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Summary

1. Corals may reduce the effects of heat-induced bleaching through associations with thermo-

tolerant algal symbionts (Symbiodinium). Although hundreds of Symbiodinium genetic types

(phylotypes) are known, thermotolerance has been systematically evaluated for small subsam-

ples within individual reports, making consensus a challenging task.

2. Data on 110 phylotypes were aggregated from 35 reports, each assessing 2–24 phylotypes

(median 4). One-third of reports include ties (phylotypes with indistinguishable thermotoler-

ance). Between reports, most phylotypes are unique (74% assessed once), most pairwise com-

parisons are unknown (relative thermotolerance for 15% of the possible 5995 phylotype pairs

are evaluated) and many rankings are inconsistent (52% of 58 phylotype pairs assessed in

more than one report are discordantly ranked).

3. Ranking of Symbiodinium phylotypes resulted in 64 thermotolerance cohorts (47 are single

phylotypes, 17 contain 2–10 phylotypes with a median of 3 phylotypes) and indicates diverse

thermotolerance capabilities within clades and among closely related phylotypes.

4. The iterative partial-rank aggregation method (with error estimation) introduced here is

broadly applicable to any quantitative consensus rank building problem where qualitative

input ranks are not fully comprehensive nor resolved.

5. Reconstructions based on simulated data (mirroring the empirical data set) indicate robust

predictive capabilities for resolving rankings (1�28 approximation of the true solution) and

inferring unknown pairwise comparisons (83% correctly predicted pair rankings from only

16% known a priori).

6. Application to Symbiodinium phylotypes represents an additional tool to generate testable

hypotheses on the role of symbiont thermotolerance in an ecosystem that is collapsing in the

face of climate change and provides the first quantitative index of Symbiodinium thermotoler-

ance and its associated uncertainty.
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Introduction

Coral reefs are important centres of productivity and

biodiversity that support more than 500 million people

(Wilkinson 2008). The foundation of these ecosystems

are mutualistic endosymbioses with Symbiodinium

dinoflagellates, which provide photosynthetic products that

fulfil the energetic requirements of their coral hosts (Mus-

catine 1990). Persistence of coral ecosystems is dependent

upon the integrity of these mutualisms; when temporarily

disrupted through the bleaching response, corals experi-

ence increased disease, predation, competition, bioerosion

and mortality, and reduced repair, growth and reproduc-

tion (Jokiel 2004; Jones 2008). Coral bleaching is induced
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by sufficiently sudden, severe, or prolonged temperatures

above local historical maxima, which are predicted to

occur at increasing frequencies and severities due to global

climate change (Wilkinson 2008). The third global bleach-

ing event is currently ongoing and is predicted to affect

38% of reefs and destroy >12 000 km2 of coral (www.

globalcoralbleaching.org).

Bleaching responses vary across colonies, taxa and

events (e.g. Loya et al. 2001; van Woesik et al. 2011),

providing critical insight into bleaching determinants and

mechanisms that inform our predictive and remediative

capabilities. Multiple environmental factors and host–
symbiont interactions contribute to differential bleaching

susceptibility (e.g. Enr�ıquez, M�endez & Iglesias-Prieto

2005; Middlebrook, Hoegh-Guldberg & Leggat 2008;

Baird et al. 2009; Mieog et al. 2009; Cunning & Baker

2013; Marcelino et al. 2013; Hawkins et al. 2014; Wang-

praseurt et al. 2014; Wooldridge 2014). However, the

most frequently invoked hypothesis resides in the diver-

sity of Symbiodinium physiological capabilities (e.g. Sam-

payo et al. 2008; Grottoli et al. 2014; Silverstein,

Cunning & Baker 2014; Hume et al. 2015). Nine clades

(A–I) of Symbiodinium taxa have been identified, four of

which (A–D) commonly associate with hermatypic corals

(Pochon & Gates 2010; Pochon, Putnam & Gates 2014).

Symbiodinium clades are subdivided into a rapidly

increasing number of subcladal phylotypes (409 as of

2011: Franklin et al. 2012), identified through DNA

sequences of the second internal transcribed spacer

(ITS2) region of the nuclear ribosomal RNA gene. This

diversity is meaningful for ecosystem function, as

assessed phylotypes often display physiological differences

that approximate ecological species (Sampayo et al. 2007;

LaJeunesse et al. 2014) and differ in their ability to

acquire inorganic nutrients (Baker et al. 2013), resist

oxidative stress (McGinty, Pieczonka & Mydlarz 2012),

produce photosynthetic products (Cantin et al. 2009;

Starzak et al. 2014) and resist thermal stress (LaJeunesse

et al. 2009). As thermal stress is often the trigger of

coral bleaching, differential Symbiodinium thermotoler-

ance is thought to be closely tied to (but not the sole

cause of) differential bleaching susceptibility by increas-

ing bleaching thresholds by 1–2 °C (Berkelmans & van

Oppen 2006).

There is general acceptance that specific Symbiodinium

phylotypes are exceptionally thermotolerant (e.g. D1,

D1-4, C15, A3), while others are thermosensitive (e.g.

C3, C7, B17, A13). This perception is derived from dis-

tributional surveys and experiments that assess subsam-

ples of phylotypes. Distributional surveys (e.g.

Silverstein et al. 2011; Tonk et al. 2014) can assess doz-

ens of phylotypes across thermal gradients, however are

limited by the distribution of hosts and their specificity

to symbionts. Experimental studies (e.g. Thornhill et al.

