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Abstract. The spectrum registered by a reflected-light bright-field spectroscopic microscope (SM) can quantify
the microscopically indiscernible, deeply subdiffractional length scales within samples such as biological cells
and tissues. Nevertheless, quantification of biological specimens via any optical measures most often reveals
ambiguous information about the specific structural properties within the studied samples. Thus, optical quan-
tification remains nonintuitive to users from the diverse fields of technique application. In this work, we demon-
strate that the SM signal can be analyzed to reconstruct explicit physical measures of internal structure within
label-free, weakly scattering samples: characteristic length scale and the amplitude of spatial refractive-index
(RI) fluctuations. We present and validate the reconstruction algorithm via finite-difference time-domain solutions
of Maxwell’s equations on an example of exponential spatial correlation of RI. We apply the validated algorithm
to experimentally measure structural properties within isolated cells from two genetic variants of HT29 colon
cancer cell line as well as within a prostate tissue biopsy section. The presented methodology can lead to
the development of novel biophotonics techniques that create two-dimensional maps of explicit structural proper-
ties within biomaterials: the characteristic size of macromolecular complexes and the variance of local mass
density. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this

work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.21.2.025007]
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1 Introduction
Visible-light microscopy and spectroscopy techniques remain
the principal tools of biological cell and tissue examination
in fields from basic science to medical diagnostics. Accord-
ingly, the limitations of these techniques also remain an open
problem. Specifically, due to their weakly scattering transparent
nature, biomaterials are notoriously difficult to analyze without
the use of exogenous labels. In addition, microscopy-based tech-
niques cannot image structures smaller than the diffraction limit
of light (≥200 nm, depending on optics setup) and spectros-
copy-based techniques only quantify sample bulk properties,
lacking the spatial resolution of obtained information.

It has been recently demonstrated that a tandem application
of spectroscopy and microscopy enhances the advantages and
mitigates the disadvantages of each technique, showing great
promise in a variety of application fields.1 Thus, a spectroscopic
microscope (SM), configured to detect interference spectra of
backscattered light in the far zone, can quantify the statistics of
nanometer scale refractive-index (RI) distribution via the spec-
tral variance (Σ̃2) of the acquired bright-field image. Further, it
has been determined that Σ̃ can sense RI fluctuations at any spa-
tial frequency whatsoever and its lengthscale sensitivity range is
limited only by the signal-to-noise ratio (SNR) of the instrument.2

Despite the remarkable ability to sense subtle, micro-
scopically indiscernibe structural alterations within weakly

scattering label-free media, the quantification of sample’s inter-
nal structure via Σ̃ is also associated with a degree of ambiguity.
As with most light-scattering markers of structure, it is not
always clear which of the two structural properties, the charac-
teristic lengthscale or the amplitude of RI fluctuations, cause a
change in Σ̃ during any particular experiment. In addition, the
value of eΣ is also affected by the sample thickness in a nonlinear
manner.2 In this work, we establish that the spectrum registered
by an epi-illumination bright-field wavelength-resolved micro-
scope can be analyzed to accurately and explicitly measure sam-
ple’s internal structure in terms of physical rather than optical
parameters: the standard deviation and characteristic lengthscale
of the spatial RI distribution.

2 Theoretical Background
Consider a spatially varying RI object sandwiched between two
semi-infinite homogeneous media (Fig. 1). The RIs of the three
media are from top to bottom: n0, n1½1þ nΔðrÞ� (as a function of
location r), and n2. We assume n1 ¼ n2 to approximate the typ-
ical case of fixed biological media on a glass slide.3,4 The unit-
amplitude plane wave incident normally onto the sample has
two distinct sources of reflection: the first is caused by the
RI mismatch on one side of the sample (top, air-sample interface
in Fig. 1), which is further referred to as reference arm reflec-
tance, and the second is composed of the light scattered from
weak RI fluctuations within the sample of interest, which com-
prises the sample arm. The reference and sample arms are com-
bined to form the wavelength-resolved far-field microscope
image. The optical interference of these two components results
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in spectral fluctuations of registered intensity, and the variance
of these fluctuations is the nanoscale-sensing marker Σ̃2.1

We emphasize that no assumptions of one-dimensional light
propagation are made in the underlying optics theory, and eΣ2 is
derived from full three-dimensional (3-D) consideration of light
scattering and propagation, as well as 3-D specification of RI
distribution within the sample.1

Thus, the instrument specifics of the SM technique are sum-
marized as white-light epi-illumination, bright-field microscope
with spectrally resolved image acquisition, small numerical
aperture (NA) of illumination (NA < 0.2), moderate NA of col-
lection [NA ∈ ð0.3; 0.6Þ], and with a pixel size of microscope
image corresponding to an area in sample space that is smaller
than the diffraction limit of light. For simplicity and SNR
enhancement, the collection NA used in this work is constant,
NA ¼ 0.6. In turn, the sample geometry includes: (i) a weakly
scattering sample of interest, (ii) sample thickness not greater
than the microscope’s depth of focus (for most setups, 5 to
15 μm), (iii) in the axial dimension, the sample should be RI
matched on one side (substrate in Fig. 1) and have a strong
RI mismatch on the other (air in Fig. 1) to ensure reference
and sample arm light reflections.

Since SM measures interference between a fixed reference-
arm reflection and the waves scattered from within the sample,
the variance of registered spectral oscillations eΣ2 can be decom-
posed into two components:

EQ-TARGET;temp:intralink-;e001;63;341Σ̃2 ¼ Σ̃2
R þ Σ̃2

L; (1)

where eΣL is fully described by the RI contrast at the bottom sur-
face, and eΣR is defined by the scattering events occurring within
the sample.

In Eq. (1), the optical path difference (OPD) between the
interfering waves contributing to Σ̃2

R is within 0 and 2n1L,
and the OPD of interfering waves contributing to eΣ2

L is always
2n1L. It follows that it should be possible to independently mea-
sure the two components eΣ2

R and eΣ2
L from the spectral frequency

composition of the SM spectrum, i.e., its Fourier transform ĨðzÞ.
Essentially, the Fourier transform of an SM spectrum shows the
amount of scattering that has occurred at depth z ¼ OPD∕2n1
inside the sample. For illustration purposes, frequency-space
spectrum jĨj as a function of depth z corresponding to an infinite
spectral bandwidth is shown in Fig. 2.

