Structural length-scale sensitivities of reflectance measurements in continuous random media under the Born approximation

Andrew J. Radosevich,* Ji Yi, Jeremy D. Rogers, and Vadim Backman

Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA *Corresponding author: arad@u.northwestern.edu

Received October 11, 2012; accepted November 14, 2012;

posted November 26, 2012 (Doc. ID 177894); published December 13, 2012

Which range of structures contributes to light scattering in a continuous random media, such as biological tissue? In this Letter, we present a model to study the structural length-scale sensitivity of scattering in continuous random media under the Born approximation. The scattering coefficient μ_s , backscattering coefficient μ_b , anisotropy factor g, and reduced scattering coefficient μ_s^* as well as the shape of the spatial reflectance profile are calculated under this model. For media with a biologically relevant Henyey–Greenstein phase function with $g \sim 0.93$ at wavelength $\lambda = 633$ nm, we report that μ_s^* is sensitive to structural length-scales from 46.9 nm to 2.07 μ m (i.e., $\lambda/13$ to 3λ), μ_b is sensitive from 26.7 to 320 nm (i.e., $\lambda/24$ to $\lambda/2$), and the spatial reflectance profile is sensitive from 30.8 nm to 2.71 μ m (i.e., $\lambda/21$ to 4λ). © 2012 Optical Society of America *OCIS codes:* 290.5825, 290.7050, 170.3660.

Elastic light scattering provides a valuable tool to *detect* and *quantify* subdiffractional structures even if they cannot be *resolved* by a conventional imaging system. However, the limits of the sensitivity of light scattering to different structural length-scales in a continuous random media (e.g., biological tissue) have not yet been fully studied. In this Letter, we present the methodologies used to study the length-scale sensitivities of the scattering parameters μ_s , μ_b , g, and μ_s^* as well as the diffuse reflectance profile in continuous random media.

Consider a statistically homogeneous random medium composed of a continuous distribution of fluctuating refractive index, $n(\vec{r})$. We define the excess refractive index which contributes to scattering as $n_{\Delta}(\vec{r}) = n(\vec{r})/n_o - 1$, where n_o is the mean refractive index. Since $n_{\Delta}(\vec{r})$ is a random process, it is mathematically useful to describe the distribution of refractive index through its statistical autocorrelation function $B_n(r_d) = \int n_{\Delta}(\vec{r}) n_{\Delta}(\vec{r} - r_d) d\vec{r}$.

One versatile model for $B_n(r_d)$ employs the Whittle–Matérn family of correlation functions [1,2]:

$$B_n(r_d) = A_n \cdot \left(\frac{r_d}{l_c}\right)^{\frac{D-3}{2}} \cdot K_{\frac{D-3}{2}}\left(\frac{r_d}{l_c}\right),\tag{1}$$

where $K_{\nu}(\cdot)$ is the modified Bessel function of the second kind with order ν , l_c is the characteristic length of heterogeneity, A_n is the fluctuation strength, and D determines the shape of the distribution (e.g., Gaussian as $D \to \infty$, decaying exponential for D = 4, and power law for D < 3). Importantly, when D = 3 this model predicts a scattering phase function that is identical to the commonly used Henyey–Greenstein model.

All light scattering characteristics can be expressed through the power spectral density Φ_s . Under the Born approximation, Φ_s is the Fourier transform of B_n [2,3]:

$$\Phi_s(k_s) = \frac{A_n l_c^3 \Gamma\left(\frac{D}{2}\right)}{\pi^{3/2} 2^{(5-D)/2}} \cdot (1 + k_s^2 l_c^2)^{-D/2}, \qquad (2)$$

0146-9592/12/245220-03\$15.00/0

where $k_s = 2k \sin(\theta/2)$ and k is the wavenumber.

In order to study the sensitivity of scattering to *short* length-scales (lower length-scale analysis), we perturb $n_{\Lambda}(\vec{r})$ by convolving with a three-dimensional Gaussian:

$$G(\vec{r}) = \left(\frac{16\pi ln(2)}{W^2}\right)^{3/2} \cdot \exp\left(\frac{-4ln(2)}{W^2}\vec{r}^2\right), \quad (3)$$

where *W* is the FWHM. Conceptually, $G(\vec{r})$ represents a process that modifies the original medium by removing "particles" smaller than *W*. Using the convolution theorem, this modified medium can be expressed as $n_{\Delta}^{l}(\vec{r}) = \mathcal{F}^{-1}[\mathcal{F}[n_{\Delta}(\vec{r})] \cdot \mathcal{F}[G(\vec{r})]]$, where \mathcal{F} indicates the Fourier transform operation and the superscript *l* indicates that lower frequencies are retained.