2006; McGinty, Pieczonka & Mydlarz 2012) can assess

in hospite or in vitro phylotypes during abnormal ther-

mal events, however are restricted by host and symbiont

specificity (e.g. Fabina et al. 2013) and the culturability

of phylotypes (Krueger & Gates 2012). None of these

approaches are suitable for systematically assessing ther-

motolerance of all Symbiodinium, and most phylotypes

have never been compared in a unified way.

A quantitative consensus thermotolerance ranking

based on current knowledge would be a useful tool for

assessing reef condition, detecting recent bleaching events

and predicting future bleaching events while allowing

hypothesis testing of the role of Symbiodinium thermo-

tolerance in bleaching susceptibility. However, there are

challenges that hinder the construction of such an index.

Available data sets contain few phylotypes (rarely more

than 5) with minimal overlap across data sets (most

phylotypes are evaluated by a single study); therefore,

most pairwise comparisons must be inferred. Some data

sets include phylotypes with indistinguishable thermotol-

erance, or tied ranks, prohibiting complete resolution

and creating a third category (<, =, >) for analysis.

Additionally, available data are often qualitative (e.g.

a < b < c) and contain significant ranking inconsistencies

across data sets. These challenges might be best

addressed by rank aggregation methods; however, no

currently available method simultaneously addresses all

of these issues.

Rank aggregation methods are used to produce a con-

sensus of multiple input ranking lists; they address a

common problem that originated with election schemes

and are a key component of internet search engine algo-

rithms (e.g. Google) and other ranking applications (e.g.

best colleges). Because the time required to solve rank

aggregation problems increases exponentially with the

number of elements (here, elements are phylotypes), it is

virtually impossible to find exact solutions to even small

(c. 20 elements) problems and research has focused on

approximation algorithms. While full rank aggregation

requires fully resolved (no ties) input lists containing all

elements and has well-established approximation algo-

rithms, partial-rank aggregation allows for unresolved

and incomplete input lists, but lacks gold-standard

approximations and current methods limit the formats

and types of partial lists. Approximation algorithms of

partial-rank aggregation operate on top-m rankings or

p-ratings, which are unsuitable for this study. Top-m

rankings simplify input lists to rankings of the highest m

elements (Ailon 2010; Fang, Xiao & Zhu 2010) and

assume remaining elements to be lower; however, assum-

ing lower ranks for unevaluated phylotypes is untenable.

By comparison, p-ratings allow input lists with ties, but

require all elements to be present in each list (Ailon

2010); available thermotolerance data are comprised of

partial lists. Additionally, relative thermotolerance

assessed by different studies is either qualitative (e.g.

a < b < c), or must be made so in order to compare

across studies (e.g. phylotype occurrence vs. photosyn-

thetic performance cannot be directly compared). Quali-

tative comparisons do not reveal the relative separation
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distances between phylotype thermotolerances; a and b
may have similar thermosensitivity and c may be thermo-

tolerant, resulting in a different interpretation of the

example ranking (a < b � c), but current methods can-

not accept qualitative input lists and report quantitative

rankings. Also, existing methods are computationally

intensive; although they can evaluate all possible permu-

tations of elements in small data sets (e.g. Kemeny–
Young rank aggregation of <10 elements), these problems

are non-deterministic polynomial time-hard (NP-hard)

and a single search for the optimal aggregated ranking of

110 elements is estimated at c. 1085 years on a personal

computer (Chin et al. 2004; van Zuylen & Williamson

2008).

Here, we developed a novel iterative algorithm (based

on partial-rank aggregation) that can accurately recon-

struct consensus rankings from data sets containing incon-

sistencies, ties and information gaps, while aggregating

qualitative lists into quantitative ranks and estimating

associated uncertainties for each ranked element. This

method is broadly applicable to ranking problems in ecol-

ogy (e.g. mate choice, prey choice, foraging selection, or

dominance), engineering (e.g. prioritizing contaminated

sites for remediation or selection of optimal sites for nat-

ure preserves) and beyond. The performance of this algo-

rithm is demonstrated using simulated data sets with

known rankings, and an empirical data set to reconstruct

the first quantitative consensus ranking for Symbiodinium

phylotype thermotolerance.

Materials and methods

We searched the available literature for Symbiodinium phylotype

thermotolerance and used a novel iterated partial-rank aggrega-

tion algorithm (validated against simulated data sets) to create a

quantitative consensus ranking.

COLLECT ION OF PART IAL RANK INGS

We identified reports of Symbiodinium thermotolerance in the lit-

erature (up to February 2015 publication dates) that contained at

least two ITS2 phylotypes (or its equivalents) and included data

on relative thermotolerance (Table S1, Supporting information).

Reports that exclusively used clade-level designations (or are asso-

ciated with non-scleractinian hosts) were excluded, as clades con-

tain phylotypes with diverse physiological capabilities (e.g.

Tchernov et al. 2004). See Appendix S1.1 for details on phylotype

identification.

Thermotolerance rankings within each report use one of the fol-

lowing approaches (Table S1): (i) prevalence surveys of in hospite

phylotypes over thermal gradients, (ii) assessments of symbiont

physiological performance and/or prevalence surveys of in hospite

phylotypes relative to abnormal thermal events or (iii) assessments

of phylotype physiological performance in vitro relative to abnor-

mal thermal events. These diverse approaches (See Appendix S1.2

for specific examples) are used to derive individual partial ranking

lists within each report (or method) and are not directly compared

across reports. The partial ranking lists of relative thermotoler-

ance are used as input for the rank aggregation algorithm to

create a consensus ranking.