According to Parseval’s theorem, the spectral variance eΣ2 is
related to the Fourier transform of the spectrum as Σ̃2¼
1
Δk∫ ΔkI

2ðkÞdk¼ ∫ þ∞
0 Ĩ2ðzÞdz. Therefore, Σ̃2

R ¼E½∫ z<L
0 jĨðzÞj2dz�

and Σ̃2
L ¼ E½jĨðLÞj2dz�, where E½·� denotes the expected value of

a random variable.
However, in practice, the spectral bandwidth is naturally lim-

ited to the visible-light wave number range Δk, and the exper-
imental ĨðzÞ is the infinite-bandwidth ~IðzÞ convolved with a sinc
function sincðzΔk∕2Þ. Hence, a closed-form analytical equation
allowing to independently measure eΣR and eΣL from ~IðzÞ does
not exist. Nevertheless, this relation can be obtained empirically.

In this work, we develop empirical signal processing algo-
rithm for calculating spectral markers eΣR and eΣL independently.
Further, we demonstrate that two optical measures eΣR and eΣL
yield two physical measures of sample structure: the standard
deviation and the characteristic lengthscale of RI distribution.
Using SM data synthesized via finite-difference time-domain
(FDTD) solutions of Maxwell’s equations, we validate the
developed algorithm on samples with a wide range of structural
properties within the example of exponential spatial correlation
of RI. We then apply the validated algorithm to experimental
data from biological cells and tissues, measuring the explicit
physical characteristics of their internal organization.

3 Materials and Methods

3.1 Finite-Difference Time-Domain Simulations

In order to develop the inverse algorithm for eΣR and eΣL deter-
mination from the spectral-frequency composition of SM signal,
we simulate a physical experiment using rigorous FDTD
method, which calculates the light-scattering response of
arbitrary inhomogeneous materials via numerical solution of

Fig. 1 Sample geometry represented by three layers: RI of the middle
layer is random (the sample of interest), RIs of the top and bottom
layers are constant and spatially uniform; RI fluctuations as a function
of depth are depicted in gray. Registered signal is a coherent sum of
U ðr Þ and U ðsÞ.

(a) (b)

Fig. 2 jĨj2 of spectroscopic microscopy signal in an idealized case of an infinite bandwidth, pictured for
(a) single realization of a random medium and (b) E ½jĨj2� denoting the ensemble mean of Ĩ2. According to
Wiener–Khinchine theorem, the area under the square of the frequency-space spectrum equals the
spectral variance.
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Maxwell’s equations of electromagnetics.5–8 It is based on the
discretization of a 3-D volume into a Cartesian grid consisting of
small compared to the wavelength cubic voxels, and the solution
of Maxwell’s equations for the evolution of the electric and
magnetic field at discrete positions on this Cartesian grid.
The core algorithm of the FDTD method was proposed by
Yee9 in 1966, and popularized by Taflove in the ’80s and
’90s, who also coined the term FDTD. Compared to other
electromagnetic approximation methods, such as the finite-
element method or the method-of-moments, the FDTD method
is more intuitive and simpler to implement. The ease with which
inhomogeneous materials are handled in FDTD has made it very
attractive for biological applications.10–12

We have an in-house software implementation of the FDTD
method, called Angora.6,8 It can accurately calculate microscope
images of arbitrary inhomogeneous samples under various im-
aging parameters, incorporating RI fluctuations as fine as
10 nm.7 We have used Angora to synthesize all reported herein
bright-field plane-wave epi-illumination microscope images at
30 different wavelengths between 500 and 700 nm, equally
spaced in wave number space.

Sample RI geometry was set to resemble that of fixed bio-
materials on glass microscopy slides. RI of dehydrated cells and
tissues is reported to be between 1.50 and 1.55,3,4 with the exact
values being poorly investigated. In this study, we evaluated the
average RI n1 using Gladstone–Dale relation n ¼ nw þ αρ,
where nw is the RI of water, α is the specific refractive increment
(0.18 mL∕g), and ρ is the cell dry density, which was approxi-
mated here as that of stratum mucosum (1.15 g∕mL).13,14 Thus,
we set n1 ¼ 1.533,4 and n1σnΔ ¼ 0.05.15 The spatial RI correla-
tion was set to be exponential, and the RIs of the top and bottom
media were n0 ¼ 1.0 and n2 ¼ 1.53. To cover the biologically
relevant range of structural properties, samples with 6 different
thicknesses between 0.5 and 3 μm, 4 RI standard deviation val-
ues between 0.02 and 0.05, and 20 RI correlation lengths
between 20 and 250 nm were considered; spectrally resolved
15 × 15 pixel microscope images of 20 different samples per
statistical condition were synthesized (1 image pixel corre-
sponded to 240 × 240 nm area in sample plane, with the diffrac-
tion limit for the described setup being 1.2 μm). Following the
conventional use of discrete Fourier transforms of limited-band-
width signals, the synthesized reflectance spectra of every pixel
were multiplied by a discrete Hann window (to minimize alias-
ing), zero-padded to 29 total points (to increase frequency-space
sampling frequency and thus reduce the minimal error in z to
28 nm), after which fast Fourier transform was performed
using built-in MATLAB function fft, yielding the spectral-fre-
quency spectrum for each microscope image pixel. Then,
squared absolute values of the frequency-space spectra are aver-
aged across all pixels per statistical condition, and the ensemble
average E½jĨj2ðzÞ� is obtained.

