Sustainability and development through the underground

 

 

The historical perception of the subsurface has been far from uplifting.

In The Divine Comedy, Dante Alighieri even described the subsurface as a remote, dirty, and dark place devoid of good where the nine circles of hell were located.

Sustainability and development through the underground

 

 

The historical perception of the subsurface has been far from uplifting.

In The Divine Comedy, Dante Alighieri even described the subsurface as a remote, dirty, and dark place devoid of good where the nine circles of hell were located.

Seven centuries later, the Subsurface Opportunities and Innovation LaboratorySOIL – strives to offer an alternative perspective on the subsurface, grounded in science and laced with optimism and hope.

The subsurface offers multiple opportunities for more sustainable living and development on Earth and other worlds, such as the Moon and Mars: energy, space, and shelter. With this vision, at SOIL we perform theoretical and experimental research to promote sustainability and development via the underground. Our research is inherently cross-disciplinary. Grounded in mechanics – the science of how materials deform and potentially fail – our work also leverages and develops knowledge in energy, electrochemistry, and environmental science to address the pressing challenges and opportunities brought by climate change, urbanization, and decarbonization.
These challenges and opportunities are linked by one common problem: the complex influence of climatic and anthropogenic perturbations on geomaterials, geostructures, and geosystems – the backbone of the subsurface.
Motivated by fundamental and applied knowledge gaps, SOIL strives to unravel and control the influence of environmental perturbations on the structure, properties, and behavior of the subsurface. The work of SOIL is advancing geological energy production and storage, manufacturing, and construction, serving human development on Earth and beyond.

Research impact

 

Indices (Scopus)

Citations: 1307
h-index: 20
Citing documents: 647

 

Output

Books: 1
Book chapters: 2
Patents: 2
Journal papers: 45
Conference paper/abstracts: 47
Media articles/appearances: 107

Latest journal publications

45. Kwon, Y. and Rotta Loria, A. F. (2024) Electrochemical cementation of granular materials with different fabric. Applied Materials Today. 38:102235.
44. Pan, Y. and Rotta Loria, A. F. (2024) SANISAND-MS-T: Simple ANIsotropic SAND model with Memory Surface for Temperature effects. Computers and Geotechnics. 170(June):106303.
43. Pan, Y., Gong, X., and Rotta Loria, A. F. (2024) Thermal shakedown of granular materials with irregular particle shapes. Scientific Reports. 14: 6828.
42. Tyagi, G., Singhal, A., Routroy, S., Bhunia, D., Rotta Loria, A. F., Lahoti, M. and Pranav, S. (2024) Fired clay bricks synergistically valorizing hazardous Nickel Chrome plating sludge and fly ash: Performance assessment. Construction and Building Materials. 423, 135817.
41. Ravera, E., Laloui, L. and Rotta Loria, A. F. (2024) Performance of complex energy geostructures. Geomechanics for Energy and the Environment. 38(June):100536
40. Devi, N., Wagner, A., Guerini, A., Zampini, D., Lopez, J. and Rotta Loria, A. F. (2023) Mechanistic insights into electrodeposition in seawater at variable electrochemical potentials. Advanced Sustainable Systems. Research featured as a cover image in the issue 4/2024.
▼ Browse all publications