While some rankings are explicitly stated, others were extracted

from the data within each report under the central assumption

(following the original authors) that high physiological perfor-

mance and/or prevalence of Symbiodinium under high temperature

is an indication of thermotolerance (Table S1). In this way, we

extracted fully or partly resolved partial rankings from each

source publication (only Aschaffenburg 2012 yielded three inde-

pendent input lists because they were determined by different

methods) as the basis of the iterative partial-rank aggregation

analysis.

I TERAT IVE PART IAL -RANK AGGREGAT ION P IVOT ING

ALGORITHM

Our novel rank aggregation algorithm combines three disparate

concepts: (i) ranking based on consensus-based Borda rank aggre-

gation (developed in voting systems), (ii) updating ranks by a

pivot element (an element, or in this study, phylotype, that is

shared between input lists: Ailon, Charikar & Newman 2008; van

Zuylen & Williamson 2008) and (iii) Monte Carlo iterative analy-

sis to achieve convergence on consensus. This algorithm trans-

forms relative qualitative rankings of thermotolerance for multiple

Symbiodinium phylotype subsets (partial ranking lists) into a

quantitative ranking of the entire sampled population (consensus

ranking) with an estimation of uncertainty of the ranking score.

Partial ranking data are analysed in order of greatest informa-

tion content: the Iterative Partial-Rank Aggregation Pivoting

Algorithm (IPRAPA) first ranks the partial lists of phylotypes

(originating from individual reports) and then ranks all phylo-

types. The lists are qualitative comparative rankings (phylo-

types ordered by increasing relative thermotolerance:

a < b < c < d) and may contain different numbers of cohorts

(phylotypes of same rank and indistinguishable thermotolerance,

or ties) and phylotypes (e.g. the ranking c < h, v, contains two

cohorts and three phylotypes). To anchor partial rankings within

the larger population, each list must contain at least one phylo-

type in common with another partial ranking: the pivot phylotype

(c in the previous examples). Prior to the first iteration, all lists

are sorted by the number of cohorts and then phylotypes and are

assessed in order of decreasing information content, except when

encountering lists lacking a pivot phylotype in the previously

entered lists. In this case, lower information-content lists contain-

ing pivot phylotypes are ranked higher than lists lacking common

phylotypes, until every list in the queue has a phylotype in com-

mon with a higher-ranked list.

After ranking all lists, IPRAPA iteratively calculates a consen-

sus quantitative score for each phylotype, which is then used to

rank all phylotypes. An iteration begins by assigning a score (R)

to each phylotype (k) in the greatest information-content list

(i = 1) as:

R
ð1Þ
1k ¼ DRc1k

C1
; eqn 1

where ΔR is the preset total range of scores (it is convenient to

choose ΔR as 100 or equal to the total number of elements

across all lists; here, we assigned scores on a 0–100 scale), c is

the cohort of the current phylotype R1k, C is the number of

cohorts in list 1, and superscript (1) indicates the first iteration.

For all subsequent lists (i = 2,.., I, where I is the total number

of partial ranking lists), IPRAPA updates scores using a pivot

from previously ranked lists in the current iteration. A pivot

phylotype is chosen as the common phylotype in the current list

i and a previous list that has the maximum cohort value in the

current list i. If a number of pivot candidates exist for a given

list, the phylotype (k) with the lowest cohort uncertainty (Uik) is

chosen by:
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Uik ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi�1

j¼1

DR
Cj

� �2
djk

s

Pi�1

j¼1

djk

; eqn 2

where function djk = 1 if list j contains the pivot candidate k or

djk = 0 otherwise. Thus, the summation is done over all previous

lists which contain the pivot candidate. Notice that the sorting

of lists ensures that any list i must have at least one common

phylotype that can be used for pivoting this list to at least one

higher-ranked list j < i. As can be seen from eqn (2), the cur-

rent list i is excluded from this calculation. Once the pivot phy-

lotype is chosen, the pivot score (A) is calculated as the mean

over previous rankings of the pivot phylotype in the current iter-

ation using:

A
ð1Þ
i ¼

Pi�1

j¼1

R
ð1Þ
jk djk

Pi�1

j¼1

djk

; eqn 3

where Rjk is the score of pivot phylotype k in a previously evalu-

ated list j within the current iteration. This pivot value is then used

to calculate scores for all other phylotypes (k) in the current list (i)

using:

R
ð1Þ
ik ¼ A

ð1Þ
i

cik
cik�

; eqn 4

where Ai is the score of the pivot for this list and cik* is the cohort

to which the pivoting phylotype belongs in list i. Because the pivot

phylotype in list i is determined by scores for this phylotype in

prior lists, it does not have an independent score in list i, and the

pivot phylotype in list i does not get assigned a score in this list.

