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Reflection statistics have not been well studied for optical random media whose mean re-

fractive indices do not match with the refractive indices of their surrounding media. Here,
we theoretically study how this refractive index mismatch between a one-dimensional

(1D) optical sample and its surrounding medium affects the reflection statistics in the

weak disorder limit, when the fluctuation part of the refractive index (∆n) is much
smaller than the mismatch as well as the mean refractive index of the sample (∆n� 〈n〉).
In the theoretical derivation, we perform a detailed calculation that results in the an-

alytical forms of the mean and standard deviation (STD) of the reflection coefficient

in terms of disorder parameters (〈(∆n)2〉
1
2 and its correlation length lc) in an index

mismatched backscattering system. Particularly, the orders of disorder parameters in
STD of the reflection coefficient for index mismatched systems are shown to be lower
(∼(〈∆n2〉lc)1/2) than that of the matched systems (∼〈∆n2〉lc). By comparing STDs of

the reflection coefficient values of index matched and mismatched systems, we show that
reflection coefficient at the sample boundaries in index mismatched systems can enhance

the signal of the STD to the “disorder parameters” of the reflection coefficient. In terms of
biophotonics applications, this result can lead to potential techniques that effectively ex-
tract the sample disorder parameters by manipulating the index mismatched conditions.
Potential applications of the technique for enhancement in sensitivity of cancer detection

at the single cell level are also discussed.
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1. Introduction

The statistical properties of transport in one-dimensional (1D) mesoscopic opti-

cal and electronic disordered media have been well studied.1–5 The quantum me-

chanical and optical systems are analyzed within the same formalisms because the

Schrödinger equation and Maxwell’s equations are reduced to the same Helmholtz

equation.6–9 After the Landauer formalism showed that the reflection coefficient is

related to the resistance or conductance of a sample, the outward scattering infor-

mation such as the reflection and transmission coefficients became important for

the studies of localization and conductance fluctuations in electronic systems.6,7 In

optical research such as light scattering and localization, the disorder properties of

the refractive index have been analyzed mainly under the assumption that the mean

of a sample refractive index matches with the refractive index of its surrounding

medium.6,8–10 The results based on this assumption show that the mean (〈r〉) and

fluctuation [standard deviation (STD)] of the reflection coefficient (r), σ(r), have

the same analytical form in the weak disorder limit (∆n � 〈n〉). However, reflec-

tion statistics have not been thoroughly studied for systems where the mean of the

sample refractive index does not match with the refractive index of the surrounding

medium.

The STD of the reflectance σ(r) exhibits significantly different behaviors in index

mismatched systems in the weak disorder limit. The orders of disorder parameters

(〈(∆n)2〉 12 and lc) in the mean of the reflectance are of the same order in the

matched and mismatched systems (〈r〉 ∼ 〈∆n2〉lc). But the STD of the reflectance

in mismatched systems deviates from that of matched systems, having different

orders of disorder parameters in σ(r) (σ ∼ 〈∆n2〉1/2l1/2c ).

In this paper, we present a detailed theoretical derivation and a physical in-

terpretation of the reflection statistics in index mismatched systems. In Sec. 2,

by applying the index mismatched condition, we re-express the Langevin equation

with two separate equations: a deterministic equation and a stochastic equation.

Then, a short-range correlated random noise is introduced to the refractive index

of an optical sample in the weak disorder limit. Finally, the mean and STD of the

reflectance are calculated by the perturbative expansions in terms of disorder pa-

rameters and boundary index mismatch terms. In Sec. 3, based on the results in

Sec. 2, the STDs of the reflection coefficient in matched and mismatched systems

are compared, and the physical origin of their difference is explained. A potential

application of the technique in mismatched systems is also discussed in the context

of extracting the structural disorder parameters in a more efficient way in biological

cell systems from the back scattering signal.
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2. Theoretical Calculation

2.1. Langevin equation with boundary refractive indices

mismatched condition

In this subsection, we construct the framework of theoretical derivation by reformu-

lating the stochastic equation for the reflection coefficient with the refractive index

mismatched condition. For this, let us first consider a 1D optical dielectric random

medium that exists in 0 ≤ x ≤ L and its surrounding medium (x > L or x < 0). In

the stationary regime, a wavefunction ψ(x) of an electromagnetic field is described

by the Maxwell’s equation:

d2ψ

dx2
+ k2n2(x)ψ = 0, (1)

where k is a wave vector in a vacuum and n(x) is the medium refractive index in

0 < x < L.