45. Kwon, Y. and Rotta Loria, A. F. (2024) Electrochemical cementation of granular materials with different fabric. Applied Materials Today. 38:102235.
44. Pan, Y. and Rotta Loria, A. F. (2024) SANISAND-MS-T: Simple ANIsotropic SAND model with Memory Surface for Temperature effects. Computers and Geotechnics. 170(June):106303.
43. Pan, Y., Gong, X., and Rotta Loria, A. F. (2024) Thermal shakedown of granular materials with irregular particle shapes. Scientific Reports. 14: 6828.
42. Tyagi, G., Singhal, A., Routroy, S., Bhunia, D., Rotta Loria, A. F., Lahoti, M. and Pranav, S. (2024) Fired clay bricks synergistically valorizing hazardous Nickel Chrome plating sludge and fly ash: Performance assessment. Construction and Building Materials. 423, 135817.
41. Ravera, E., Laloui, L. and Rotta Loria, A. F. (2024) Performance of complex energy geostructures. Geomechanics for Energy and the Environment. 38(June):100536
40. Devi, N., Wagner, A., Guerini, A., Zampini, D., Lopez, J. and Rotta Loria, A. F. (2023) Mechanistic insights into electrodeposition in seawater at variable electrochemical potentials. Advanced Sustainable Systems. Research featured as a cover image in the issue 4/2024.
39. Landivar Macias, A. and Rotta Loria, A. F. (2023) SANISAND-C*: Simple ANIsotropic constitutive model to capture Cementation effects in SAND. International Journal for Numerical and Analytical Methods in Geomechanics. 47(15):2689–2847.
38. Shirole, D., Volpatti, G, Guerini, A., Zampini, D., Cusatis, G. and Rotta Loria, A. F. (2023) Effects of electrodeposition in concrete mediated by electric currents of variable polarity. Cement and Concrete Research 172: 107254.
37. Rotta Loria, A. F. (2023) The silent impacts of underground climate change on civil infrastructure. Nature Communications Engineering 44(2): 1–12. Article featured by NYT, SciAm, WaPo, NPR, Bloomberg, Forbes, and CNN, among others; Global audience reach: 41.3M people.
36. Rotta Loria, A. F., Ravera, E. and Laloui, L. (2023) Thermo-hydro-mechanical behavior of energy barrettes: field experiments and numerical simulations. Geomechanics for Energy and the Environment 34:100451.
35. Rotta Loria, A. F., Shirole, D., Volpatti, G, Guerini, A. and Zampini, D. (2023) Engineering concrete properties and behavior through electrodeposition: a review. Journal of Applied Electrochemistry 53: 193—215.
34. Dai, S., Rotta Loria, A. F., and Choo, J. (2022) Effects of internal airflows on the heat exchange potential and mechanics of energy walls. Renewable Energy 197: 1069–1080.
33. Rotta Loria, A. F., Thota, A., Thomas, A. M., Friedle, N., Lautenberg, J. and Song, E. (2022) Subsurface heat island across the Chicago Loop district. Urban Climate 44: 101211.
32. Pan, Y., Coulibaly, J. B. and Rotta Loria, A. F. (2022) An experimental study challenging the thermal collapse of sands. Geotechnique 2022: 1–11.
31. Cassina, L., Laloui, L. and Rotta Loria, A. F. (2022) Thermal potential and interactions of vertical geothermal boreholes at the district-scale. Renewable Energy 194: 1204–1220.
30. Coulibaly, J. B. and Rotta Loria, A. F. (2022) Transient dynamics of thermally induced deformations of sands. International Journal for Numerical and Analytical Methods in Geomechanics 46(10): 1972–1988.
29. Rotta Loria, A. F., Richard, N. P. and Laloui, L. (2022) Analytical analysis of barrette foundations subjected to mechanical and thermal loads. Geomechanics for Energy and the Environment 32()December(2022): 100333.
28. Rotta Loria, A. F., Di Donna, A. and Zhang, M. (2022) Stresses and deformations caused by geothermal operations of energy tunnels. Tunnelling and Underground Space Technology 124(June 2022): 104438.6 – 23
27. Rotta Loria, A. F. (2021) The thermal energy storage potential of underground tunnels used as heat exchangers. Renewable Energy 176: 214–227.
26. Bourhis, P., Cousin, B., Rotta Loria, A. F. and Laloui, L. (2021) Machine learning enhancement of thermal response tests for geothermal potential evaluations at site and regional scales. Geothermics 95:102132.
25. Wu, D., Liu, H., Kong, G. and Rotta Loria, A. F. (2021) Thermo-mechanical behavior of a full-scale energy pile equipped with a spiral pipe configuration. Canadian Geotechnical Journal 58(11): 1757–1769.
24. Dornberger, S., Rotta Loria, A. F., Epard, J.-L. and Turberg, P. (2021) Heat exchange potential of energy tunnels for different internal airflow characteristics. Geomechanics for Energy and the Environment December: 100229.
23. Adinolfi, M., Rotta Loria, A. F., Aversa, S. and Laloui, L. (2021) Experimental and numerical investigation of the thermo-mechanical behaviour of an energy sheet pile wall. Geomechanics for Energy and the Environment 25: 100208. Most downloaded article, 2020.
