do not change when it is
calculated for subcells with different �x = �y and �z.
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Figure 2. Radial chromosome density function, g(r), averaged over
eight chromosomes. The abscissa is a distance from the center of
mass of each chromosome. (a) Time evolution of radial density
function for t < 500 τBD. The ordinate is the simulation time in the
unit of τBD. (b) Radial density function at specific simulation times,
t′ = t/τBD.

4. Results and discussions

Figure 1 shows chromosome conformations in a representative
model nucleus during the course of decondensation. Eight
chromosomes in the nucleus are colored differently and
some parts of the same chromosomes are sometimes shown
simultaneously at different corners due to the use of a
periodic boundary condition. Initially, the highly compact
cylindrical chromosomes are located in the simulation box,
occupying 10% of total nuclear volume. There exists a
large empty space between highly condensed chromosomes.
As simulations proceed, the compact chromosomes start to
decondense to increase the polymer conformational entropy
and to reduce the excluded volume interactions between
chromosome segments. With decondensation, the empty
space between chromosomes is reduced and the chromosome
densities are delocalized. Since the influence of chromosome
condensation is of interest, the nuclear configurations at
different times during decondensation in figure 1 are assumed
to be those with different chromosome condensation induced
by carcinogenesis.

An average radial density function around individual
chromosomes is calculated in the course of decondensation and
plotted in figure 2 to understand the nuclear density variations
with time. Figure 2(a) shows the time evolution of the average
density variation of total chromosomes. At short times, the
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Figure 3. Normalized density correlation function,
〈�ρ(L)�ρ(L′)〉/〈�ρ2〉, where �ρ(z) = 〈ρ〉−ρ(z) and 〈ρ〉 and ρ(z)
are the average chromosome density and the density at z,
respectively. The unit of length σ = 30 nm. In legends, t′ = t/τBD.

chromosome density is very high within a distance of 10σ from
a chromosome center around which the radial density function
is calculated. The radial density function is close to unity
beyond 20σ due to the presence of neighboring chromosomes
and is very low in the intermediate region reflecting the empty
space between chromosomes. The radial density function
becomes more homogeneous with time, and after about
200 τBD the spatial inhomogeneity becomes rarely noticeable.
The radial density function is shown for specific times in
figure 2(b). The density inhomogeneity in a cell nucleus
becomes less significant after 100 τBD and reaches a steady
state after 200 τBD, which is also clear from the snapshots in
figure 1.

For nuclear configurations with different chromosome
condensation, average density variation and the density
correlation length are calculated, and the disorder strength
is calculated from (1). While calculation of the average
density variation as 〈�ρ2〉 is straightforward, calculation of the
density–density correlation length lc needs a brief discussion.
As shown in figure 3, density correlation functions defined as
〈�ρ(L)�ρ(L′)〉 are not exactly exponential functions (L and
L′ are positions in the z direction along which the correlation
function is calculated). In this work, however, we define
a correlation length as a length for which the correlation
function decays to a value of 1/e and use it as a measure
to differentiate the density correlation calculated for different
degrees of chromosome condensation. This is consistent with
the way the correlation length is calculated in the previous
paper to analyze the experimental observations [3], and we
had also verified that the correlation length defined in different
ways does not affect the qualitative conclusions from our
simulation studies.

Figure 4 shows the average density variation 〈�ρ2〉, the
correlation length lc and the disorder strength Ld as a function
of decondensation time (normalized to a corresponding
saturation value at t = 2000 τBD). Both the average density
variation and the correlation length change with chromosome
condensation, as well as the disorder strength. To calculate
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Figure 4. (a) Density variations 〈�ρ2〉, (b) density correlation length lc and (c) disorder strength Ld for t = 0–2000 τBD. Each variable at a
time (t) is normalized by its corresponding value at t = 2000 τBD. The data are calculated when the grid length of subcells is 120 nm in the
x and y directions and 30 nm in the z direction.

these quantities the model nucleus is divided into subcells
of �x × �y × �z. Quantitative results depend on the size
of subcells, but the qualitative conclusions on the disorder
strength do not change with a choice of the subcell size when
varied between 60 and 240 nm for �x = �y and between
30 and 60 nm for �z. The results in figure 4 are calculated for
the subcell size of 120 nm × 120 nm × 30 nm.