When a plane wave with a wave vector k impinges on the random medium from

the right as shown in Fig. 1, the wavefunction has a form: ψ(x) = e−ik(x−L) +

R(L)eik(x−L) (x > L) and ψ(x) = T (L)e−ikx (x < 0), where R(L) and T (L) are

the reflection and transmission coefficients of the sample. Based on the invariant

imbedding approach,6 R(L) is described by a stochastic differential equation (i.e.,

Langevin equation) with an initial condition:

dR(L)

dL
= 2ikR(L) +

ik

2
η(L)[1 +R(L)]2, R(L = 0) = 0, (2a)

where η(x) is a randomly fluctuating function in 0 < x < L defined by η(x) =

n2(x)− 1.

Typically in studies of quantum mechanical or optical systems,1,6 the potential

or refractive index within a random medium is assumed to fluctuate around the

potential or mean refractive index level of its surrounding medium. When the sur-

rounding medium is a vacuum, this means η(x) has zero mean, i.e., 〈η(x)〉 = 0.

Fig. 1. (Color online) The 1D light scattering by a random optical medium is described. Light is

incident on the medium from the right (black arrow), reflected (red arrow) and transmitted (blue
arrow). Due to index mismatch at x = 0 and L, the light experiences an interference caused by
boundary reflections. nr and nt are the refractive indices of the surrounding medium in x > L
and x < 0.
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However, in this paper, we consider an optical random sample whose mean refrac-

tive index, n0(= 〈n(x)〉), does not match with the index of its surrounding medium.

(See Fig. 1.) Therefore, the effect of this refractive index mismatching at x = 0 and

L needs to be taken into account in the analysis of the reflection statistics.

To include the effects of an index mismatch, we view the random medium of

Fig. 1 as an optical medium with a constant index that is perturbed by weak spatial

disorder. Then, the sample medium index can be written as n(x) = n0 + ∆n(x),

where n0 = 〈n(x)〉 and ∆n is a deviation around n0. Accordingly, we can rewrite

the random function η(x) in Eq. (2a) as a sum of its mean and fluctuation parts:

dR(L)

dL
= 2ikR(L) +

ik

2
[(n20 − 1) + n0ηd][1 +R(L)]2, (2b)

where ηd = 2∆n + O(∆n2). From here, O(∆n2) in ηd is ignored since the weak

disorder limit (∆n � n0) is applied. Now, we consider R(L) in Eq. (2b) as a

sum of two separate contributions: reflection due to the boundary index mismatch

(n0 6= nout) and a perturbation due to weak disorder ∆n. Accordingly, we rewrite

R(L): R(L) = Rs(L) + ∆R(L), where Rs(L) is a deterministic reflection coefficient

due to the interference between two boundaries (x = 0 and L) and ∆R(L) is the

remaining contribution due to ∆n. The differential equation of Rs(L) is given in

Eq. (2c) by ∆n → 0 in Eq. (2b). Then, the stochastic equation for ∆R(L) can be

derived as in Eq. (2d) by subtracting Eq. (2c) from Eq. (2b) (Ref. 6):

dRs(L)

dL
= 2ikRs +

ik

2
(n20 − 1)[1 +Rs]

2, (2c)

d∆R(L)

dL
= 2ik∆R+

ik

2
n0ηd[1 +Rs + ∆R]2 +

ik

2
(n20 − 1)[2∆R(1 +Rs) + ∆R2],

(2d)

where Rs(L = 0) = 0 and ∆R(L = 0) = 0. Equation (2c) is a simple interference

problem with a thin slab geometry of two boundaries (x = 0 and L). Rs is well

described both as a perturbative form and as a closed form.11 In Sec. 2.3, the

perturbative form is used to calculate the mean and STD of the reflectance.