The autocorrelation of $n^l_{\Lambda}(\vec{r})$ can then be found as

$$B_n^l(r_d) = \mathcal{F}^{-1}[|\mathcal{F}[n_\Delta(\vec{r})]|^2 \cdot |\mathcal{F}[G(\vec{r})]|^2]$$

= $4\pi \int_0^\infty \Phi_s^l(k_s) \frac{k_s \sin(k_s r)}{r} \mathrm{d}k_s,$ (4)

where $\Phi_s^l(k_s)$ is the power spectral density for $n_{\Delta}^l(\vec{r})$ and can be computed as

$$\Phi_s^l(k_s) = \frac{A_n l_c^3 \Gamma\left(\frac{D}{2}\right)}{\pi^{3/2} 2^{(5-D)/2}} \cdot \frac{\exp\left(\frac{-k_s^2 W_l^2}{8ln(2)}\right)}{(1+k_s^2 l_c^2)^{D/2}}.$$
(5)

We note that Eq. (4) has no closed form solution, but can be evaluated numerically.

Figure <u>1</u> demonstrates the functions described by Eqs. (<u>4</u>) and (<u>5</u>) for varying values of W_l using a $B_n^l(r_d)$ with D = 3, $l_c = 1 \,\mu\text{m}$, and wavelength $\lambda = 633 \,\text{nm}$. This corresponds to a biologically relevant Henyey–Greenstein function with anisotropy factor $g \sim 0.93$. For increasing W_l , $B_n^l(r_d)$ shows a decreasing value at short length-scales [Fig. <u>1(a)</u>]. The point at which $B_n^l(r_d)$ deviates from the original $B_n(r_d)$ corresponds roughly to the value of W_l . The lower value of $B_n^l(r_d)$ at short length-scales corresponds to decreased intensity

© 2012 Optical Society of America

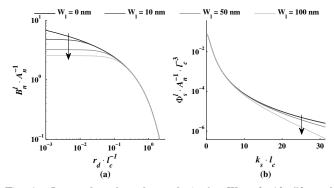


Fig. 1. Lower length-scale analysis for $W_l = 0$, 10, 50, and 100 nm with D = 3, $l_c = 1 \mu$ m, and $\lambda = 633$ nm. The normalized (a) $B_n^l(r_d)$ and (b) $\Phi_s^l(k_s)$. In each panel the arrow indicates increasing W_l .

of $\Phi_s^l(k_s)$ at higher spatial frequencies after Fourier transformation [Fig. <u>1(b)</u>]. To study the sensitivity of scattering to *large* length-scales (upper length-scale analysis), we employ the same model as above but filter larger particles by evaluating $n_{\Delta}^h(\vec{r}) = \mathcal{F}^{-1}[\mathcal{F}[n_{\Delta}(\vec{r})] \cdot$ $(1 - \mathcal{F}[G(\vec{r})])]$, where the superscript *h* indicates that higher frequencies are retained. The autocorrelation of $n_{\Delta}^h(\vec{r})$ can then be found as

$$B_{n}^{h}(r_{d}) = \mathcal{F}^{-1}[|\mathcal{F}[n_{\Delta}(\vec{r})]|^{2} \cdot |1 - \mathcal{F}[G(\vec{r})]|^{2}]$$

= $4\pi \int_{0}^{\infty} \Phi_{s}^{h}(k_{s}) \frac{k_{s} \sin(k_{s}r)}{r} dk_{s},$ (6)

where

$$\Phi_s^h(k_s) = \frac{A_n l_c^3 \Gamma\left(\frac{D}{2}\right)}{\pi^{3/2} 2^{(5-D)/2}} \cdot \frac{\left(1 - \exp\left(\frac{-k_s^2 W_h^2}{16\ln(2)}\right)\right)^2}{(1 + k_s^2 l_c^2)^{D/2}}.$$
 (7)

Figure 2 shows the functions described by Eqs. (6) and (7). For decreasing W_h , $B_n^h(r_d)$ exhibits a decrease at larger length-scales [Fig. 2(a)]. These alterations lead to a decreased intensity of $\Phi_s^h(k_s)$ at lower spatial frequencies [Fig. 2(b)].