This process is repeated for each list until one iteration is com-

plete. After the first iteration, an average iteration score (R
ð1Þ
k is

calculated for each phylotype k and normalized to the range (ΔR)
to foster convergence, using:

R
ð1Þ
k ¼

PI
j¼1

R
ð1Þ
jk djk

PI
j¼1

djk

DR

Mð1Þ

� �
; eqn 5

where the maximum average score from the current iteration [su-

perscript (1) indicates the first iteration] is:

Mð1Þ ¼ maxk

PI
j¼1

R
ð1Þ
jk djk

PI
j¼1

djk

: eqn 6

Each subsequent iteration repeats in the same manner, except

that the initial pivot value is chosen based on rankings from the

previous iteration (excluding the first list). Iterations can continue

for a specified number or convergence tolerance; in this case, con-

vergence was defined as a difference in scores of <10�3 between

current and prior iterations. The iterated consensus scores are

taken as the average phylotype scores from the last iteration that

achieves convergence:

Rk ¼ R
ðpÞ
k ; eqn 7

where p is the number of the final iteration. The phylotypes are

then ranked in the order of their final scores Rk (0–100, increasing

in thermotolerance) and phylotypes with the same scores (indistin-

guishable at a predetermined tolerance) are grouped in cohorts

sharing the same rank, with the highest thermotolerance phylotype

ranked at 1 (with a scale dependent on the final number of

cohorts, decreasing in thermotolerance).

While the first iteration may return the best approximation,

subsequent iterations explore a wider parameter space and may

return a more accurate solution. The best solution is revealed by

comparing coherence (relative to all input partial rankings) of

potential solutions (Rk ¼ R
ð1Þ
k vs. Rk ¼ R

ðpÞ
k ). Coherence has been

used as the optimal metric for evaluating accuracy of partial-rank

aggregation approximation (Fang, Xiao & Zhu 2010) and is the

counterpart of Kendall Tau distance, which is typically used as

the key evaluation metric in full rank aggregation (see Validation

of IPRAPA, Appendix S1.3). In essence, it compares all pairs

between a candidate solution and each input partial ranking and

counts all pairs for which the aggregated ranking does not match

input lists while taking into account the length of lists (Fang, Xiao

& Zhu 2010).

UNCERTA INTY OF THERMOTOLERANCE SCORE AND

AVERAGE POS IT ION ERROR EST IMAT ION

Uncertainty or error of measurement (U) of each phylotype (k) in

the consensus score is calculated as:

Uk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI
j¼1

minkðRðpÞ
jk Þ2djk

s

PI
j¼1

djk

DR

MðpÞ

� �
; eqn 8

where minkðRðpÞ
jk Þ equals uncertainty of phylotype Rjk (superscript

p indicates the iteration), I is the total number of partial ranking

lists, function djk is defined in eqn (2) and M is defined in eqn (6).

Error of measurement (Uk) is a complimentary metric to the stan-

dard error of the mean, rk:

rk ¼
st.dev � j R

ðpÞ
jk

� �

c4
PI
j¼1

djk

 ! ffiffiffiffiffiffiffiffiffiffiffiffiPI
j¼1

djk

s DR

MðpÞ

� �
; eqn 9

where st. dev. is standard deviation, and the correction factor

c4(n) is the established scale mean of the chi-distribution with

n � 1 degrees of freedom. The c4 correction function is close to 1

if the number of lists ranking a given phylotype (
PI
j¼1

djk) is large

and decreases to
ffiffiffiffiffiffiffiffi
2=p

p � 0�8 for
PI
j¼1

djk ¼ 2. Standard error of the

mean (rk) already takes into account the effect of error of mea-

surement Uk; however, standard deviation, and thus r, is not

defined if the phylotype only appears in a single list. For this

reason, total uncertainty of score estimation was approximated as

the maximum of two error metrics:

Dk ¼ max rk;Ukð Þ: eqn 10

Total uncertainty of score estimation D was used to determine

whether the comparison of thermotolerance scores R between two

phylotypes is informative by evaluating their uncertainty intervals

(if two phylotypes are within their uncertainty intervals, their

scores are not significantly different). D can also be converted to

another metric, average position error (Perr), which is the differ-

ence in position between a would-be perfect consensus ranking

and IPRAPA approximate consensus ranking:

© 2016 The Authors. Functional Ecology © 2016 British Ecological Society, Functional Ecology, 31, 172–183

Thermotolerance of Symbiodinium phylotypes 175



Perr � 1

2
ffiffiffi
6

p D
N

st.devk Rkð Þ ; eqn 11

where D ¼ ð1=NÞPN
k¼1

Dk is the average total uncertainty and, as

before, st.dev.k(Rk) is the standard deviation of the distribution of

all final scores Rk.

VAL IDAT ION , ACCURACY AND BIAS EVALUAT ION OF

IPRAPA

Using simulated data sets with known complete rankings,

IPRAPA was assessed for (i) its ability to reconcile ties within and

disagreements between input lists by calculating a, or the ratio

between IPRAPA solution and an exhaustive search (‘a-approxi-
mation’) (see Appendix S1.3), (ii) correctly inferred pairwise rela-

tionships among phylotype pairs absent in input lists by

calculating b (% pairwise comparisons absent in input lists that

are correctly inferred) (Appendix S1.4), (iii) probability of mis-

ranking as a function of positional errors (Appendix S1.5) and (iv)

directional bias by calculating the average of over- or under-

estimation of a known rank (Appendix S1.5).

Results

INPUT DATA STRUCTURE

Available data on Symbiodinium relative thermotolerance

included 110 unique phylotypes from 37 partial rankings

obtained from 35 source publications (Table S1). The

structure and features of these data present several analysis

challenges: (i) data are sparse with few phylotypes evalu-

ated in each partial list (2–24, median 4), minimal overlap

across lists (26% of phylotypes were ranked by two or

more reports, Fig. S1a) and most pairwise comparisons are

unknown (only 15�3% of the possible 5995 unique pairwise

comparisons are available); (ii) nearly one-third (30%) of

partial rankings include cohorts with ties (Table S1); and

(iii) multiple disagreements exist across partial lists, where

30 of 58 repeatedly ranked pairs of phylotypes (52%) are

inconsistently ranked across sources (Fig. S1b, Table S2).