2.2. Weak disorder with short-range spatial correlation: Different

averages

Before obtaining the mean and STD of reflectance, it is necessary to consider the

stochastic behavior of a sample refractive index. This gives us the ability to calcu-

late the moments of the complex reflection amplitude difference ∆R. To describe

the stochastic properties of the refractive index, we introduce a spatially corre-

lated disorder, that is Gaussian color noise with exponential decay, into the optical

medium in Fig. 1. Specifically, we adopt an Ornestein–Uhlenbeck stochastic process

and establish statistical properties of ηd(= 2∆n) in Eq. (2b) (Ref. 6):

〈ηd〉 = 0, 〈ηd(x)ηd(x
′)〉 = ∆2 exp(−|x− x′|/lc), (3a)
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where lc is a correlation length of ∆n and ∆2 = 4〈∆n2〉. In this paper, we assume

a short-range correlation, klc < 1. When ηd satisfies Eq. (3a), its differentiation

formula is derived for a functional of ηd (Ref. 6):

∂

∂x
〈ηd(x)Φ[ηd(x)]〉 =

〈
ηd(x)

∂

∂x
Φ[ηd(x)]

〉
− 1

lc
〈ηd(x)Φ[ηd(x)]〉, (3b)

where Φ is a functional of ηd.

Now differential equations for any moments of ∆R(L) can be derived based on

Eq. (3b). Therefore, the mean and STD of the reflectance can also be calculated

(see the next subsection). To assist the calculation, we first calculate 〈ηd∆R〉, which

is a stochastic contribution of the mean and STD in the leading order of ∆2. Using

Eqs. (2d) and (3b) with Φ = ∆R and keeping ∆R up to O(η1d), a formal expression

of 〈ηd∆R〉 up to O(∆2) can be written (see Appendix A):

〈ηd∆R〉 =
i

2
n0klc∆

2

(
1

1− 2iklcβ

)[
1− lc

∂

∂L

]
(1 +Rs)

2, (4)

where β = 1 + (n20 − 1)(1 + Rs)/2. Here, we introduce a phase transformation

which simplifies Eq. (2d) by removing O(η0d) and makes the perturbative calculation

straightforward in the next subsection:

∆R(L) = ∆Q(L) · e2ikα(L), (5)

where α =
∫ L
0
β(L′)dL′. The same relationship exists between R and Q, and be-

tween Rs and Qs. The phase term, e2ikα, is used to separate the rapid phase os-

cillation caused by 2ikR in Eqs. (2a)–(2d). When the constant part of the random

potential η, (n20 − 1), vanishes, the phase factor e2ikα in Eq. (5) becomes e2ikL,

which is a mere phase delay due to a round trip within [0, L] in a vacuum. In this

Q representation, Eq. (2d) becomes:

d∆Q

dL
=
i

2
n0kηde

−2ikα[1 +Rs + ∆Qe2ikα]2 +
i

2
k(n20 − 1)(∆Q)2e2ikα

=
i

2
n0kηde

−2ikα[1 +Rs]
2 +O(η2d). (6)

The leading order of ηd in Eq. (6) is (ηd)
1, whereas that of Eq. (2d) is (ηd)

0. By

using Eq. (5), the expression corresponding to Eq. (4) can be written again up to

O(∆2):

〈ηd∆Q〉 =
i

2
n0klc∆

2

(
e−2ikα

1− 2iklcβ

)[
1− lc

∂

∂L

]
(1 +Rs)

2. (7)

Now, the mean and STD of reflectance can be readily derived based on Eq. (7) in

the Q representation.
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2.3. Mean and STD of the reflectance

In this subsection, we calculate the mean and STD of the reflectance perturbatively

up to O(∆2). For a perturbative expansion, the mean and variance can be decom-

posed into deterministic terms and disorder terms by using R(L) = Rs(L)+∆R(L).

〈r〉 = 〈(Rs + ∆R)(Rs + ∆R)∗〉 = rs +R∗s〈∆R〉+ c.c.+ 〈|∆R|2〉, (8a)

σ2(r) = 〈r2〉 − (〈r〉)2 = 2rs[〈|∆R|2〉 − 〈∆R∗〉〈∆R〉] +R2
s[〈∆R∗2〉 − 〈∆R∗〉2] + c.c.