As a way to visualize the continuous media represented by the above equations, Fig. 3 provides example

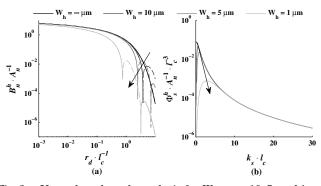


Fig. 2. Upper length-scale analysis for $W_h = \infty$, 10, 5, and 1 µm with D = 3, $l_c = 1$ µm, and $\lambda = 633$ nm. (a) $B_n^h(r_d)$ where the dashed curves indicate locations in which the curve is negative. (b) $\Phi_s^h(k_s)$. In each panel the arrow indicates decreasing W_h .

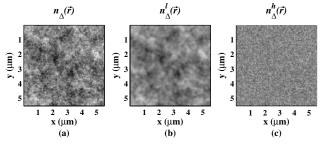


Fig. 3. Example media with D = 3 and $l_c = 1 \ \mu\text{m.}$ (a) $n_{\Delta}(\vec{r})$, (b) $n_{\Delta}^l(\vec{r})$, and (c) $n_{\Delta}^h(\vec{r})$ for $W_l = W_h = 100 \ \text{nm.}$

cross-sectional slices through $n_{\Delta}(\vec{r})$, $n_{\Delta}^{l}(\vec{r})$, and $n_{\Delta}^{h}(\vec{r})$ for D = 3, $l_{c} = 1 \ \mu$ m, and $W_{l} = W_{h} = 100 \ \text{nm}$.

Implementing the above methods, we now define a number of measurable scattering quantities. First, the differential scattering cross section per unit volume for unpolarized light $\sigma(\theta)$, can be found by incorporating the dipole scattering pattern into $\Phi_s(k_s)$:

$$\sigma(\theta) = 2\pi k^4 (1 + \cos^2 \theta) \Phi_s(k_s). \tag{8}$$

The shape of $\sigma(\theta)$ can be parameterized by the scattering coefficient μ_s , the backscattering coefficient μ_b , and g [4]:

$$\mu_s = 2\pi \int_{-1}^1 \sigma(\cos\theta) d\,\cos\theta,\tag{9}$$

$$\mu_b = 4\pi \cdot \sigma(\theta = \pi),\tag{10}$$

$$g = \frac{2\pi}{\mu_s} \int_{-1}^{1} \cos \theta \cdot \sigma(\cos \theta) d \, \cos \theta. \tag{11}$$

Conceptually, μ_s is the total scattered power per unit volume, μ_b represents the power scattered in the *backward* direction per unit volume, and *g* describes how *forward* directed the scattering is. Finally, the effective transport in a multiple scattering medium is expressed by the reduced scattering coefficient $\mu_s^* = \mu_s \cdot (1 - g)$.

Figure <u>4(a)</u> shows percent changes in the above scattering parameters under the lower length-scale analysis for a $B_n^l(r_d)$ with D = 3, $l_c = 1 \mu m$, and $\lambda = 633$ nm. With

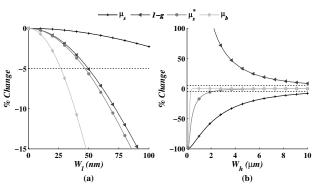


Fig. 4. Percent change in scattering parameters with varying values of W_l and W_h for D = 3, $l_c = 1 \ \mu\text{m}$, and $\lambda = 633 \ \text{nm}$. (a) Lower and (b) upper length-scale percent changes. The dotted line indicates the $\pm 5\%$ threshold.

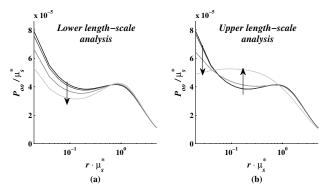


Fig. 5. Monte Carlo simulations of P_{oo} with D = 3, $l_c = 1 \mu m$, and $\lambda = 633$ nm. (a) Lower length-scale analysis for $W_l = 0, 30$, 60, and 90 nm. Arrow indicates increasing W_l . (b) Upper length-scale analysis for $W_h = \infty$, 10, 2, 0.5 μ m. Arrows indicate decreasing W_h .

increasing W_l , each parameter decreases from its original value. For μ_s , the decrease occurs because scattering material is removed from the medium. For 1 - g and μ_b , the decrease occurs as a result of reduced backscattering [see Fig. <u>1(b)</u>]. For μ_s^* , the decrease is a combination of the previous two effects.