Another less obvious (and therefore more insidious) chal-

lenge is implied disagreements among sources: rankings

that do not contain a specific pairwise comparison may

become inconsistent when a consensus ranking is

attempted. For example, examined reports stipulate that

C1 < C21, D1-4 < C1 and C21 < D1-4 (Tables S1 and

S2); therefore, the former reports indicate a consensus

among these specific sources (D1-4 < C1 < C21) that is

inconsistent with the latter (and with the complete consen-

sus ranking); these implied inconsistencies are more

numerous than those that are explicit.

CONSENSUS THERMOTOLERANCE SCORES , COHORT

RANKS AND UNCERTA INT IES

Applying IPRAPA to the empirical Symbiodinium data set

generated similar consensus rankings achieved by the first

iteration R
ð1Þ
k , and by allowing iterations to continue to

convergence R
ðpÞ
k (after 13 iterations). Because R

ð1Þ
k has

higher coherence with input partial rankings (coherence:

R
ð1Þ
k = 160�3 vs. R

ðpÞ
k = 156�7 out of a maximum of 209 if

there are no inconsistencies), it is the best approximate

solution.

IPRAPA yields a quantitative score (R of 0–100) and an

uncertainty of estimation for each phylotype (Table 1) and

represents the relative thermotolerance distance (direction

and separation) between phylotypes, but not magnitude of

differential thermotolerance. For example, C1

(R = 21�72 � 4�17) and A13 (R = 20�22 � 7�65) are indis-

tinguishable (as their errors overlap), while D1

(R = 43�82 � 6�86) is significantly higher, but should not

be interpreted as physiologically twice as thermotolerant.

The recovered thermotolerance scores follow a sum of

three distinct normal distributions, which may tentatively

be interpreted as low, medium and high thermotolerance

(Table 1, Fig. 1, inset). The top quartile includes scores

>39�8 (and cohort ranks 1–13) and contains the well-

known thermotolerant phylotype D1-4 and representatives

of A, C, and F clades, while the bottom quartile includes

scores <13 (and cohort ranks 53–64) and contains repre-

sentatives of all clades examined except F, with most phy-

lotypes representing clade C (Table 1, Fig. 1).

Furthermore, there is large in-clade score variance for all

clades evaluated (Table 1, Fig. 1).

Total uncertainty (D, Table 1, eqn 10) indicates the

error of estimation for R and ranged from 2�63 to 33�33
(mean of 9�6) in the empirical data. Although the stan-

dard error of the mean (eqn 9) includes the error of mea-

surement (eqn 8), standard deviation is not defined for

phylotypes occurring in single reports (74% of phylo-

types; Fig. S1a, Table S1); therefore, total uncertainty is

approximated as the maximum of error metrics (eqn 10,

Table 1).

I PRAPA PERFORMANCE AND VAL IDAT ION

IPRAPA preformed quickly with all data sets; the esti-

mated time for an exhaustive search (which is NP-hard) of

N elements increases as N!. IPRAPA (a first-order polyno-

mial time algorithm) typically converges on a solution in

<15 iterations and requires c. 0�025N seconds on a per-

sonal computer; the iterated solution for the thermotoler-

ance data set (N = 110) was found in <3 s.

IPRAPA performance was validated for its ability to (i)

reconcile disagreements between input lists (52% of phylo-

type pairs in the empirical data were inconsistently ranked)

and (ii) correctly infer relationships among pairs of phylo-

types not present (15�3% of the possible 5995 unique pair-

wise comparisons were available) or tied (30% of

phylotypes) within input lists (Appendix S1.4). Because the

true ranking is unknown and a would-be perfect ranking is

currently intractable, we used simulated data sets. The first

evaluation used Kendall Tau distance to compare the abil-

ity of IPRAPA and an exhaustive search (Kemeny–Young)
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algorithm to reconcile disagreements among 10 fully

resolved (no ties) rankings of random permutations of 10

phylotypes. The a-approximation of IPRAPA to Kemeny–
Young full rank aggregation for the simulated reduced

data set is 1�14–1�46 (mean 1�28 of 10 realizations;

Table S3), indicating that results of IPRAPA compare

favourably (a of ≤2 is considered robust) to the exhaustive

search in reconciling disagreements among rankings.

The second evaluation assessed the ability of IPRAPA

to correctly reconstruct a full consensus ranking based

on sparse partial input ranking lists with ties, using five

(increasingly comprehensive) simulated data sets with

similar data structure to the empirical data (sparse partial

input lists with ties) and determining the accuracy of

IPRAPA by calculating (i) b, the % unknown pairwise

comparisons correctly inferred, (ii) Perr and (iii) Σ, the %

known and unknown pairwise comparisons correctly

identified. The additional percentage of pairwise compar-

isons uncovered by the algorithm was substantial

(b = 80–86%, Table S4), position error was reduced with

increasing number of known pairwise comparisons in the

initial input lists (Perr = 12�5–3�5, Table S4), and total

percentage of correct pairwise comparisons increased

from 16% to 87% initially known to Σ = 83–98% after

application of IPRAPA (Table S4). Regressions of

IPRAPA reconstructed rankings on known complete

rankings are highly significant (average r2 = 0�90, all

P < 0�001; Fig. S2), indicating that IPRAPA is able to

accurately reconstruct consensus rankings using sparse

partial rankings.