22. Rotta Loria, A. F. and Coulibaly, J. B. (2021) Thermally induced deformation of soils: a critical overview of phenomena, challenges and opportunities. Geomechanics for Energy and the Environment 25: 100193. Most downloaded article, 2020.
21. Coulibaly,, J. B., Shah, M. and Rotta Loria, A. F. (2020) Thermal cyclic loading of granular materials: effects on material fabric and properties. Granular Matter 22(80): 1–19. Research featured as a cover image in the issue 3/2021.
20. Pan, Y., Coulibaly, J. B. and Rotta Loria, A. F. (2020) Thermally induced deformation of coarse-grained soils under nearly zero vertical stress. Geotechnique Letters 10(4): 1–6.
19. Zannin, J., Rotta Loria, A. F., Labjani, Q. and Laloui, L. (2020) Extension of Winkler’s solution to non-isothermal conditions for the modelling of plane energy geostructures. Computers and Geotechnics 127:103618.
18. Rotta Loria, A. F., Catala Oltra, V. and Laloui, L. (2020) Equivalent pier analysis of full-scale piles subjected to thermal and mechanical loads. Computers and Geotechnics 120: 103410.
17. Rotta Loria, A. F., Bocco, M., Garbellini, C., Muttoni, A. and Laloui, L. (2020) The role of thermal loads in the performance-based design of energy piles. Geomechanics for Energy and the Environment 21:100153. Most cited article, 2023-2020; Most cited article, 2017-2019; Most downloaded article, 2019.
16. Cousin, B., Rotta Loria, A. F., Bourget, A., Rognon, F. and Laloui, L. (2019) Energy performance and economic feasibility of energy segmental linings for subway tunnels. Tunnelling and Underground Space Technology 91: 102997.
15. Peltier, M., Rotta Loria, A. F., Lepage L., Garin E. and Laloui, L. (2019) Numerical modelling of convection heat transfer driven by airflows. Applied Thermal Engineering 159: 113844.
14. Rotta Loria, A. F. (2018). Performance-based design of energy pile foundations. Journal of the Deep Foundations Institute (Young Professor Paper Competition Award) 43rd Annual Conference on Deep Foundations, Anaheim, California, United States of America 12(2): 94-107.
13. Rotta Loria, A. F., Vadrot, A. and Laloui, L. (2018) Analysis of the vertical displacement of energy pile groups. Geomechanics for Energy and the Environment 16: 1-14. Most cited article, 2017-2020; Most downloaded article, 2018.
12. Rotta Loria, A. F. and Laloui, L. (2017) Group action effects caused by various operating energy piles. Geotechnique 68(9): 834–841.
11. Rotta Loria, A. F. and Laloui, L. (2017) Displacement interaction among energy piles bearing on stiff soil strata. Computers and Geotechnics 90: 144-154.
10. Rotta Loria, A. F. and Laloui, L. (2017) The equivalent pier method for energy pile groups. Geotechnique 67(8): 691-702.
9. Rotta Loria, A. F., Vadrot, A. and Laloui, L. (2017) Effect of non-linear soil deformation on the interaction among energy piles. Computers and Geotechnics 86: 9-20.
8. Rotta Loria, A. F., Frigo, B. and Chiaia B. M. (2017) A non-linear constitutive model for capturing the mechanical behaviour of frozen ground and permafrost. Cold Regions Science and Technology 133: 63-69.
7. Rotta Loria, A. F. and Laloui, L. (2017) Thermally induced group effects among energy piles. Geotechnique 67(5): 374-393.
6. Rotta Loria, A. F. and Laloui, L. (2016) The interaction factor method for energy pile groups. Computers and Geotechnics 80: 121-137. Most downloaded article, 2016.
5. Di Donna, A., Rotta Loria, A. F. and Laloui, L. (2016) Numerical study on the response of a group of energy piles under different combinations of thermo-mechanical loads. Computers and Geotechnics 72(1):126-142. Most cited article, 2017-2018; Scott Sloan Best Paper Award (2021).
4. Rotta Loria, A. F., Orellana, F., Minardi, A., Furbringer, J.-M. and Laloui, L. (2015) Predicting the axial capacity of piles in sand. Computers and Geotechnics 69(1): 485-495. Top 25 hottest article.
3. Batini, N., Rotta Loria, A. F., Conti, P., Testi, D., Grassi, W. and Laloui, L. (2015) Energy and geotechnical behaviour of energy piles for different design solutions. Applied Thermal Engineering 86(1):199-213.
2. Rotta Loria, A. F., Di Donna, A. and Laloui, L. (2015) Numerical study on the suitability of centrifuge testing for capturing the thermal-induced mechanical behavior of energy piles. Journal of Geotechnical and Geoenvironmental Engineering 141(10): 04015042.
1. Rotta Loria, A. F., Gunawan, A., Shi, C., Laloui, L. and Ng, C. W. W. (2015) Numerical modelling of energy piles in saturated sand subjected to thermo-mechanical loads. Geomechanics for Energy and the Environment 1(1): 1-15. Most cited article, 2015-2019.