+ 2Rs[〈∆R∗|∆R|2〉 − 〈∆R∗〉〈|∆R|2〉] + c.c.

+ 〈|∆R|4〉 − 〈|∆R|2〉2, (8b)

where r = |R|2 = |Q|2 and rs = |Rs|2 = |Qs|2. The moments of ∆R, fm,n =

〈∆Rm∆R∗n〉, satisfy fm,n ∼ δm,n in the weak disorder limit as discussed elsewhere.6

Then, Eqs. (8a) and (8b) can be simplified in the R and Q representations:

〈r〉 ≈ rs + 〈|∆R|2〉 = rs + 〈|∆Q|2〉, (9a)

σ2(r) ≈ 2rs〈|∆R|2〉+ 〈|∆R|4〉 − 〈|∆R|2〉2 = 2rs〈|∆Q|2〉+ 〈|∆Q|4〉 − 〈|∆Q|2〉2.
(9b)

From here, we use the Q representation that establishes simpler perturbative ex-

pansions. Among the three terms in Eq. (9b), rs〈|∆Q|2〉 is O(∆2) and the rest

of the terms have higher orders in ∆2. Therefore, σ2(r) = 2rs〈|∆Q|2〉 in O(∆2).

Now Eqs. (9a) and (9b) can be calculated by integrating the differential form of

〈|∆Q|2〉:

d〈|∆Q|2〉
dL

=

〈(
d∆Q

dL

)
·∆Q∗

〉
+

〈
∆Q ·

(
d∆Q∗

dL

)〉
. (10)

Using Eq. (6) and keeping the order of disorder only up to ∆2, 〈|∆Q|2〉 is expressed

as follows:

〈|∆Q|2〉 = − i
2
n0k

∫ L

0

dL′[e2ikα
∗
(1 +R∗s)

2〈ηd∆Q〉] + c.c.

=
1

4
(n0k)2lc∆

2

∫ L

0

dL′e2ik(α
∗−α)

(
1

1− 2iklcβ

)
(1 +R∗s)

2

[
1− lc

∂

∂L

]
× (1 +Rs)

2 + c.c. (11)

Here, it is important to note that σ2(r) = 2rs〈|∆Q|2〉 in Eq. (9b) is valid only

when Rs is significantly greater than ∆R. For example, σ2(r) = 2rs〈|∆Q|2〉 is

invalid under a complete destructive interference condition which reduces Rs to

zero for some periodic ks with a given L. At these periodic ks, σ2(r) tends to the

expression in the index matched system6: σ2(r) = 〈|∆Q|4〉 − 〈|∆Q|2〉2 ∼ 〈∆n2〉4l2c .
To perform the integration in Eq. (11), we consider Rs, which is simply a solution

to Eq. (2c). A closed form of Rs is not suitable for performing the integration due

to its fractional form. [See (4.27) and (4.30) in Ref. 11]. Therefore, we expand Rs
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as a sum of all successive rays that are reflected and transmitted at x = 0 and L

and approximate Rs by keeping the two lowest order terms11:

Rs ≈ R(2)
s = A0 +A1e

2in0kL, (12)

where A0 = (nr − n0)/(nr + n0) and A1 = 4nrn0/(nr + n0)2 · (n0 − nt)/(n0 + nt)

(|A0| and |A1| < 1). We also define B0 as B0 = A0 + 1 for the calculations below.

The approximation in Eq. (12) is accurate when reflections at the boundaries are

not very strong (|A0| and |A1| � 1) as in biological samples. In Appendix A, the

integration of Eq. (11) is performed expanding the integrand in terms of A1 with

a periodic condition of k: 2n0kL = πN (N = even integers). Then, 〈|∆Q|2〉 is

approximated in O(∆2):

〈|∆Q|2〉 =
1

2
(n0kN )2lc∆

2 L

1 + 4(ρkN lc)2
F (n0, nr, nt), (13)

where 2n0kNL = πN (N = 2, 4, 6, . . .), ρ = 1 + (n20 − 1)B0/2, F (n0, nr, nt) =

e
(n2

0−1)A1
n0 I0(| (n

2
0−1)A1

n0
|)× B4

0 and I0 is a modified Bessel function of the first kind.