These simulations also validated approximation equa-

tions (eqns 12–15, see text S1.4) used to estimate total

uncertainty D (r2 = 0�97 between D predicted by eqn 13

and D calculated for synthetic data sets using eqn 10),

average position error Perr (r2 = 0�91 between Perr pre-

dicted by eqns 11 and 14 vs. Perr calculated by comparing

the IPRAPA outputs and true rankings) and Σ (r2 = 0�87
between Σ predicted by eqn 15 vs. calculated by comparing

the IPRAPA outputs and true rankings). Thus, error met-

rics generated by IPRAPA (Perr and Σ) can be accurately

estimated a priori based on the length of input partial

rankings.

Equations 12–15 predict accuracy of the consensus rank-

ing for the thermotolerance data set based on the structure

of input partial ranking lists. For example, Perr can be con-

verted from total uncertainty D (eqn 11) or estimated from

the total number of phylotypes and average inverse length

of rankings 1
n

� �
(eqn 14). For the empirical thermotoler-

ance data set of 110 phylotypes, D = 9�6, 1
n

� � ¼ 0 � 27, and
eqns 11, 14 give similar estimates of Perr as 11�3 and 10�5,
respectively. These values are consistent with D = 9�3 and

Perr = 12�5 of the simulated data set that is most similar to

the empirical thermotolerance data (simulated data set 1,

Table S4).

The average position error Perr is the average absolute

distance and is therefore not directional. Positional bias

(i.e. over- or under-estimation of ranking) was calculatedT
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as the average of directional position errors and was deter-

mined to be zero (for all validation sets, the average of

directional position errors did not exceed one position in

either direction; Appendix S1.5).

The probability that IPRAPA misranks thermotolerance

of a given phylotype decreases exponentially with distance

between true and mistaken ranks (positional error dis-

tance). For example, for the empirical data set

(Perr = 10�5) the probability that a phylotype with a ther-

motolerance rank within the bottom 10 elements is mis-

ranked to the top 10 elements (or vice versa) is only

c. 0�0001 (Fig. S3, Appendix S1.5).

Discussion

I PRAPA OVERCOMES S IGN IF ICANT CHALLENGES TO

BUILD A CONSENSUS OF CURRENT KNOWLEDGE

IPRAPA approximation is an accurate and fast approach

to address partial ranking aggregation in its comprehensive

form and can be applied to diverse ranking problems in

ecology (e.g. species threatened with extinction) and other

disciplines (e.g. search engines or rankings of best schools).

Here, we quantified the relative score and associated

uncertainty of thermotolerance for 110 unique Symbio-

dinium phylotypes from sparse qualitative data with rank-

ing ties, minimal phylotype overlap and inconsistencies

between reports. The IPRAPA approximation can be used

to further expand this consensus ranking as new informa-

tion becomes available. Inconsistencies were either explicit

(where phylotype pairs assessed in >1 report were discor-

dantly ranked) or implicit (where phylotype pairs not

assessed by some reports are discordant when compared

across reports). Implicit ranking inconsistencies are partic-

ularly insidious for consensus reconstruction, as small sub-

sets of data may be misleading. For example, D1-4 is

generally thought of as among the highest thermotoler-

ance; however, if aggregating just two partial rankings

where C1 = C3 and D1-4 < C1 (Table S1), D1-4 would

rank below C3 (and c. 50% of the remaining phylotypes in

these partial rankings). In the final consensus, D1-4

(52�12 � 18�0, percentile rank 85�3) ranked significantly

above C3 (25�98 � 3�89, percentile rank 47�7) and C1

(21�72 � 4�17, percentile rank 35�7).
Commonly cited phylotypes at the extremes of Symbio-

dinium thermotolerance include thermosensitive C7 and C3

(Warner et al. 2006; Jones et al. 2008; DeSalvo et al. 2010;

Silverstein et al. 2011; Wang et al. 2012; Kemp et al. 2014;

Keshavmurthy et al. 2014) and thermotolerant D1 and

D1-4 (Thornhill et al. 2006; Kemp, Fitt & Schmidt 2008;

McGinley et al. 2012; McGinty, Pieczonka & Mydlarz

2012; Wang et al. 2012; LaJeunesse et al. 2014). These

phylotypes are not at the extremes of the reconstructed

consensus ranking (Table 1); however, they rank as 19�2,
47�7, 82�5 and 85�3 percentile, respectively. The use of con-

sensus-based (Borda rank aggregation) rather than major-

ity-based ranking can (in part) explain this outcome;

partial lists with uncommon rankings representing a ‘sig-

nificant minority’ effect the ultimate outcome and are not

simply over-ruled by the majority. Furthermore, larger lists

(with the greatest number of cohorts and phylotypes) are

aggregated first and are therefore more influential in deter-

mining the final consensus ranking. For example, all stud-

ies containing F2 ranked it most thermotolerant, A20 was

ranked highly in a single report, and D1-4 is often, but not

always, ranked as most thermotolerant in any single list

(Table S1). Although D1-4 is ranked in the final consensus

as highly thermotolerant, it is ranked below A20 and F2

(in part) because a highly comprehensive report ranked

D1-4 roughly in the middle of the list (Table S1). Thus, it

is possible to develop a more accurate ranking if compre-

hensive reports with greater inter-ranking overlap are

included.