▼ Browse all media

107. Financial Times (2024), Sinking skyscrapers, new beaches: Chicago faces the climate crisis.
106. The Chicago Council on Global Affairs (2024), Underground climate change is slowly sinking Chicago and cities across the globe.
105. Trienens Institute for Sustainability and Energy (2024), Sustainability Lecture Series Returns, Tackles Interdisciplinary Topics.
104. Northwestern Engineering (2024), Northwestern Sustainability Lecture Series Returns with Six New Expert Talks.
103. letemps (2024), Enerdrape et ses panneaux geothermiques seduisent des investisseurs suisses.
102. Bilan Magazine (2024), Des investisseurs soutiennent enerdrape.
101. Agefi (2024), 1.3 million de francs leves.
100. 24 heures (2024), Enerdrape seduit les investisseurs.
99. News day FR (2024), A Ecublens, Enerdrape seduit avec sa geothermie sans forage.
98. thinkgeoenergy (2024), Geothermal panel startup closes CHF1.3 million seed financing round.
97. finsmes (2024), Enerdrape Raises Additional CHF 1.3M in Seed Funding.
96. energate messenger (2024), ROMANDE ENERGIE INVESTIERT IN START-UP ENERDRAPE.
95. Finanznachrichten (2024), Romande Energie SA: Enerdrape secures an additional CHF 1.3 million in Seed Funding.
94. Menafin (2024), Enerdrape Secures An Additional CHF 1.3 Million In Seed Funding.
93. Punkt4info (2024), Enerdrape erhalt frisches Kapital für Geothermie-Losung.
92. The New York Times (2023), Underground Heat Is Shifting Chicago’s Foundations. Article published in the first page of The NY Times issue of July 12, 2023, above the fold.
91. Scientific American (2023) Underground Climate Change Is Weakening Buildings in Slow Motion.
90. The Washington Post (2023) Underground climate change is helping sink the land beneath us.
89. Chicago Tribune (2023) Chicago’s downtown buildings are slowly sinking. Article published in the first page of the Tribune issue of July 27, 2023, above the fold.
88. Bloomberg (2023) Underground Climate Change Could Crack Foundations and Warp Subway Tracks.
87. EOS (2023) Underground Heat Could Be a Problem, or a Perk, for Chicago Buildings.
86. Forbes (2023) Underground Climate Change Poses A Risk To A City’s Infrastructure.
85. The Chicago Sun Times (2023) Underground climate change poses a ‘silent hazard’ in Chicago and other cities, researchers find.
84. CNN (2023) Underground climate change is deforming the ground beneath buildings, study finds.
83. Science Friday (2023) How Rising Temperatures Are Shifting The Ground Beneath Chicago.
82. USA Today (2023) Sinking cities: Climate change is warping the ground our cities are built on, study says.
81. Northwestern Engineering Magazine (2023), Underground Heat Islands Pose Silent Hazard.
80. Popular Mechanics (2023), Chicago Is Literally Sinking Because of an Insidious Underground Threat.
79. Popular Science (2023), How underground climate change affects life on the Earth’s surface.
78. Wikipedia (2023), 2023 in climate change.
77. NBC (2023) Underground climate change: How heat is trapped under the surface, threatening buildings.
76. NBC (2023) Research shows Chicago buildings are slowly sinking due to underground climate change.
75. CBS (2023) A ”silent hazard” is sinking buildings in Chicago and other major cities – and it ”will only get worse”.
74. Sky News (2023) Chicago: Underground climate change is deforming land under buildings and things are sinking, says study.
73. ZME Science (2023) There’s a silent hazard lurking below cities, and our buildings aren’t ready to handle it.
72. AccuWeather (2023) A growing list of US cities are slowly sinking, studies say.
71. La Repubblica (2023) Cosa sono le isole di calore e come cambia la vita in città.
70. Interesting Engineering (2023) Sensors show silent hazard is swelling the ground beneath cities by up to 12mm.
69. Gizmodo (2023) Underground Heat Is Sinking Our Cities, Study Says.
68. The Independent (2023) Cities in the US are sinking due to rising underground temperatures.
67. The Times of India (2023) Heat below making ground shift under Chicago.
66. The Jerusalem Post (2023) Sinking cities: New York, Chicago, Tel Aviv at risk from climate change.
65. Scientias (2023) Temperatuur onder onze voeten neemt in alarmerend tempo toe: we kampen nu ook al met ondergrondse klimaatverandering.
64. El Diario (2023) Una isla de calor subterránea: cómo el aumento de temperatura en las ciudades hunde el suelo y daña las infraestructuras.
63. Scripps News (2023) Study: Underground climate change causing ground to shift in Chicago.
62. MSN News (2023), Sinking cities: Climate change is warping the ground our cities are built on, study says.