3.2 Prediction Rule Derivation

3.2.1 Calculation of Σ̃R∕
ffiffiffiffiffiffiffiffi
kcL

p
and eΣL

In general, for a sample with RI fluctuation spatial correlation
function Bn∞Δ

ðrÞ and power spectral density of RI fluctuations
Φn∞Δ

ðkÞ (these two entities are related through the Wiener–
Khinchine theorem), eΣ2

R and eΣ2
L are analytically expressed as1

EQ-TARGET;temp:intralink-;e002;63;100Σ̃2
L ¼ Γ2kcNA

4

Z
∞

0

Bn∞Δ
ðrÞJ1ðrkcNAÞdr; (2)

EQ-TARGET;temp:intralink-;e003;326;741Σ̃2
R ¼ Γ2k2cL

Δk

Z
T3D

Φn∞Δ
ðkÞd3k; (3)

where Γ ¼ Γ01T01T10 is a combination of Fresnel reflectance
and transmission coefficients, Γ01 ¼ n0−n1

n0þn1
, T01 ¼ 2n0

n0þn1
,

T10 ¼ 2n1
n0þn1

. Here, both Bn∞Δ
ðrÞ and Φn∞Δ

ðkÞ are isotropic, as

they are defined for an unbounded medium n∞Δ ðrÞ, with a physi-
cal size much larger than the characteristic lengthscale of RI
fluctuations. The sample, in turn, is defined as a horizontal
slice of n∞Δ ðrÞ with thickness L, where L can be comparable
in magnitude to lengthscales of sample’s RI fluctuations. We
also note that eΣ2

R is a linear function of L. Thus, in this
work, we specifically aim to compute the internal-property
marker eΣ2

R∕kcL, which is independent of sample thickness L.
In an example of exponential functional form of Bn∞Δ

ðrÞ with
RI fluctuation variance σ2nΔ , spatial correlation length lc,

eΣ2
L, andeΣ2

R∕kcL is1

EQ-TARGET;temp:intralink-;e004;326;540Σ̃2
L ¼ Γ2σ2nΔ

4
½1 − 1∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðxNAÞ2

q
�; (4)

EQ-TARGET;temp:intralink-;e005;326;498

Σ̃2
R

kcL
¼ 2Γ2σ2nΔ

π

x3NA2

½1þ x2ð4þ NA2Þ�ð1þ 4x2Þ ; (5)

where x ¼ kclc is the unitless parameter of size with respect to
wavelength.

From the FDTD-generated library of SM images of samples
with thickness L ¼ 2 μm and known internal properties (nΔ
standard deviation σnΔ ¼ 0.033, and RI correlation lengths lc
from 20 to 250 nm), we empirically obtained equations relatingeΣR∕

ffiffiffiffiffiffiffiffi
kcL

p
and eΣL to ~IðzÞ (examples of E½j~IðzÞj2� in Fig. 3):

EQ-TARGET;temp:intralink-;e006;326;380

Σ̃2
R

kcL
¼ a

kc
E½jĨðL∕2Þj2�; (6)

EQ-TARGET;temp:intralink-;e007;326;337Σ̃2
L ¼ b1E½jĨðLÞj2� − b2E½jĨðL∕2Þj2�; (7)

where a ¼ 1.31, b1 ¼ 2.98, and b2 ¼ 1.39.

(a) (b)

250 nm20 nm

μm μm

Fig. 3 E ½jĨj2ðzÞ� is obtained by FDTD. Sample thickness 2 μm, expo-
nential functional form of RI spatial distribution with correlation
length (a) l c ¼ 20 nm (exemplifying a case when Σ̃2

R ≫ Σ̃2
L) and

(b) l c ¼ 250 nm (exemplifying a case when eΣ2
R < eΣ2

L). On each
curve, the depth L at which eΣ2

L is evaluated shown by red circles,
and depth L∕2 is used for eΣ2

R evaluation by green dots. The shape
of E ½jĨj2ðzÞ� changes with l c due to the difference in the functional
forms of Σ̃2

Rðl cÞ and Σ̃2
Lðl cÞ.

Journal of Biomedical Optics 025007-3 February 2016 • Vol. 21(2)

Cherkezyan et al.: Reconstruction of explicit structural properties at the nanoscale. . .



Since in this simulation, the sample thickness is known a
priori, jĨðzÞj2 was readily evaluated at z ¼ L∕2 and z ¼ L,
after which ~ΣR∕

ffiffiffiffiffiffiffiffi
kcL

p
and ~ΣL were found according to

Eqs. (6) and (7). Figure 5(a) illustrates the match between
~ΣR∕

ffiffiffiffiffiffiffiffi
kcL

p
and ~ΣL obtained from the FDTD data according to

the derived algorithm with those calculated by analytical
Eqs. (4) and (5) for the known sample parameters.

Most importantly, as seen from Eqs. (4) and (5), it is possible
to reconstruct the statistics of the internal structure lc and σnΔ
once eΣR∕

ffiffiffiffiffiffiffiffi
kcL

p
and eΣL are recovered. As both eΣR∕

ffiffiffiffiffiffiffiffi
kcL

p
andeΣL are linear functions of σnΔ , the relation between lc andeΣL

ffiffiffiffiffiffiffiffi
kcL

p
∕eΣR is only dependent on system parameters controlled

by the user (Δk and NA):

EQ-TARGET;temp:intralink-;e008;63;411

Σ̃L
ffiffiffiffiffiffiffiffi
kcL

p

Σ̃R
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

8

�
1−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðxNAÞ2

p �½1þx2ð4þNA2Þ�ð1þ4x2Þ
x3NA2

s
:

(8)

While a solution for x can be found numerically, for simplic-
ity and computational speed, we exploit the fact that
~ΣL

ffiffiffiffiffiffiffiffi
kcL

p
∕ ~ΣRðxÞ is well approximated as a linear function

for a wide range of correlation lengths above 15 nm and NA:
for any NA within 0 to 0.6, the r2 of linear regressions for
~ΣL

ffiffiffiffiffiffiffiffi
kcL

p
∕ ~ΣR for lc between 15 and 600 nm is above 0.98. In

the case of NA ¼ 0.6 considered throughout this work, x can
be found for any sample thickness simply as

EQ-TARGET;temp:intralink-;e009;326;730x ¼ 1.7
Σ̃L

ffiffiffiffiffiffiffiffi
kcL

p

Σ̃R
þ 0.45; (9)

with the fit shown in Fig. 4. The obtained value of x can be
substituted into Eq. (4) to find σnΔ as

EQ-TARGET;temp:intralink-;e010;326;665σnΔ ¼ 2Σ̃L

Γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðxNAÞ2

pq : (10)

Thus, our computations (results depicted in Fig. 5) postulate
that lc and σnΔ can be independently calculated from SM signal.
The condition necessary for using the corresponding empirical
Eqs. (6) and (7) followed by Eqs. (9) and (10) is the knowledge
of sample’s thickness L.

