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Which range of structures contributes to light scattering in a continuous randommedia, such as biological tissue? In
this Letter, we present a model to study the structural length-scale sensitivity of scattering in continuous random
media under the Born approximation. The scattering coefficient μs, backscattering coefficient μb, anisotropy factor g,
and reduced scattering coefficient μ�s as well as the shape of the spatial reflectance profile are calculated under this
model. For media with a biologically relevant Henyey–Greenstein phase function with g ∼ 0.93 at wavelength
λ � 633 nm, we report that μ�s is sensitive to structural length-scales from 46.9 nm to 2.07 μm (i.e., λ∕13 to 3λ),
μb is sensitive from 26.7 to 320 nm (i.e., λ∕24 to λ∕2), and the spatial reflectance profile is sensitive from
30.8 nm to 2.71 μm (i.e., λ∕21 to 4λ). © 2012 Optical Society of America
OCIS codes: 290.5825, 290.7050, 170.3660.

Elastic light scattering provides a valuable tool to detect
and quantify subdiffractional structures even if they
cannot be resolved by a conventional imaging system.
However, the limits of the sensitivity of light scattering
to different structural length-scales in a continuous
random media (e.g., biological tissue) have not yet been
fully studied. In this Letter, we present the methodologies
used to study the length-scale sensitivities of the scatter-
ing parameters μs, μb, g, and μ�s as well as the diffuse re-
flectance profile in continuous random media.
Consider a statistically homogeneous random medium

composed of a continuous distribution of fluctuating
refractive index, n�r⃗�. We define the excess refractive in-
dex which contributes to scattering as nΔ�r⃗� �
n�r⃗�∕no − 1, where no is the mean refractive index.
Since nΔ�r⃗� is a random process, it is mathematically use-
ful to describe the distribution of refractive index
through its statistical autocorrelation function Bn�rd� �R
nΔ�r⃗�nΔ�r⃗ − rd�dr⃗.
One versatile model for Bn�rd� employs the Whittle–

Matérn family of correlation functions [1,2]:

Bn�rd� � An ·
�
rd
lc

�D−3
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· KD−3
2

�
rd
lc

�
; (1)

where Kν�·� is the modified Bessel function of the second
kind with order ν, lc is the characteristic length of hetero-
geneity, An is the fluctuation strength, and D determines
the shape of the distribution (e.g., Gaussian as D → ∞,
decaying exponential for D � 4, and power law for
D < 3). Importantly, when D � 3 this model predicts a
scattering phase function that is identical to the com-
monly used Henyey–Greenstein model.
All light scattering characteristics can be expressed

through the power spectral density Φs. Under the
Born approximation, Φs is the Fourier transform of
Bn [2,3]:

Φs�ks� �
Anl3cΓ

�
D
2
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· �1� k2s l2c�−D∕2; (2)

where ks � 2k sin�θ∕2� and k is the wavenumber.
In order to study the sensitivity of scattering to short

length-scales (lower length-scale analysis), we perturb
nΔ�r⃗� by convolving with a three-dimensional Gaussian:

G�r⃗� �
�
16πln�2�

W 2

�
3∕2

· exp
�
−4ln�2�
W2 r⃗2

�
; (3)

where W is the FWHM. Conceptually, G�r⃗� represents a
process that modifies the original medium by removing
“particles” smaller than W . Using the convolution theo-
rem, this modified medium can be expressed as
nl
Δ�r⃗� � F −1�F �nΔ�r⃗�� · F �G�r⃗���, where F indicates the

Fourier transform operation and the superscript l indi-
cates that lower frequencies are retained.

The autocorrelation of nl
Δ�r⃗� can then be found as

Bl
n�rd� � F −1�jF �nΔ�r⃗��j2 · jF �G�r⃗��j2�

� 4π
Z

∞

0
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where Φl
s�ks� is the power spectral density for nl

Δ�r⃗� and
can be computed as

Φl
s�ks� �
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We note that Eq. (4) has no closed form solution, but can
be evaluated numerically.