61. New York Post (2023), Rising heat in subway stations could derail transit systems.
60. Science Alert (2023), Underground Climate Change Threatens to Destabilize Buildings.
59. Les Echos (2023), Le rechaufement des sous-sols, un danger pour les villes.
58. Radio Canada (2023), ÎIots de chaleur: le sol des villes se réchaufe et nos infrastructures vont en pâtir.
57. Northwestern University Homepage (2023), The ground is deforming, and buildings aren’t ready.
56. Northwestern University (2023), Opportunities underground.
55. The Infrastructure Show – Northwestern University (2022), Energy from the Earth – How does it work?.
54. Nouveliste / Arc info / la cˆote (2022), Comment exploiter le sous-sol de nos villes?.
53. Bilan Magazine (2022), Les atouts insoupconnés des parkings souterrains.
52. Swissquote (2022), Des panneaux thermiques dans les parkings.
51. Immobilien Innovation (2022), Enerdrape.
50. Le Temps (2022), Enerdrape, les ajustements avant l’envol.
49. 24 Heures (2022), En récupérant la chaleur souterraine, Enerdrape séduit le jury.
48. Startupticker (2022), Out of 200 Applications, Enerdrape wins in the Sustainable Technologies category.
47. Startupticker (2022), Enerdrape ravit le Trophée PERL 2022.
46. Storm (2022), Efficience énergétique: exploitation de la chaleur des sous-sols.
45. Startupticker (2022), Enerdrape wins the Grand Prize at the 25th venture edition.
44. Venture (2022), From car parks to renewable energy.
43. Wetenschapswinkel – De Standaard (2022), Hoe komt het dat het soms extreem heet is in tunnels?
42. 24 Heures (2022), GEOEG soufe le chaud et le froid en partant du sous-sol.
41. 24 Heures (2022), Enerdrape, l’entreprise habituée des médailes.
40. Handelszeitung (2022), Auszeichnungfurdie Tiefgaragen-Ide.
39. L’AGEFI (2022), Enerdrape.
38. La Libert´e (2022), Un projet pilot permet de capter de la géothermie sans forage.
37. SIG Vive la vie (2022), Enerdrape, révolution dans la géothermie.
36. Geothermie Schweiz (2022), Les panneaux géothermiques utilisent la chaleur et le froid des infrastructures existantes.
35. Springwise (2022), Underground car parks used to heat buildings above.
34. La fondation FIT (2022), A FIT tech seed loan of CHF 100,000 for enerdrape to use heat from underground infrastructures.
33. Le Temps (2022), La géothermie en Suisse veut accélérer son d´eploiement.
32. Le Temps (2022), Les trois fnalistes du Prix SUD sont connus.
31. Le News (2022), The Swiss start-up generating heat from basements.
30. 24 Heures (2022), Quelle entreprise novatrice sera la perle des startup lausannoises.
29. Innosuisse – DISCOVER magazine (2022), Enerdrape.
28. Le Temps (2022), Enerdrape ou la géothermie sans forage.
27. Baulatt (2021), Mit Wärme aus der Tiefgarage die darüber liegende Wohnung beheizen.
26.Efcience 21 Portrait (2021), Des panneaux thermiques en sous-sol.
25. HVAC & R news (2021), New tech taps heat from underground carparks.
24. Kapaw (2021), Enerdrape.
23. Agenda2030.ch (2021), Enerdrape.
22. Trend Watching (2021), Innovation of the day.
21. Umwelt Perspektiven (2021), Enerdrape.
20. Rinnovabili (2021), Recupero di calore, da parcheggi sotterranei al riscaldamento domestico.
19. Mirage News (2021), Using heat from underground parking lots to warm apartments.
18. Tech Explorist (2021), New technology uses heat from underground parking lots to warm apartments.
17. EPFL Homepage (2021), Using heat from underground parking lots to warm apartments.
16. Cleantech Alps – portraits d’entreprise (2021), Enerdrape : diminuer l’empreinte énergétique des bâtiments à l’aide de panneaux modulaires.
15. Green Universe (2021), La start-up Enerdrape mise sur la géothermie difuse.
14. Hello Tomorrow (2021), Sustainable Urbanisation: Sustainable Cities are the Key to our Future.
13. Dimensions (2021), Enerdrape.
12. L’AGEFI (2021), Les panneaux géothermiques d’Enerdrape attirent l’attention des jurés.
11. Bilan Magazine (2021), CO2 – La nouvelle rue vers l’or.
10. Swisstech (2021), Turning underground infrastructure into a supplier of renewable energy.
9. Dimensions (2021), Enerdrape.
8. Energate messenger (2020), Protrait: enerdrape.
7. Start-up Ticker (2020), Enerdrape wins CHF 150,000.
6. Startup Pill (2020), 101 Exciting Renewable Energy Companies That Are A Must Follow.
5. Batimag (2019), Des capteurs thermiques pour stocker la chaleur d´egagée dans les parkings.
4. PME Magazine (2019), Ma PME dans 5 ans.
3. Cleantechnica (2019), This Startup Wants To Put Geothermal Panels In Underground Garages & Tunnels.
2. EPFL (2019), EPFL-developed geothermal panels reach international fnals.
1. Start-up Ticker (2019), A Green Card to the ClimateLaunchpad Grand Finals in Amsterdam.