3.2.2 Reconstruction of sample thickness from
spectroscopic microscope data

We next develop signal processing algorithm for accurate meas-
urement of sample thickness from SM data. Finding sample
thickness is complicated in part by the fact that the sample-sub-
strate interface does not always reflect light due to the low RI
contrast at the bottom interface typical to fixed biomaterials on
glass. Specifically, this is the case when lc is smaller than the
diffraction-limited spot [as in Fig. 3(a)] and the frequency-space
spectrum E½jĨ2ðzÞj� does not necessarily contain an evident peak
at z ¼ L.

Nevertheless, since no light scattering events occur at z > L,
E½j~I2ðzÞj� always decays at z > L. The shape of E½j~I2ðzÞj� decay
“tail” at z > L has no closed-form analytical expression and
depends on the sample’s internal structure as well as the spectral
bandwidth of light.

Based on the FDTD-synthesized SM data used to develop
Eqs. (6) and (7), a fourth order polynomial was fitted to all cal-
culated frequency-space spectra E½j~IðzÞj� at z > L. Since the
shape of j~IðzÞj in general, and its decay at z > L in particular,
depends on lc, this was done for SM images of samples with
all 20 values of lc (between 20 and 250 nm). As a result, a 4 ×
20 matrix of corresponding polynomial coefficients was stored.
Then, a MATLAB function was created to find a best fit between

lc (nm)

Fig. 4 Σ̃L

ffiffiffiffiffiffiffiffi
kcL

p
∕Σ̃R as a function of correlation length and the linear fit

optimized for the subdiffractional range (l c < 300 nm, r 2 ¼ 0.98).

(a) (b)

Fig. 5 Accuracy of sample parameters measured from the FDTD-generated SM signal from a sample
with a known thickness: (a) Σ̃R∕

ffiffiffiffiffiffiffiffi
kcL

p
and Σ̃L as a function of the correlation length l c obtained for a

sample with thickness L ¼ 2 μm according to analytical equations (solid lines) and calculated from
FDTD simulation (circles with error bars corresponding to the standard deviation between nine ensem-
bles per statistical condition). (b) Corresponding true σnΔ

and l c (solid lines) and reconstructed from
FDTD-synthesized SM signal (circles with error bars corresponding to the standard deviation between
nine ensembles per statistical condition).
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an arbitrary experimentally measured E½j~IðzÞj� decay and the cre-
ated library of E½j~IðzÞj� decays for various values of lc. Finally,
the sample thickness is determined from the location of the best fit
of the experimental and FDTD-obtained j~IðzÞj decay tails.

To summarize, determining sample thickness from an arbi-
trary experimentally obtained spectrum allows the evaluation of
jĨðzÞj2 at z ¼ L∕2 and z ¼ L, yielding eΣR∕

ffiffiffiffiffiffiffiffi
kcL

p
and eΣL

[Eqs. (6) and (7)], as well as lc and σnΔ [Eqs. (8) and (10)],
which completes the developed inverse algorithm here.

3.2.3 Considerations of sample roughness

It is important to consider that in true experimental conditions
the surface roughness properties are most often unknown. Thus,
an optimal spectral processing algorithm must universally apply
to samples with rough as well as smooth surfaces. In cases when
the sample top surface is rough, the registered spectroscopic
microscopy signal has an additional, low spectral frequency
component.16 Thus, to remove this spectral feature related to
a property of sample surface, a second order polynomial is fitted
to the registered spectrum and subtracted from it16 prior to con-
verting the spectrum into spectral frequency space. We validate
this step by applying our inverse algorithm to FDTD-syn-
thesized SM images of weakly scattering samples with a
rough surface profile that is characteristic of biological cells
and tissues16 (average thickness of 2 μm, standard deviation
of nanoscale height variations within a diffraction-limited
area 22 nm, correlation length of height variations 170 nm, inter-
nal RI lc ¼ 100 nm, and σnΔ ¼ 0.033).

3.3 Spectroscopic Microscopy Instrument

For SM experimental measurements, we used our in-house
instrument previously built for high-throughput partial wave
spectroscopy measurements:17 epi-illumination bright-field
microscope with small illuminationNA ¼ 0.15, moderate collec-
tion NA ¼ 0.6, and 40× magnification (objective lens from
LUCPlanFL N, Olympus, Center Valley, Pennsylvania).
Koehler illumination scheme was implemented for uniformity
of incident light intensity throughout the image. Wavelength-
resolved image acquisition was accomplished by using Xenon
whitelight lamp illumination and spectral filtration of the light
incident onto the sample via acousto-optical tunable filter
(AOTF, HSI-300, Gooch & Housego, Orlando, Florida; filter
bandwidth of 3 nm). As a result, each measurement recorded
a 3-D ðx; y; λÞ data cube consisting of sample bright-field micro-
scope images ðx; yÞ obtained at 200 1 nm-spaced wavelengths λ
within the spectral range of 500 to 700 nm.

After the data were collected, spectral noise was removed
from spectra corresponding to each pixel of the acquired wave-
length-resolved microscope image by a low-pass spectral filter
using sixth order butterworth filter with a 0.2 frequency cutoff.
Then, data postprocessing was performed in exact accordance
with algorithm developed and applied to FDTD-synthesized
spectra, which included second-order polynomial fitting and
subtraction, Fourier transformation of spectra with the use of
Hann window and zero-padding, followed by the analysis of
the resultant E½jĨðzÞj2� spectrum.

3.4 Colon Cancer Cell Lines

The performance of the proposed analysis was first tested on
HT29 human colonic adenocarcinoma cell line models. The

experiment included two groups, control vector HT29 (CV)
cells and epidermal growth factor receptor (EGFR) knockdown
HT29 cells, a less aggressive genetic variant that is histologi-
cally indistinguishable from the CV.18–20

HT29 CVand EGFR knockdown cells were collected in cen-
trifuge tubes and centrifuged for 5 min at 1000 rpm. The super-
natant was removed, after which the cells were plated on a glass
chamber slide: 2 mL of fresh cell culture medium was added to
each chamber slide, which was then incubated at 37°C for 6 h.
After incubation, the medium was completely removed, the
slides were washed and then immediately fixed using 70% etha-
nol, which completed sample preparation. Slides were stored at
4°C until the spectroscopic microscopy data from 18 CV cells
and 17 EGFR knockdown variant cells were acquired.
Topography of the same cells was later obtained via an atomic
force microscope (AFM) to validate the cell thickness predic-
tions obtained from SM data.