I PRAPA PROV IDES A UNIF IED METR IC TO DEL INEATE

D IFFERENT IAL THERMOTOLERANCE

Total uncertainty in thermotolerance score (D, Table 1,

eqn 10) enables assessment of ecological implications of a

wide range of phylotype thermotolerance by determining

the minimal difference between two scores that are needed

to confidently infer their pairwise relationship. If two phy-

lotypes have scores outside their uncertainty intervals, then

the approximated thermotolerance is significantly different.

For a given phylotype, D is determined by ranking differ-

ences among individual lists (the standard error of the

mean, eqn 9), the number of cohorts represented in the lists

and the number of lists that rank the phylotype (the latter

two factors are accounted for by the standard error of mea-

surement, eqn 8). If a phylotype is inconsistently ranked, is

present in few lists, or the lists have few cohorts, D will

increase. For example, C3* is ranked by a single report and

therefore has a relatively high D of 33�33, D1-4 is ranked by

11 reports (which decreases its error of measurement), but

these reports rank it inconsistently, which increases its D to

18�0 (Table 1). The mean total uncertainty for the empirical

thermotolerance data set was D = 9�6.

I PRAPA IS ACCURATE AND EXTENS IBLE

IPRAPA yields a consensus ranking that, based on valida-

tion with simulated data, is an accurate approximation of

the unknown true ranking. Against known rankings,

IPRAPA was nearly as capable as an exhaustive search

(Kemeny–Young rank) in reconciling disagreements

among input rankings (mean a = 1�28, Table S3). Further-

more, the use of five simulated data sets that mimicked the

structure of the empirical data demonstrated accuracy of

IPRAPA to correctly reconstruct a consensus ranking

based on sparse partial input ranking lists with ties.

IPRAPA correctly inferred most of pairwise phylotype

comparisons absent in input lists (b = 80–86%, Table S4)

and, as would be expected, the total number of correctly

identified pairwise comparisons increased with the number
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of initially known pairs (Σ = 83–98% from 16–87% ini-

tially known, Table S4). For the simulated data that best

matched the structure of the empirical thermotolerance

data (37 partial lists of 110 total elements with 16% of

pairwise comparisons known), IPRAPA was capable of

accurately inferring 83% of pairwise comparisons and the

consensus ranking closely resembled the true ranking

(r2 = 0�70, P < 0�001; Fig. S2, Table S4). Values of b and

Σ depend on the structure of input partial rankings; gener-

ally, more comprehensive partial rankings, greater phylo-

type overlap among rankings and rankings covering a

wider range of score values will increase b and Σ.
Expansion of the consensus ranking by the addition of

partial rankings may increase the number of phylotypes

and/or improve accuracy of reconstruction. Reports can

be evaluated for their effect on accuracy of IPRAPA by

estimating the percentage of known and unknown pairwise

comparisons correctly identified (Σ, eqn 15) from the

length of novel partial ranking lists and the total number

of phylotypes in each list. Depending on the data structure

of additional reports, there may be a trade-off between

ranking more phylotypes and optimizing accuracy (Σ). For
example, adding a new report of few phylotypes could

reduce accuracy (Σ, as per eqn 15) if it also contains new

phylotypes, but increase accuracy if it does not.

L IM ITAT IONS AND GENERAL CONS IDERAT IONS

The ranking generated by IPRAPA uses data collected

under diverse goals and methods to return the first approx-

imation of the true Symbiodinium thermotolerance ranking

based on data that are currently available. Thermotoler-

ance has been assessed in <25% of the known diversity of

phylotypes (409; Franklin et al. 2012), and adding new

phylotypes or new data to the analysis may alter the rank

order or delineation of significant differences between

reconstructed ranks.

Bleaching response can be context dependent: the host

(Abrego et al. 2008; Baird et al. 2009; Fitt et al. 2009; Bel-

lantuono, Hoegh-Guldberg & Rodriguez-Lanetty 2012;

Kenkel et al. 2013; Marcelino et al. 2013; Wooldridge

2014), bacterial symbionts (Gilbert et al. 2012) and Sym-

biodinium densities (Cunning & Baker 2013) can all have

significant roles in determining holobiont bleaching

response, and Symbiodinium in vitro may respond differ-

ently than those in hospite (Bhagooli & Hidaka 2003).

Acknowledging that the diversity of conditions and meth-

ods will increase total uncertainty of the estimation within

each report (Table 1), we accept this uncertainty (and

embrace the advantages of averaging rankings across

diverse conditions) as necessary to simultaneously maxi-

mize genetic resolution and thermotolerance assessment

given currently available data, and the likely insurmount-

able challenges of identically assessing all known phylo-

types. Furthermore, this approach should become

increasingly useful as more studies assess different phylo-

types in multiple coral species with a wide range of differ-

ent bleaching susceptibilities, because we will be better able

to tease apart confounding factors (e.g. host thermotoler-

ance) and identify the role of Symbiodinium thermotoler-

ance in bleaching susceptibility.

Phylotypes are identified by the standard molecular mar-

ker (ITS2) through a diversity of methods that each has

their own resolution capabilities and failure rates (some of

which can even be user specific and therefore difficult to

quantify). There are several other genetic tools with similar
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(species level) or better (population level) resolution (e.g.

cp23S, Pochon et al. 2010; psbA minicircle, LaJeunesse &

Thornhill 2011; or multilocus microsatellite genotyping,

Thornhill et al. 2014; Pettay et al. 2015); however, none

are as regularly employed, standardized across clades or

widely evaluated for differential thermotolerance (i.e. ITS2

phylotypes simultaneously maximize identity resolution

and thermotolerance data availability). Although ITS2 is

generally considered to be an ecologically meaningful spe-

cies-level marker for Symbiodinium, intragenomic variation

may confound identifications (LaJeunesse et al. 2014;

Thornhill et al. 2014) and populations within phylotypes

may have variable thermotolerance (Howells et al. 2012).