To provide specific length-scale sensitivity quantification, we focus on the parameters most relevant to reflectance measurements: μ_s^* for samples within the multiple scattering regime and μ_b for samples within the single scattering regime. Defining a 5% threshold (a common significance level in statistics) the minimum length-scale sensitivity (r_{\min}) of μ_s^* and μ_b equals 46.9 nm ($\sim\lambda/13$) and 26.7 nm ($\sim\lambda/24$), respectively. Thus, measurements of μ_s^* and μ_b provide sensitivity to structures much smaller than the diffraction limit. Interestingly, r_{\min} is smaller for μ_b than μ_s^* . This can be understood by noting that k_s is maximized in the backscattering direction (i.e., $\theta = \pi$) and so provides the most sensitivity to alterations of $B_n(r_d)$ at small length-scales (see Fig. 1).

Figure <u>4(b)</u> shows percent changes in the scattering parameters under the upper length-scale analysis. With decreasing W_h , μ_s decreases because scattering material is removed from the medium. For 1 - g, an increase occurs due to a reduction in the forward scattering component. Combining these two opposing effects, the maximum length-scale sensitivity (r_{max}) for μ_s^* equals 2.07 µm (~3 λ). For μ_b , a very small value of W_h is needed in order to alter backscattering. As a result, r_{max} for μ_b is only 320 nm (~ $\lambda/2$).

In order to study the length-scale sensitivity of the spatial reflectance profile we performed electric field Monte Carlo simulations of continuous random medium as described in [5]. Here, we display the distribution measured with unpolarized illumination and collection, $P_{oo}(r)$. $P_{oo}(r)$ is the distribution of light that exits a semi-infinite medium antiparallel to the incident beam and within an annulus of radius r from the entrance point. It is normalized such that $\int_0^{\infty} P_{oo}(r) dr = 1$.

Figure <u>5(a)</u> shows P_{oo} under the lower length-scale analysis for a $B_n(r_d)$ with D = 3, $l_c = 1 \ \mu m$, and

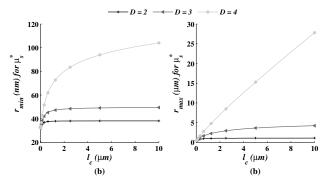


Fig. 6. (a) r_{\min} and (b) r_{\max} for μ_s^* with different shapes of $B_n(r_d)$ and $\lambda = 633$ nm.

 $\lambda=633$ nm. With increasing W_{l} , the value of P_{oo} is decreased within the subdiffusion regime (i.e., $r\cdot\mu_{s}^{*}<1$). This decrease can be attributed in part to the decreased intensity of the phase function in the backscattering direction [see Fig. 1(b)]. For $r\cdot\mu_{s}^{*}>1$, a range that is essentially insensitive to the shape of the phase function, P_{oo} remains largely unchanged. Figure 5(b) shows similar results for the upper length-scale analysis. In order to perform a sensitivity analysis, we calculate the maximum percent error at any position on P_{oo} relative to the original case. Applying a 5% threshold once again, we find that $r_{\rm min}=30.8$ nm ($\sim\lambda/21$) and $r_{\rm max}=2.71$ μ m ($\sim4\lambda$).

Finally, we note that the exact values of r_{\min} and r_{\max} depend on the shape of $B_n(r_d)$. The values given above provide an estimate assuming a correlation function shape that is widely used and accepted for modeling of biological tissue (Henyey–Greenstein). Figure <u>6</u> illustrates the dependence of r_{\min} and r_{\max} on the shape of $B_n(r_d)$, assuming the Whittle–Matérn model and using μ_s^* as an example. As either D or l_c increases, $B_n(r_d)$ shifts relatively more weight to larger length-scales and away from smaller length-scales. As a result, both r_{\min} and r_{\max} increase monotonically with D and l_c .

This study was supported by National Institutes of Health grants RO1CA128641 and R01EB003682. A.J. Radosevich is supported by a National Science Foundation Graduate Research Fellowship under Grant DGE-0824162.

References

- 1. P. Guttorp and T. Gneiting, "On the Whittle–Matérn correlation family," National Research Center for Statistics and the Environment, Technical Report Series (2005).
- J. D. Rogers, I. R. Çapoğlu, and V. Backman, Opt. Lett. 34, 1891 (2009).
- 3. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE, 1997).
- 4. C. F. Bohren and D. R. Huffman, *Absorption and Scattering of Light by Small Particles* (Wiley, 1983).
- A. J. Radosevich, J. D. Rogers, I. R. Çapoğlu, N. N. Mutyal, P. Pradhan, and V. Backman, J. Biomed. Opt. 17, 115001 (2012).