3.5 Tissue Section

The second biological model for analysis algorithm application
and testing included human prostate tissue biopsy section.
Collection of the human sample was approved by the Institu-
tional Review Board at NorthShore University HealthSystem.
Sample was obtained from the NorthShore University active sur-
veillance trial initiated in November 2008. Informed written con-
sent was obtained from the participant.

Transrectal biopsy was obtained with 3-D ultrasound guid-
ance, fixed in ethanol and embedded in paraffin. Then, the sam-
ple was sectioned, and two sections were applied to a glass slide,
after which they were deparaffinized following standard histo-
logical procedures. Using one section, both SM and AFM data
were collected from the same region of the sample for structural
property determination. The other section was stained with
hematoxylin and eosin (H&E) to aid in organelle visualization,
which was used only for illustration purposes.

3.6 Atomic Force Microscope

Height map of the biological samples was determined at room
temperature by peak force tapping mode using a Bruker
Dimension Icon AFM system with silicon OTESPA-R AFM
probes (Bruker AXS).

For cell lines, 30 × 30 μm2 image was obtained with pixel
size of 46.9 nm and for tissue section, 90 × 90 μm2 image
was obtained with pixel size of 176 nm. Image magnification
(and, therefore, pixel resolution) for tissue section image was
chosen so that the AFM-imaged area of sample surface captures
the same area as within the SM field of view. At the same time,
larger magnification of cell line images was chosen due to their
surface area being much smaller than the microscope’s field
of view.

4 Results

4.1 Algorithm Validation on Finite-Difference Time-
Domain Generated Data

We validate the proposed inverse algorithm by applying it to a
validation set of Angora-synthesized SM data for samples with a
wide range of internal and surface properties.

First, we confirm that the developed algorithm is accurate for
experimentally realistic samples with uneven surface. To accom-
plish this, we apply the analysis algorithm to FDTD-synthesized
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SM images of 20 rough samples with RI distribution
lc ¼ 100 nm, σnΔ ¼ 0.033, and average L ¼ 2 μm. The rough-
ness of these samples was set to resemble that of biological cells
and tissues.16 Our analysis results reconstructed the internal
structure characteristics of the imaged samples with excellent
accuracy: predicted lc ¼ 93.1 nm (6.9% error from true value),
σnΔ ¼ 0.0315 (3.7% error) and predicted L ¼ 1.96 μm
(2.3% error).

This validates that subtraction of low-frequency components
from the registered spectra via a second-order polynomial effi-
ciently removes surface roughness contributions to the SM sig-
nal and allows accurate calculation of the internal properties.
Note that the lowest frequencies removed by the polynomial
correspond to small values of z in E½jĨðzÞj2� profile, which
are never sampled when eΣR and eΣL are evaluated. As a result,
our reconstruction algorithm remains accurate despite this addi-
tional spectral processing step.

In order to keep the spectral processing algorithm indepen-
dent of the sample surface features, we subtract the low-fre-
quency components from spectra obtained from all samples,
including the validation set below as well as the biological
cells and tissue.

Next, as a validation set for the inverse algorithm, we ana-
lyzed SM images of samples with various combinations of all
three measured parameters—lc, σnΔ , and L—covering the bio-
logically relevant range of structural properties. Figure 6(a)
illustrates the excellent accuracy in the prediction of varying
σnΔ obtained by the inverse algorithm from the FDTD-generated
spectrally resolved microscope images. In this set, lc ¼ 100 nm
and L ¼ 2 μm were fixed and were predicted within 15-nm
accuracy for lc and 6% accuracy for L. Figures 6(b)–6(d) present
prediction accuracy in a more complex case where RI correla-
tion length was varied within the subdiffractional range, and a
new thickness value L ¼ 3 μm was tested. Note that at
lc < 50 nm where the percentage of error in lc prediction is rel-
atively high, the predicted values of lc are still within tens of
nanometers from the corresponding true value [Fig. 6(b)].

4.1.1 Minimum thicknesses for analysis validity

Importantly, the finite spectral bandwidth of light Δk naturally
imposes limitations to the closest spectral frequencies of the SM
data that can be resolved. In turn, since OPDs of all interfering
waves are within the range of 0 to 2n1L, the sample thickness
confines the range of spectral frequencies present in the SM

signal. As a consequence, in the limit of very small L, values
of E½jĨðzÞj2� at z ¼ L∕2 cannot be resolved from those at z ¼ L,
and the key Eqs. (6) and (7) cannot be used. Thus, there must be
a lower limit to the sample thickness in order for the developed
herein analysis of spectral-frequency profile to apply.

We determine the lower limit of L for our algorithm accuracy
using sets of SM images generated for samples with various
thicknesses (L as low as 500 nm was tested). For every thick-
ness, SM images of samples with 20 subdiffractional lc within
20 to 250 nm were obtained in order to ensure that the thickness
limitations will be determined for a general case, independent of
the internal RI distribution.

We applied the inverse algorithm to calculate all three param-
eters: L, lc, and σnΔ and subsequently evaluated the error
between true and predicted parameters (as in Fig. 6). Results
of the error evaluation are summarized in Table 1.

Our analysis shows that accuracy in measuring lc is a greater
challenge than that in σnΔ for the inverse algorithm. Moreover,
σnΔ predictions remain extremely robust even in cases when the
error in the predicted lc is large [see Figs. 5(b), 6(a), and 6(c)].
We believe this to be explained by the fact that while the shape
of SM spectral-frequency profile depends strongly on lc [due to
the difference in eΣRðlcÞ and eΣLðlcÞ], both eΣR and eΣL scale lin-
early with σnΔ . Thus, subtle errors in the quantification of the
shape of E½jĨðzÞj2� have a stronger effect on the accuracy of
lc rather than on that of σnΔ .

To summarize, the inverse algorithm was developed on the
testing set of samples with L ¼ 2 μm and a subdiffractional
range of RI correlation lengths 20 to 250 nm. Then, we confirmed
that the algorithm is accurate even in the cases when samples have
a rough surface. Finally, we applied the algorithm to accurately
reconstruct the internal structure from SM data generated for a
large set of inhomogeneous weakly-scattering samples, where,
in addition to different lc values, we varied thickness from 0.5
to 3 μm Fig. 7, and σnΔ from 0.02 to 0.05. Results of the
above testing and validation procedures specify the accuracy
as well as the applicability range of the proposed methodology
(Table 1), positioning us for data processing from complex exper-
imental samples such as biological cells and tissues.