Figure 1 demonstrates the functions described by
Eqs. (4) and (5) for varying values of Wl using a
Bl
n�rd� with D � 3, lc � 1 μm, and wavelength

λ � 633 nm. This corresponds to a biologically relevant
Henyey–Greenstein function with anisotropy factor
g ∼ 0.93. For increasing Wl, Bl

n�rd� shows a decreasing
value at short length-scales [Fig. 1(a)]. The point at which
Bl
n�rd� deviates from the original Bn�rd� corresponds

roughly to the value of Wl. The lower value of Bl
n�rd�

at short length-scales corresponds to decreased intensity
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of Φl
s�ks� at higher spatial frequencies after Fourier

transformation [Fig. 1(b)]. To study the sensitivity of
scattering to large length-scales (upper length-scale
analysis), we employ the same model as above but filter
larger particles by evaluating nh

Δ�r⃗� � F−1�F �nΔ�r⃗�� ·
�1 − F �G�r⃗����, where the superscript h indicates that
higher frequencies are retained. The autocorrelation of
nh
Δ�r⃗� can then be found as

Bh
n�rd� � F −1�jF �nΔ�r⃗��j2 · j1 − F �G�r⃗��j2�
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Figure 2 shows the functions described by Eqs. (6)
and (7). For decreasing Wh, Bh

n�rd� exhibits a decrease
at larger length-scales [Fig. 2(a)]. These alterations lead
to a decreased intensity ofΦh

s �ks� at lower spatial frequen-
cies [Fig. 2(b)].
As a way to visualize the continuous media repre-

sented by the above equations, Fig. 3 provides example

cross-sectional slices through nΔ�r⃗�, nl
Δ�r⃗�, and nh

Δ�r⃗� for
D � 3, lc � 1 μm, and Wl � Wh � 100 nm.

Implementing the above methods, we now define a
number of measurable scattering quantities. First, the dif-
ferential scattering cross section per unit volume for un-
polarized light σ�θ�, can be found by incorporating the
dipole scattering pattern into Φs�ks�:

σ�θ� � 2πk4�1� cos2 θ�Φs�ks�: (8)

The shape of σ�θ� can be parameterized by the scattering
coefficient μs, the backscattering coefficient μb, and g [4]:

μs � 2π
Z

1

−1
σ�cos θ�d cos θ; (9)

μb � 4π · σ�θ � π�; �10�

g � 2π
μs

Z
1

−1
cos θ · σ�cos θ�d cos θ: (11)

Conceptually, μs is the total scattered power per unit vo-
lume, μb represents the power scattered in the backward
direction per unit volume, and g describes how forward
directed the scattering is. Finally, the effective transport
in a multiple scattering medium is expressed by the re-
duced scattering coefficient μ�s � μs · �1 − g�.

Figure 4(a) shows percent changes in the above scat-
tering parameters under the lower length-scale analysis
for a Bl

n�rd� with D � 3, lc � 1 μm, and λ � 633 nm. With
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Fig. 1. Lower length-scale analysis for Wl � 0, 10, 50, and
100 nm with D � 3, lc � 1 μm, and λ � 633 nm. The normalized
(a) Bl

n�rd� and (b) Φl
s�ks�. In each panel the arrow indicates

increasing Wl.
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Fig. 2. Upper length-scale analysis forWh � ∞, 10, 5, and 1 μm
with D � 3, lc � 1 μm, and λ � 633 nm. (a) Bh

n�rd� where the
dashed curves indicate locations in which the curve is negative.
(b) Φh

s �ks�. In each panel the arrow indicates decreasing Wh.
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Fig. 3. Example media with D � 3 and lc � 1 μm. (a) nΔ�r⃗�,
(b) nl

Δ�r⃗�, and (c) nh
Δ�r⃗� for Wl � Wh � 100 nm.
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Fig. 4. Percent change in scattering parameters with varying
values of Wl and Wh for D � 3, lc � 1 μm, and λ � 633 nm.
(a) Lower and (b) upper length-scale percent changes. The
dotted line indicates the �5% threshold.
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increasingWl, each parameter decreases from its original
value. For μs, the decrease occurs because scattering ma-
terial is removed from the medium. For 1 − g and μb, the
decrease occurs as a result of reduced backscattering
[see Fig. 1(b)]. For μ�s , the decrease is a combination
of the previous two effects.
To provide specific length-scale sensitivity quantifica-