Accordingly, the mean and STD in Eqs. (9a) and (9b) are expressed by Eq. (13):

〈r〉 ≈ rs + 〈|∆Q|2〉

= (A2
0 +A2

1 + 2A0A1 cosxN ) +
1

2
(n0kN )2lc∆

2 L

1 + 4(ρkN lc)2
F (n0, nr, nt)

= (A0 +A1)2 +
1

2
(n0kN )2lc∆

2 L

1 + 4(ρkN lc)2
F (n0, nr, nt), (14)

σ2(r) ≈ 2rs〈|∆Q|2〉

= 2(A2
0 +A2

1 + 2A0A1 cosxN )× 1

2
(n0kN )2lc∆

2 L

1 + 4(ρkN lc)2
F (n0, nr, nt)

= (A0 +A1)2 · (n0kN )2lc∆
2 L

1 + 4(ρkN lc)2
F (n0, nr, nt), (15)

where xN = 2n0kNL = πN (N = 2, 4, 6, . . .).

Finally, we compare the above theoretical result with direct numerical simula-

tion data obtained from iteration equations (2a) and (2b) with the initial condition

R(L = 0) = 0. For the simulation, 10,000 realizations of correlated random noise,

η, were generated for each parameter set (∆, lc, n0, k and L). Then, the corre-

sponding reflectance is calculated with those realizations based on Eq. (2a). During

the calculation, the Riccati form of Eq. (2a) was linearized for stable numerical

integration. In Figs. 2 and 3, STDs based on Eq. (15) are plotted with the exact

numerical simulation data in two disorder parameter spaces, 〈∆n2〉1/2 and lc, to

verify the accuracy of the analytical calculations. In Fig. 2, we observe a clear dif-

ference between index mismatched systems and a matched system in terms of the

order of 〈∆n2〉1/2 in STD (see Sec. 3).
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Fig. 2. (Color online) STD versus 〈∆n2〉1/2 (= ∆/2) of reflection statistics. A set of parameters
is: nr = 1, nt = 1.5, n0 = 1.1–1.5, lc = 20 nm, λ = 550 nm and 2L = (1/2 · λ/n0) · 20. The

colored solid lines are theoretical values based Eq. (15) and the colored markers are simulational

data points. The black markers and black solid line are simulation data points and theoretical
calculations based on Eq. (16b) with nr = 1, nt = 1.0 and n0 = 1.0 (an index matched system)

shown for comparison.

Fig. 3. (Color online) STD versus lc of reflection statistics. A set of parameters is: nr = 1,

nt = 1.5, n0 = 1.3, 〈∆n2〉1/2 = 0.01–0.03, λ = 650 nm and 2L = (1/2 · λ/n0) · 16. The solid lines
are theoretical values based Eq. (15) and the markers are simulational data points.
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3. Discussion: Analysis of Mean and STD of Reflection Coefficient

r and its Applications

The reflection statistics have been well established for index matched systems. The

mean and STD of the reflection coefficient for index matched systems exhibit the

same behavior in the weak disorder limit [Eq. (4.56) in Ref. 6]:

〈rmat〉 = L/ξ =
1

2
k2lc∆

2 L

1 + 4(klc)2
, (16a)

σ(rmat) ≈ 〈rmat〉, (16b)

where the inverse of localization length is defined as: ξ−1 = 2−1k2lc∆
2/[1+(2klc)

2]

and L� ξ.

〈r〉 of a mismatched system in Eq. (14) has essentially the same stochastic be-

havior as Eq. (16a). This is because the interference between boundary reflection

and disorder scattering, Q∗s∆Q+c.c., in Eq. (8a) vanishes upon ensemble averaging.

Therefore, Eq. (14) is an additive combination of deterministic boundary interfer-

ence rs and stochastic contribution 〈|∆Q|〉2. Note that 〈|∆Q|2〉 exhibits the same

behavior as in Eq. (16a):

〈|∆Q|2〉 ∼ L/ξ ∼ 1

2
(n0kN )2lc∆

2 L

1 + 4(ρkN lc)2
.