4.2 Cell Lines

After validating our methodology on FDTD solutions of
Maxwell’s equations, we proceeded with experiments on

Fig. 6 Accuracy of structural properties predicted from the FDTD-generated SM signal (a) σnΔ
predictions

from wavelength-resolved reflectance measurements simulated by FDTD for samples with varying σnΔ
,

l c ¼ 100nm, and L ¼ 2 μm. (b) σnΔ
and (c) l c predictions from samples with varying RI correlation lengths

l c , σnΔ
¼ 0.033, and L ¼ 3 μm, and (d) the corresponding percentage of error in calculation of σnΔ

, l c , and
L from the generated reflectance spectra.
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isolated biological cells. As a model, we chose HT29 human
colonic adenocarcinoma cell line. We have also used a genetic
variant of HT29 cells with EGFR knockdown, which partially
suppresses the proliferation aggressiveness of the cell line with-
out changing its microscopically visible morphological
qualities.18–20

Our theoretical derivations as well as FDTD simulation have
shown that the single necessary condition for obtaining the lc
and σnΔ values from SM data is accurate determination of

sample thickness. Thus, we specifically ensure that the predic-
tions of L obtained from experimental SM data are accurate by
comparing them to the values measured by AFM from the
same cells.

Results of this comparison are shown in Fig. 8. White-light
epi-illumination microscope image of an isolated HT29 cell
[Fig. 8(a)] and the corresponding AFM image of the same
cell [Fig. 8(b)] illustrate the spatial height variations and rough-
ness of cell surface that emphasize the complexity of biological
cell measurements. Note that to obtain the ensemble average
E½jĨj2ðzÞ�, Fourier transforms of independent spectra are aver-
aged. In the case of biological cells, this entails averaging
data from areas with different thicknesses. Despite this, our pre-
dictions of 35 cell-averaged thickness values with the
assumption of average RI to be 1.53 (RI of fixed biological
cells and tissues)3,4 show an excellent match with the physical
thickness of cells measured with AFM [Fig. 8(d)].

Next, we obtained lc and σnΔ predictions for the same bio-
logical cells. Our results showed that the characteristic length
scale of RI distribution within the two genetic variants is approx-
imately the same (552 nm inside the CV and 529 nm in EGFR-
knockdown variant). However, the standard deviation of RI
within those two genetic variants was drastically different:
0.04 inside the CV and 0.02 inside the less aggressive
EGFR-knockdown variant (Fig. 9). This difference was sta-
tistically significant with a p-value of 0.03.

4.3 Tissue Section

Last, we demonstrate that the developed methodology can be
used for spatially resolved quantification of the internal structure
of biological tissue specimens on an example of a sectioned
human prostate tissue biopsy. Transmission bright-field micros-
copy image of the neighboring hematoxylin- and eosin-stained
section is shown in Fig. 10(a) and bright-field reflectance micro-
scope image of the unstained sample of interest is shown in
Fig. 10(b). Following the above-developed procedure, we
first confirm the accuracy of the reconstruction algorithm by
comparing AFM-measured sample thickness with that predicted
using SM data [Figs. 10(c) and 10(d)]. Here, the large (com-
pared to single isolated biological cells) sample area allowed
data analysis in a spatially resolved manner, and the obtained

Table 1 Range of sample thicknesses for which quantification of the
internal (σnΔ

and l c ) as well as external (L) properties of the sample is
accurate.

Property Applicable samples Error

L L ≥ 1.0 μm <5%

σnΔ
L ≥ 1.5 μm, l c > 50 nm <10%

l c L ≥ 2.0 μm, l c > 50 nm <15%
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Fig. 7 Thickness prediction from SM frequency spectra, errors are
standard deviations across 20 samples with different RI correlations
lengths per thickness.
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Fig. 8 Experimental results from biological cells: (a) representative bright-field reflectance white-light
image of a cell; (b) representative height map obtained by AFM from the same cell (EGFR-knockdown
variant shown here), scale bar 5 μm; (c) tail-fitting of experimentally obtained Fourier transform of reflec-
tance intensity averaged throughout the cell area of interest; red dot corresponds to the predicted thick-
ness, where Σ̃L is estimated and the green dot corresponds to the midsample depth, where Σ̃R is
estimated for this particular spectrum. (d) Match between the cell thickness evaluated from the frequency
content of its reflectance intensity compared to that obtained with AFM; horizontal error bars indicate the
range (standard deviation) of thicknesses within the sample as measured by AFM.
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thickness map of the sample within microscope’s field of view
showed an excellent match with that measured with AFM (pix-
els with SNR < 1.25 were excluded from the SM data analysis).
Accurate evaluation of the observed match between the AFM-
and the SM-calculated sample topology is complicated by the
differences in pixel sizes, spatial resolutions, as well as sample
orientation in the respective images acquired by the two tech-
niques. Thus, after applying a Gaussian blur to the AFM
image to approximate a microscope’s diffraction-limited resolu-
tion, rotating and extrapolating images (to match the pixel size),
we have estimated that 74% of pixels used for internal property
reconstruction had an SM-measured thickness within 20% from
that measured by AFM.

Spatially resolved values of lcðx; yÞ and σnΔðx; yÞ were then
obtained, as depicted in Figs. 10(g) and 10(h). As per algorithm
limitations determined and reported above based on FDTD data
analysis (Table 1), we have calculated lcðx; yÞ only for areas
with thickness Lðx; yÞ > 2 μm (which comprised 48% of

sample area) and σnΔðx; yÞ only for areas with thickness
Lðx; yÞ > 1.5 μm (70% of sample area).

We also note that the relative blurriness of lcðx; yÞ and
σnΔðx; yÞ distributions is due to the fact that each value is a
cumulative statistical characteristic of sample structure within
a moving window of 25 × 25 pixels, which corresponds to
3.8 × 3.8 μm2. For the studied tissue sample, we found the
mean and most common lc values to be 118 and 80 nm corre-
spondingly. In turn, the mean and most common σnΔ values were
found to be 0.020 and 0.012. Based on this very limited dataset,
the overall shape of both lc and σnΔ value distributions appeared
to follow a lognormal functional form.