The disorder strength in figure 4(c) is higher when the
nuclear density is highly inhomogeneous (i.e. heterogeneous)
as can be seen at t = 0 τBD and 20 τBD, and decreases
for a cell nucleus with less condensed chromosomes or for
more homogeneous nuclear density. The disorder strength no
longer changes after t = 1000 τBD. Interestingly, the disorder
strength still changes to a non-negligible extent even when the
chromosome density distribution is fairly homogeneous after
100 τBD as shown in figure 2. This suggests that the disorder
strength is highly dependent on the small difference in the
degree of chromosome condensation or the minute change of
spatial density inhomogeneity.

Although the presence of chromosome territories has
been known from experimental observations, it is not
clear how much intermingling and mixing occurs between
neighboring chromosomes. Current experimental techniques
cannot decide the chromosome structures precisely and
which configuration in figure 1 resembles the interphase
nuclear chromosomes in normal cells. Rosa and Everaers
[16] showed that decondensing model chromosomes of
20 Mbp at different times of decondensation result in the
mean squared intrachromosome distance consistent with
experimental fluorescence in situ hybridization (FISH) data.
Therefore, simulation results of the model nucleus in this
work should be interpreted with an emphasis on the change of
a disorder strength caused by a difference in chromosome
condensation, not on the absolute value of the disorder
strength.

In conclusion, the disorder strength calculated in our
model nucleus increases to a significant extent when the
chromosomes in the nucleus are slightly more condensed. For
instance, the disorder strength increases with chromosome
condensation from configurations at time t = 500 τBD to
those at t = 100 τBD in figure 1. Using PWS, it was
shown that the disorder strength is increased in the earliest

stages of carcinogenesis even when the affected cell cannot
be distinguished from a normal cell based on its histological
appearance [3, 4]. The change in the disorder strength
was most pronounced in the cell nucleus [3, 5], and the
nuclear density variations by heterochromatin aggregation in
late stages have been hypothesized for many types of cancer
[1]. Taken together, these results suggest that there can be
minute nuclear density variations by structural alterations of
chromosomes in a cell nucleus in early carcinogenesis: too
subtle structural alterations to be observed in the conventional
histological methods, but large enough to be detected by PWS.

5. Conclusions and outlook

PWS measurements in several types of cancerous cells showed
the increase of disorder strength with carcinogenesis [3, 4].
In this work we investigated the effect of chromosome
condensation on the change of disorder strength by computer
simulations, in order to appreciate the contribution of
chromosome condensation to the disorder strength observed
in PWS measurements.

The decondensation of highly compact chromosomes
driven by polymer conformational entropy and excluded
volume interactions was simulated. A model nucleus
at different times of decondensation is assumed to have
similar chromosome distributions to those of biological cells
during carcinogenesis. The disorder strength calculated for
different nuclear configurations increases for those with more
condensed chromosomes. The disorder strength reached
a steady state when the chromosome density becomes
homogeneous in the entire nucleus. We conclude that the
disorder strength increases significantly even for the minute
changes of chromosome condensation and the resulting spatial
inhomogeneity. Coupled with PWS measurements, our
simulation study suggests that there can be nuclear density
variations by chromosome condensation in a cell nucleus in
early stages of carcinogenesis.

The chromosome model used in this work is a
simplistic model devised to correlate the different degrees of
chromosome condensation with changes in density variations
and its correlation length. The minimum and maximum
of correlation lengths calculated in this model (i.e. 60 and
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210 nm) are largely determined by scales of chromosome
segments (σ = 30 nm) and initial compact chromosomes
(∼200 nm), respectively. Further study would incorporate
the full range of the correlation length by using more detailed
model of chromosomes composed of nucleosomes and with
the realistic length on the order of about 100 Mbp. In addition,
other nuclear structures such as nucleoli and cajal bodies could
make a significant contribution to the local increase of disorder
strength observed in carcinogenesis. The study of density
variations by these nuclear structures would also represent
possible future directions of this work.

Little is known about the mechanism of chromosome
condensation. One of the hypotheses is the modification
in activities of proteins mediating the chromosome binding
and looping. When the protein-mediated binding between
chromatin fibers becomes stronger or more frequent, the
chromosome structure can become more condensed. Another
hypothesis is the environmental change in a cell nucleus
such as increased concentration of non-histone proteins by
overexpression or nuclear volume change. The chromosome
compaction by the increased macromolecular concentration
was proven by osmotically induced crowding [26, 27]. These
two hypotheses represent our research directions, and currently
efforts are being made to understand the nuclear environment
and its influence on nuclear nanoarchitecture in more detail.
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