Here, the correction to the wave number (k → n0k) is due to the mean refractive

index, and the rest of the n0-dependent terms, ρ and F (n0), in Eq. (14) reduce to

one as n0 → 1.

On the other hand, σ(r) in Eq. (15) is described as a multiplicative combination

of rs and 〈|∆Q|2〉. This leads to a drastic deviation of σ(r) from σ(rmat) in terms

of the order of disorder parameters as in Eqs. (17a) and (17b). The orders of ∆ and

lc decrease half from σ(rmat) to σ(r), and σ(r) has a deterministic term (2rs)
1/2 as

a prefactor that modulates the amplitude of σ(r) as demonstrated in Fig. 2. The

origin of this deviation is the interference between boundary reflection and disorder

scattering, Q∗s∆Q+ c.c. in r of Eq. (8b):

σ(rmat) ∼ ∆2 k2lcL

1 + 4(klc)2
∼ ∆2(klc)

1 · (kL)1, (17a)

σ(r) ≈
√

2rs
√
〈|∆Q|2〉

∼
√

2(A2
0 +A2

1 + 2A0A1 cosxN ) ·∆

√
k2N lcL

1 + 4(n0kN lc)2

∼
√

2rs ·∆1(kN lc)
1/2(kNL)1/2, (17b)

where xN = 2n0kNL = πN (N = 2, 4, 6, . . .).
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Fig. 4. (Color online) σ(r) versus k of the reflection statistics. A set of parameters for refractive

indices for outside medium and the sample: nr = 1, nt = 1.5, n0 = 1.3, lc = 20 nm, 〈∆n2〉1/2 =
0.005–0.015, λ = 400–800 nm and L = 2µ. The solid lines are simulation data and the markers

are theoretical calculation based Eq. (15). For the theoretical calculation, a condition 2L = (1/2 ·
λN/n0) ·N (N = even integers) was used, where kN = 2π/λN . The dashed lines are theoretical
values based on Eq. (16b) with nr = 1, nt = 1.0, n0 = 1.0 (an index matched system) and the

same 〈∆n2〉1/2 values for each color. The number of generated realizations is 10,000 for each k.

3.1. Enhancements of STD of the reflectance (σ(r))

To analyze the effect of (2rs)
1/2 and decreased orders of ∆ and lc in Eq. (17b),

STDs of several ∆s are presented for both mismatched and matched systems in

Fig. 4. First, σ(r) values show a pseudo-periodic and ‘amplified’ behavior in the k

domain (solid lines of simulation data), whereas σ(rmat) values show a small mono-

tonic increase as k increases. The periodic modulation is driven by the boundary

interference (2rs)
1/2 and, therefore, σ(r) is maximally amplified around maxima of

(2rs)
1/2. Second, the decreased orders of disorder parameters (∆2(klc)→ ∆(klc)

1/2)

improve the sensitivity of σ(r) to disorder parameters (∆ and lc) in the weak dis-

order and short-range correlation limits. In Fig. 4, we find that σ(r)/σ(rmat) > 10

for 〈∆n2〉1/2 = 0.005 and (σ(r)0.010 − σ(r)0.005)/(σ(rmat)0.010 − σ(rmat)0.005) ∼ 5

around maxima of (2rs)
1/2. This clearly is an example of the enhancement of the

STD of reflection coefficient by the value of the refractive index mismatch.

3.2. Applications

This periodic amplification and enhanced sensitivity of σ(r) has strong potential ap-

plications in the context of disorder information that are extracted efficiently from

weakly spatial disorder fluctuations embedded in a higher refractive index media,

such as biological cells. In particular, it can be a physical basis for various techniques

in biophotonics since the index mismatch condition and weak disorder limit are

1650155-10



August 31, 2016 10:35 IJMPB S0217979216501551 page 11

Mesoscopic light reflection statistics sensitivity enhancement in weakly disordered media

readily applicable to biological cells, which have mean refractive index n0 ∼ 1.3–1.5

and spatial refractive index fluctuations 〈∆n2〉1/2 ∼ 0.01–0.1. The light backscatter-

ing by weakly disordered samples such as biological cells can be approximated as a

quasi-1D parallel multichannel problem.12 It was recently demonstrated that quasi-