5 Discussion and Conclusions
In this work, we demonstrate that the spectral-frequency com-
position of a wavelength-resolved image registered by a
reflected-light, bright-field microscope can be analyzed to inde-
pendently obtain two explicit physical measures of the RI dis-
tribution within weakly scattering samples such as biological
cells and tissues: the standard deviation and the spatial correla-
tion length. Since the local mass density is a linear function of
RI within biomaterials (Gladstone–Dale relation),13 these mea-
sures of RI distribution directly translate into statistics of mass
density distribution inside biological cells and tissues: the cor-
relation length of mass density is exactly the same as that of RI,
and the standard deviation of mass is that of RI divided by the
RI-mass proportionality coefficient α ¼ 0.18 ml∕g. In biologi-
cal terms, variance of local mass density σ2ρðx; yÞ quantifies the
compaction degree of macromolecular complexes (folded pro-
teins, chromatin aggregates, etc.) contained within the volume
underneath a diffraction-limited area surrounding each pixel
ðx; yÞ.21 In turn, lcðx; yÞ is the characteristic size of macromo-
lecular complexes within that same volume. Hence, measure-
ment of σ2ρðx; yÞ and lcðx; yÞ is an important tool in studies
of structure–functional relationship in crucial biological proc-
esses including cancer initiation and progression (epigenetic
changes observed in fixed-cell nucleus,22,23 cytoplasm,24
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extracellular matrix,25,26 etc.), cell proliferation,20,27 as well as
genome dysregulation and potential therapy.28,29

Conceptually, the developed algorithm utilizes the physical
meaning behind the spectral-frequency profile E½jĨðzÞj2�, which
allows to obtain several independent parameters of sample’s
organization by evaluating E½jĨðzÞj2� at different z. First, no scat-
tering events occur at z > L, which we use to measure L.
Second, at z ¼ L, E½jĨðzÞj2� is predominantly defined by the
amount of light reflected at the sample–substrate interface,
which we use to measure eΣL. Third, at z ∈ ð0; LÞ, E½jĨðzÞj2� rep-
resents the amount of scattering from within the sample, which
determines eΣR∕

ffiffiffiffiffiffiffiffi
kcL

p
. Essentially, the reflection at z ¼ L is

defined by the two-dimensional (2-D) statistics of RI distribu-
tion, nΔðx; y; LÞ, and the scattering at z ∈ ð0; LÞ is defined by
the 3-D statistics of RI, which is why eΣR∕

ffiffiffiffiffiffiffiffi
kcL

p
and eΣL probe

the sample structure in a truly independent manner. We also note
that due to the statistical homogeneity considered here,eΣR∕

ffiffiffiffiffiffiffiffi
kcL

p
could be computed from the value of E½jĨðzÞj2� for

virtually any z between 0 and L. However, we have chosen
to calculate eΣR∕

ffiffiffiffiffiffiffiffi
kcL

p
at the midpoint of z ¼ L∕2 in order to

minimize the inevitable (due the finite spectral bandwidth) con-
tributions from surface roughness at low z and eΣL at z ¼ L.
Finally, at low z, E½jĨðzÞj2� also contains information about
the sample surface roughness profile in addition to its internal
inhomogeneity.16 Since the present work does not aim to mea-
sure surface statistics, the surface-related contributions are sim-
ply removed from the signal.

Technically, the underlying algorithm is composed of (i)
numerical curve fitting to measure L, (ii) an empirical step to
obtain the exact values of eΣR∕

ffiffiffiffiffiffiffiffi
kcL

p
and eΣL from E½jĨðzÞj2�,

and (iii) reconstruction of structural properties lc and σnΔ
based on analytical closed-form equations.

We have tested and validated the inverse algorithm using
FDTD solutions of Maxwell’s equations. The two important
advantages of FDTD for algorithm validation are (1) sample
exact structure known a priori and thus the technique precision
can be readily evaluated and (2) experimental noise and other
sources of error are absent. The testing set included SM images
synthesized for samples with thickness of 2 μm, and RI corre-
lation lengths of 20 to 250 nm. Then, the algorithm accuracy has
been extensively studied and validated on a larger set of samples
within biologically relevant structural properties, including 6
different thicknesses, 5 different RI standard deviation values,
and 20 correlation lengths for each value of L, as well as sam-
ples with surface roughness. Our results demonstrated an
excellent accuracy in measuring the correlation length within
samples with L ≥ 2 μm, standard deviation of RI for those
with L ≥ 1.5 μm, and thickness for L ≥ 1 μm, indicating the
applicability of the proposed technique to dehydrated squamous
epithelial cell nuclei (L > 1 μm), columnar epithelial cells
(L > 2 μm), and tissue sections (thickness chosen by the
user). These results also show that the accuracy in measuring
lc is a greater challenge for the inverse algorithm than that in
measuring σnΔ (Table 1). In fact, σnΔ predictions remain
extremely robust even when the error in the predicted lc is rel-
atively large [see Figs. 5(b), 6(a), and 6(c)]. Accordingly, our
validation studies were specifically focused on testing a wide
range of lc values along with a smaller set of σnΔ values.

Next, the validated algorithm was applied to quantify the
structure within fixed, label-free biological cells. After con-
firming with AFM that the necessary condition for our algorithm
accuracy—precise knowledge of cell thickness—has been satisfied,

we measured the intracellular σnΔ and lc of two genetic variants
of human adenocarcinoma HT29 cell lines. Due to their colum-
nar epithelial cell type, 85% to 90% of the measured cell
volume30 was occupied by the cell nucleus, and thus the mea-
sured structure was predominantly determined by the nuclear
organization of these cells. Results of our analysis showed
that while both variants of HT29 cells have a similar RI spatial
correlation length lc, the standard deviation of RI within the CV
exceeded that in the EGFR-knockdown variant by a factor of 2.
Thus, the cancer cell line with a more aggressive proliferating
behavior was found to have a similar characteristic lengthscale
but a much higher amplitude of the intracellular macromolecular
mass density variations. This observation is in agreement with
the previously published reports on an increased “degree of
inhomogeneity” within the CV compared to its EGFR-knock-
down variant.20 Importantly, these two genetic variants are
microscopically indistinguishable,18,19 which may be in part
reflected in the similarity between the measured microscale
RI correlation lengths.