Team | Alumni


Alessandro F. Rotta Loria
Assistant Professor

Anjali Thota
Ph.D. Student

Daiki Shoji
Ph.D. Student

Jingwen (Kira) Zhang
M.S. Student

Xiaohui Gong
Ph.D. Student
 

Naghmeh Mehraeen
Ph.D. Student

Nishu Devi
Post-doctoral Researcher

Xiaoxu Fu
Post-doctoral Researcher

Yeong-Man Kwon
Post-doctoral Researcher

Zhonghao Chu
Ph.D. Student
 

Gaurav Tyagi
Visiting Ph.D. Student

Odile Gabrielle Montarnal
M.S. Student

Yining Huang
M.S. Student

David Kim
B.S. Student

Michelle Jo
B.S. Student
 

Tal Gamburg
B.S. Student

Maya Schwartz
B.S. Student
       

Team | Alumni


Alessandro F. Rotta Loria
Assistant Professor

Anjali Thota
Ph.D. Student
 

Daiki Shoji
Ph.D. Student

Giulia Capati
M.S. Student

Jingwen (Kira) Zhang
M.S. Student

Naghmeh Mehraeen
Ph.D. Student

Nishu Devi
Post-doctoral Researcher

Xiaohui Gong
Ph.D. Student

Xiaoxu Fu
Post-doctoral Researcher

Yeong-Man Kwon
Post-doctoral Researcher

Zhonghao Chu
Ph.D. Student

Gaurav Tyagi
Visiting Ph.D. Student

Odile Gabrielle Montarnal
M.S. Student

Yining Huang
M.S. Student

David Kim
B.S. Student

Michelle Jo
B.S. Student

Tal Gamburg
B.S. Student

Maya Schwartz
B.S. Student
   

Team | Alumni

Alessandro F. Rotta Loria
Assistant Professor
 

Anjali Thota
Ph.D. Student

Daiki Shoji
Ph.D. Student

Giulia Capati
M.S. Student

Jingwen (Kira) Zhang
M.S. Student

Naghmeh Mehraeen
Ph.D. Student

Nishu Devi
Post-doctoral Researcher

Xiaohui Gong
Ph.D. Student

Xiaoxu Fu
Post-doctoral Researcher

Yeong-Man Kwon
Post-doctoral Researcher

Zhonghao Chu
Ph.D. Student

Gaurav Tyagi
Visiting Ph.D. Student

Odile Gabrielle Montarnal
M.S. Student

Yining Huang
M.S. Student

David Kim
B.S. Student

Michelle Jo
B.S. Student

Tal Gamburg
B.S. Student

Maya Schwartz
B.S. Student