1D multichannel backscattering statistics of biological cells are sensitive to changes

in nanoscale disorder properties.13–16 Based on the first-order Born approximation,

the reflection statistics were also theoretically analyzed in three-dimensional (3D)

backscattering, which can be applied to a 1D case as well.17 It has been demon-

strated that the applications of the light backscattering statistics can be applied for

early precancer screening by detecting changes in the refractive index fluctuation in

cells, corresponding to the progress of carcinogenesis in different types of cancer. By

enhancing the STDs of reflected signals via controlling (2rs)
1/2 factor, we expect to

achieve a higher detection sensitivity to weak disorder parameters of the nanoscale

refractive index fluctuations in biological cells.

4. Conclusion

In conclusion, we performed a theoretical analysis to understand the effects of a

refractive index mismatching between a weakly disordered optical sample and its

surrounding medium on the reflection statistics. By separating the interference in-

duced by the sample boundaries and the disorder scattering, we show that the mean

of the reflectance 〈r〉 in a mismatched system has the same stochastic behavior as

that of a matched system. On the other hand, the STD of the reflection coefficient

of a mismatched system σ(r) has lower orders of disorder parameters compared to

that of a matched system, and the boundary interference term (2rs)
1/2 functions as

a prefactor. In particular, the prefactor (2rs)
1/2 causes a periodic amplification of

the disorder signal in the spectral domain. The origin of this difference between σ(r)

and σ(rmat) is the interference between the boundary reflection and disorder scat-

tering in σ2(r). From a technological point of view, the boundary index mismatch

condition provides a handle for enhancing the signal from the disorder part of the

refractive index fluctuations buried in a higher uniform refractive index media. The

intracellular mass density fluctuations or refractive index fluctuations increase with

the progress of carcinogenesis,13–16 therefore, probing weakly structural disorder

parameters in biological cells with high detection sensitivity by tuning the index

mismatch condition has strong potential applications in early cancer screening, as

well as for other biophotonics applications that probe mass density variations or

refractive index fluctuations.
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Appendix A. Derivations of Eqs. (4) and (13)

A.1. Derivation of Eq. (4)

First, to derive Eq. (4), we use Eq. (3b) under the assumption of an Ornestein–

Uhlenbeck stochastic process. Then, a differentiation formula for ∆R can be

established: [
1 + lc

∂

∂L

]
〈ηd∆R〉 =

〈
ηdlc

(
∂

∂L
∆R

)〉
. (A.1)

Using Eq. (2d) and maintaining the order of ηd only up to O(η2d) on the right-hand

side of Eq. (A.1), we obtain:[
1 + lc

∂

∂L

]
〈ηd∆R〉

=

〈
ηdlc

(
2ik∆R+

ik

2
n0ηd[1 +Rs + ∆R]2 +

ik

2
(n20 − 1)[2∆R(1 +Rs) + ∆R2]

)〉
= 2iklcβ〈ηd∆R〉+

i

2
n0klc∆

2(1 +Rs)
2, (A.2)

where β = 1 + (n20 − 1)(1 +Rs)/2. Multiplying Eq. (A.2) by [1− lc ∂
∂L ], we obtain:

〈ηd∆R〉 − l2c
∂2

∂L2
〈ηd∆R〉

=

[
1− lc

∂

∂L

](
2iklcβ〈ηd∆R〉+

i

2
n0klc∆

2(1 +Rs)
2

)
= 2iklcβ〈ηd∆R〉 − 2ikl2c

∂

∂L
β〈ηd∆R〉+

i

2
n0klc∆

2

[
1− lc

∂

∂L

]
(1 +Rs)

2. (A.3)

By rewriting Eq. (A.3) in orders of klc, Eq. (A.3) is expressed as follows:

(1− 2iklcβ)〈ηd∆R〉+ Ô〈ηd∆R〉 =
i

2
n0klc∆

2

[
1− lc

∂

∂L

]
(1 +Rs)

2, (A.4)

where Ô is an operator whose lowest order is (klc)
2 and the lowest order of klc

in 〈ηd∆R〉 is (klc)
1. Approximating Eq. (A.4) by ignoring Ô in the short spatial

correlation limit, we obtain:

〈ηd∆R〉 =
i

2
n0k(∆2lc)

(
1

1− 2iklcβ

)[
1− lc

∂

∂L

]
(1 +Rs)

2. (A.5)

A.2. Derivation of Eq. (13)

Secondly, to derive 〈|∆Q|2〉 in Eq. (13), we first insert Eq. (12) into Eq. (11) and

change the variable L by x = 2n0kL. This gives:

1650155-12
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〈|∆Q|2〉 = − i
2
n0k

∫ L

0

dL′[e2ikα
∗
(1 +R∗s)

2〈ηd∆Q〉] + c.c.