Finally, on an example of experimental data from a biological
tissue section, we show that our algorithm can reconstruct the
internal structure of weakly scattering biomaterials in a spatially
resolved manner. This spatially resolved quantification of struc-
ture is possible when the lateral size of the sample (here
90 × 90 μm2) is much larger than the size of a diffraction-limited
spot and therefore, superpixel averaging of the frequency-space
SM signal yields enough statistics to measure the local σnΔ and lc,
corresponding to a neighboring 3.8 × 3.8 μm2 area. The mea-
sured values of RI standard deviation within the isolated cells
were only slightly higher than those in tissue (0.02 to 0.04 in
cancer cells and 0.012 to 0.02 in tissue). At the same time,
the RI correlation lengths measured in the two experiments
were very different (120 nm in tissue and 500 nm in cells).
Importantly, the two experiments were performed on entirely dif-
ferent models from the biological perspective: isolated cells of a
colon cancer cell line and a continuous section of microscopically
normal tissue from patient prostate biopsy and hence, their struc-
tural properties are also expected to differ. In addition, there are
slight sample-geometry differences in the two sample types,
which may have contributed to the difference in lc. First, intact
isolated cells always have cytoplasm at the sample–substrate
interface and hence, E½jĨðLÞj2� is mostly affected by the cytoplas-
mic structure. In turn, the sectioned tissue can have an arbitrary
organelle touching the substrate and thus, E½jĨðLÞj2� measured
the sample structure in a more statistically accurate manner.
Second, only the nuclear area with characteristically large, micro-
scale chromatin aggregates was analyzed in cancer cell lines,
while whole cells with no microscopically discernible marcomo-
lecular aggregates were included in the tissue section analysis.
We believe that all of the above factors must have contributed
to the observed fourfold difference in the RI correlation lengths
within cancer cell lines and histologically normal tissue. Lastly,
based on previous studies focused on the quantification of the
internal organization of biomaterials via light or electron
microscopy,20,23 we believe that data acquired from 10 to 30 fields
of view (30 to 150 biological cells depending on cell type) will
be sufficient to account for biological variability and determine
σnΔ and lc values typical for a given biological sample. In the
future, automated image acquisition can be implemented to
acquire and analyze whole-slide images of biological samples (up
to 1500 images per slide as has already been implemented
elsewhere).31
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The presented algorithm has been developed with the spe-
cific application focus of measuring internal structure of
fixed biomaterials. As a result, the sample mean RI was accord-
ingly set to 1.53 throughout the algorithm testing and validation
procedures. The observed match between sample thickness
determined by AFM (which measures physical thickness) and
SM (which measures optical thickness and recovers L using
the assumption of mean RI) confirms the accuracy of assumed
average RI value for fixed cells and tissue. In addition, the
choice of glass slides as sample substrates has also eliminated
deterministic light reflection at the bottom interface due to the
match between glass and sample average RIs. While these aver-
age RI choices do not change the nanoscale structure sensitiv-
ities of SM1 and do not affect our algorithm derivations from the
physics perspective, they define the scope of the sample/sub-
strate microscale properties tested in the presented work.
Following the outlined framework, the algorithms presented
herein can be easily extended to other sample/substrate proper-
ties as well as other applications of biophotonics. For example,
one could introduce an RI mismatch at the sample–substrate
interface to accentuate the E½jĨðzÞj2� peak at z ¼ L and sub-
sequently remove this deterministic contribution to E½jĨðLÞj2�
when σ̃L is calculated.1

From the perspective of structure parametrization, the inter-
nal properties σ2nΔ and lc measured by the inverse algorithm cor-
respond to the height and width of the spatial RI correlation
function. Thus, the value of σnΔ is independent of the sample’s
lengthscale composition and, therefore, of the shape of spatial
correlation function. At the same time, our definition of lc as the
correlation length of RI presented here involves an assumption
of exponential RI correlation. We note that previous calculations
based on electron microscopy images of biological cell nuclei
have shown that the SM signal predicted based on their exper-
imentally measured RI distribution matches that predicted based
on an lc value that assumes an exponential RI correlation.2 Thus,
even if under certain experimental conditions, the exact value of
lc can be prone to error, we still firmly believe that it provides a
valuable measure of sample’s lengthscale composition regard-
less of the functional form of its RI correlation function.

The technique presented herein is unique in its nanoscale
sensitivity, versatility, and ease of application: by an automated
analysis of a wavelength-resolved far-field microscope image, it
can explicitly measure physical properties native to weakly scat-
tering samples. Moreover, it requires no external labels or labor-
intensive sample fixation/processing procedures. However, this
great advantage also defines the main limitation of the present
work, as the exact values of lc and σnΔ measured from biological
samples cannot be corroborated by another independent tech-
nique. Thus, corroboration of the lc and σnΔ values predicted
by SM would require imaging of the 3-D native mass distribu-
tion within the same biological cells with nanometer resolution,
which is prohibitive with current state-of-the-art technology.
Nevertheless, the measured spatial standard deviation of RI
σn ¼ n1σnΔ from both sets of experimental data is within the
interval of (0.02, 0.06), which agrees with the estimates
based on a discrete-particle model of soft tissue.15 Analogous
estimates for correlation length of RI fluctuations inside
label-free ethanol-fixed biological cells and tissues are not
reported in previous literature, owing by large to the abovemen-
tioned technical limitations. Future work will focus on valida-
tion of the presented algorithm on experimentally measured data
from samples of known internal structure (controlled phantoms

or biological samples quantified via emerging nanoscale-
imaging methodologies such as correlative light-electron
microscopy).32

In summary, we establish that the spectrum registered by a
reflected-light microscope can be analyzed to independently
reconstruct two physical measures of internal structure within
samples such as biological cells and tissues. Applying this
approach can lead to the development of novel biophotonics
techniques capable of creating 2-D images of intracellular
mass-distribution properties such as characteristic size of macro-
molecular complexes and variance of local mass-density. The
ease of utilization as well as the most intuitive physical meaning
of measured parameters (as opposed to optical markers of
structure) will make this approach widely applicable for users
in fields from basic biology, material science to medical
diagnostics.
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