Physiological diversity within phylotypes will increase total

uncertainty or may confound estimates of rarely assessed

phylotypes, for thermotolerance scores reported here

(Table 1). As use of high-resolution markers expands and

their relative thermotolerance reported, these data can fur-

ther refine the consensus thermotolerance ranking.

Limitations of individual partial rankings reinforce the

importance of generating a unified consensus ranking. In

the current literature, differential Symbiodinium thermotol-

erance is frequently offered as a partial explanation of dif-

ferential coral bleaching susceptibility; however, that

assertion (unless matched to assessments performed with

identical conditions and organisms) is based on a qualita-

tive and subjective informal partial aggregation of pub-

lished partial rankings and is not likely to accurately

reflect current knowledge. With the potentially insur-

mountable challenges of experimentally assessing all

known phylotypes, our best (although imperfect) approach

may be to provide a quantitative systematic approximation

of the true consensus.

ECOLOGICAL IMPL ICAT IONS

This consensus ranking of Symbiodinium phylotype ther-

motolerance represents a tool to generate testable hypothe-

ses of the role of Symbiodinium thermotolerance and to aid

in the interpretation of distribution, prevalence and domi-

nance of phylotypes over space and time. For example, a

recent study by Kemp et al. (2015) surveyed Symbiodinium

phylotypes A3, B1, B17, C3, C7, C7a and D1-4 and identi-

fied intercolony and geographic distribution patterns that

are correlated with light availability, cardinal direction and

depth and commented on the relative thermotolerance of

A3, D1-4 and C7 for predicting future bleaching events

(with thermosensitive C7-dominated colonies at ‘high risk’

for bleaching). Thermotolerance scores of D1-4

(53�12 � 18) and A3 (35�86 � 8�50) are in the top quartile

(39�8); C7a (8�85 � 8�85), C7 (10�36 � 5�32) and B17

(17�25 � 5�09) are within the bottom quartile (13); and C3

(25�98 � 3�89) and B1 (23�63 � 4�01) are in between. This

may indicate that colonies (studied by Kemp et al. 2015)

dominated by C7a and B17 or that colonies with high pro-

portions of low thermotolerance symbionts (under the

assumption that photobiont thermotolerance will change

proportionally to symbiont composition; Cunning, Silver-

stein & Baker 2015), could also be designated as ‘high risk’

for bleaching.

This study by Kemp et al. (2015) also highlights the util-

ity of the consensus ranking reported here. Of the seven

phylotypes examined, the authors identified A3 and D1-4

as thermotolerant and C7 as thermosensitive, based on

their considerable previous experience and knowledge of

the literature. The ranking reported here identifies the

same three phylotypes as extremes in the thermotolerance

continuum, but IPRAPA allows analysis of the ecological

implications of the lesser known phylotypes. For example,

in the input lists used here, C7a was never directly com-

pared to A3, B17 or C7; without consensus analysis or

new experimentation, the relationships between these phy-

lotypes could not be known.

The reputation of D1-4 is well established and appears

in eleven input lists in this study. Although D1-4 is within

the top quartile of thermotolerance reconstructed by

IPRAPA, there are 40 other phylotypes (including phylo-

types representing clades A, C & F) within the error of its

thermotolerance score (Table 1). Perhaps the reputation of

extreme thermotolerance of D1-4 lies not only in its docu-

mented resistance to thermal stress, but also (in part)

because D1-4 is the most common and geographically

widespread of any D phylotype (LaJeunesse et al. 2014)

and is therefore often the most thermotolerant in any sin-

gle ecosystem or study.

Distribution of thermotolerance scores themselves may

give further indication of the practicality of resolution of

molecular markers and categorization of thermal resis-

tance. Within clades, the diversity of scores encompasses

large proportions (26–96) of the possible range of thermo-

tolerance (Fig. 1). Among clades, the means and ranges of

scores are largely overlapping (Fig. 1) for clades B

(mean � SE 20�17 � 3�08; range 9–35) and C

(28�41 � 1�02; 3–71), and A (33�00 � 5�37; 11–59) and D

(32�24 � 4�55; 4–100), making it clear that clade-level

identifications are not informative for elucidating Symbio-

dinium thermotolerance. As population-level data become

more widely available, and genotypes are assessed for dif-

ferential thermotolerance (e.g. Howells et al. 2012), the

resolution of this ranking can be further improved.

With the ranking presented here, and its capacity for

refinement and expansion with new data, our ability to

interpret the significance of specific host–symbiont associa-

tions and the resilience of reefs may be greatly improved.

Surveys of Symbiodinium phylotypes can now be inter-

preted in the light of relative thermotolerance of many

phylotypes and can be integrated with coral bleaching

response and host–symbiont association data sets to better

elucidate the role of Symbiodinium thermotolerance in

coral bleaching susceptibility. High concentrations of high-

thermotolerance phylotypes may be an indication of reefs

that experience regular thermal stress fluctuations (when

independent temperature data support that conclusion;

Stat et al. 2013), an indication of recent bleaching events
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(when the thermal record does not support regular temper-

ature extremes; Silverstein, Cunning & Baker 2014), or

may aid in predicting the severity of future bleaching

events (Stat & Gates 2011).
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