=
1

8
(n0klc)∆

2

∫ x

0

dx′e2ik(α
∗−α)

(
1

1− 2iklcρ− iklc(n20 − 1)A1eix
′ ]

)
× (B0 +A1e

−ix′)2
[
1− 2n0klc

∂

∂L

]
(B0 +A1e

ix′)2 + c.c., (A.6)

where ρ = 1 + (n20 − 1)B0/2. The exponent of e2ik(α∗−α) in Eq. (A.6) can be

integrated:

2ik(α∗ − α) = −ik(n20 − 1)

∫ L

0

dL′(Rs −R∗s)

= −ik(n20 − 1)

∫ L

0

dL′[(A0 +A1e
2in0kL)− (A0 +A1e

−2in0kL)]

=
(n20 − 1)A1

n0
(1− cosx). (A.7)

Equation (A.6) can, then, be expanded in terms of A1 to perform the integral

because A1 < 1. By maintaining the order of A1 only up to (A1)1, we obtain:

〈|∆Q|2〉 =
1

8
n0klc∆

2e
(n2

0−1)A1
n0

∫ x

0

dx′e
−(n2

0−1)A1
n0

cos x

1 +
i(klc)(n

2
0−1)A1e

ix′

1−2iρklc
1− 2iρklc


× (B0 +A1e

−ix′)2
[
1− lc

∂

∂L

]
(B0 +A1e

ix′)2 + c.c.

=
1

8
n0klc∆

2e
(n2

0−1)A1
n0

∫ x

0

dx′e
−(n2

0−1)A1
n0

cos x 1

1 + 4 (ρklc)
2

×


2B4

0 + (B3
0A1)

(
8(1 + 2n0ρ(klc)

2)− 8B0(n20 − 1)ρ(klc)
2

(1 + 4 (ρklc)
2
)

)
cosx′

+(B3
0A1)

(
8n0(klc)−

2B0(n20 − 1)(klc)(1− 4 (ρklc)
2
)

(1 + 4 (ρklc)
2
)

)
sinx′

.
(A.8)

The integral in Eq. (A.8) can be performed by a set of known integral formulas in

Eq. (A.9) for x = 2n0kNL = Nπ when N is an even integer:∫ π

0

dx · ep cos x cosmx = π · Im(|p|),
∫ Nπ

0

dx · ep cos x cosmx = Nπ · Im(|p|),∫ 2π

0

dx · ep cos x sinmx = 0,

(A.9)
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where Im is a modified Bessel function of the first kind and m is an integer. Then,

〈|∆Q|2〉 can be expressed up to O(A1
1) and O(∆2):

〈|∆Q|2〉

=
1

2
n20k

2
N lc∆

2 L

1 + 4(ρkN lc)2
e

(n2
0−1)A1
n0

×


B4

0I0

(∣∣∣∣ (n20 − 1)A1

n0

∣∣∣∣)
+4B3

0A1

{
1 + 2n0ρ(kN lc)

2 − (n20 − 1)B0ρ(kN lc)
2

1 + 4(ρkN lc)2

}
I1

(∣∣∣∣ (n20 − 1)A1

n0

∣∣∣∣)
.

(A.10)

By ignoring the second term (leading order, A1
1) in the bracket, Eq. (A.10) can be

approximated:

〈|∆Q|2〉 =
1

2
(n0kN )2lc∆

2 L

1 + 4(ρkN lc)2
F (n0, nr, nt), (A.11)

where F (n0, nr, nt) = e
(n2

0−1)A1
n0 I0(| (n

2
0−1)A1

n0
|)B4

0 .
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