tion, we focus on the parameters most relevant to reflec-
tance measurements: μ�s for samples within the multiple
scattering regime and μb for samples within the single
scattering regime. Defining a 5% threshold (a common
significance level in statistics) the minimum length-scale
sensitivity (rmin) of μ�s and μb equals 46.9 nm (∼λ∕13) and
26.7 nm (∼λ∕24), respectively. Thus, measurements of μ�s
and μb provide sensitivity to structures much smaller
than the diffraction limit. Interestingly, rmin is smaller
for μb than μ�s . This can be understood by noting that
ks is maximized in the backscattering direction (i.e.,
θ � π) and so provides the most sensitivity to alterations
of Bn�rd� at small length-scales (see Fig. 1).
Figure 4(b) shows percent changes in the scattering

parameters under the upper length-scale analysis. With
decreasing Wh, μs decreases because scattering material
is removed from the medium. For 1 − g, an increase
occurs due to a reduction in the forward scattering
component. Combining these two opposing effects, the
maximum length-scale sensitivity (rmax) for μ�s equals
2.07 μm (∼3λ). For μb, a very small value of Wh is needed
in order to alter backscattering. As a result, rmax for μb is
only 320 nm (∼λ∕2).
In order to study the length-scale sensitivity of the

spatial reflectance profile we performed electric field
Monte Carlo simulations of continuous random medium
as described in [5]. Here, we display the distribution
measured with unpolarized illumination and collection,
Poo�r�. Poo�r� is the distribution of light that exits a
semi-infinite medium antiparallel to the incident beam
and within an annulus of radius r from the entrance
point. It is normalized such that

R
∞

0 Poo�r�dr � 1.
Figure 5(a) shows Poo under the lower length-scale

analysis for a Bn�rd� with D � 3, lc � 1 μm, and

λ � 633 nm. With increasing Wl, the value of Poo is de-
creased within the subdiffusion regime (i.e., r · μ�s < 1).
This decrease can be attributed in part to the decreased
intensity of the phase function in the backscattering
direction [see Fig. 1(b)]. For r · μ�s > 1, a range that is
essentially insensitive to the shape of the phase function,
Poo remains largely unchanged. Figure 5(b) shows
similar results for the upper length-scale analysis. In or-
der to perform a sensitivity analysis, we calculate the
maximum percent error at any position on Poo relative
to the original case. Applying a 5% threshold once
again, we find that rmin � 30.8 nm (∼λ∕21) and rmax �
2.71 μm (∼4λ).

Finally, we note that the exact values of rmin and rmax
depend on the shape of Bn�rd�. The values given above
provide an estimate assuming a correlation function
shape that is widely used and accepted for modeling
of biological tissue (Henyey–Greenstein). Figure 6 illus-
trates the dependence of rmin and rmax on the shape of
Bn�rd�, assuming the Whittle–Matérn model and using
μ�s as an example. As eitherD or lc increases, Bn�rd� shifts
relatively more weight to larger length-scales and away
from smaller length-scales. As a result, both rmin and
rmax increase monotonically with D and lc.

This study was supported by National Institutes of
Health grants RO1CA128641 and R01EB003682. A.J.
Radosevich is supported by a National Science
Foundation Graduate Research Fellowship under Grant
DGE-0824162.

References

1. P. Guttorp and T. Gneiting, “On the Whittle–Matérn correla-
tion family,” National Research Center for Statistics and the
Environment, Technical Report Series (2005).

2. J. D. Rogers, İ. R. Çapoğlu, and V. Backman, Opt. Lett. 34,
1891 (2009).

3. A. Ishimaru, Wave Propagation and Scattering in Random
Media (IEEE, 1997).

4. C. F. Bohren and D. R. Huffman, Absorption and Scattering
of Light by Small Particles (Wiley, 1983).

5. A. J. Radosevich, J. D. Rogers, İ. R. Çapoğlu, N. N. Mutyal, P.
Pradhan, and V. Backman, J. Biomed. Opt. 17, 115001
(2012).

10
−1

10
0

0

2

4

6

8

x 10
−5

Lower length−scale
analysis

r ⋅ µ
s
*

(a)

P
oo

 / 
µ s*

10
−1

10
0

0

2

4

6

8

x 10
−5

Upper length−scale
analysis

r ⋅ µ
s
*

(b)
P

oo
 / 

µ s*

Fig. 5. Monte Carlo simulations of Poo with D � 3, lc � 1 μm,
and λ � 633 nm. (a) Lower length-scale analysis forWl � 0, 30,
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