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ABSTRACT
Forecasts of the probability of a large earthquake occurring on a fault during a specific time
interval assume that a probability distribution describes the interevent times between
large earthquakes. However, current models have features that we consider unrealistic.
In these models, earthquake probabilities remain constant or even decrease after the
expected mean recurrence interval, implying that additional accumulated strain does
not make an earthquake more likely. Moreover, these models assume that large earth-
quakes release all accumulated strain, despite evidence for partial strain release in earth-
quake histories showing clusters and gaps. As an alternative, we derive the necessary
equations to calculate earthquake probabilities using the long-term fault memory
(LTFM) model. By accounting for partial strain release, LTFM incorporates the specific tim-
ing of past earthquakes, which commonly used probability models cannot do, so it can
forecast gaps and clusters. We apply LTFM to the southern San Andreas fault as an example
and show how LTFM can produce better forecasts when clusters and gaps are present.
LTFM better forecasts the exceptionally short interevent time before the 1857 Fort
Tejon earthquake. Although LTFM is more complex than existing models, it is more power-
ful because (unlike current models) it incorporates fundamental aspects of the strain accu-
mulation and release processes causing earthquakes.

KEY POINTS
• Earthquake probability models do not fully reflect the

strain processes that drive earthquakes.
• We derive a new earthquake probability model that

mimics the strain process.
• Because our model replicates the observed strain

processes, we expect more realistic forecasts.

Supplemental Material

INTRODUCTION
For decades, seismologists have tried to predict when, where,
and how large the next earthquake on a major fault would
be. However, to date, these attempts have been unsuccessful
(Hough, 2016). Instead, seismologists develop forecasts of the
probability of an earthquake occurring in a region over a given
timeframe (e.g., Field et al., 2015; Schorlemmer et al., 2018).
These estimates are incorporated in mitigation policies, notably
via hazard maps that predict the shaking levels that structures
should withstand and raise public awareness of seismic hazards.

The forecasts are based on the concept of the earthquake
cycle, in which the strain that accumulates between large earth-
quakes caused by motion between the two sides of a locked fault
is released by slip on the fault when an earthquake occurs (Reid,
1910). However, the current forecast methodology does not

include fundamental aspects of the strain accumulation and
release process. Here, we present a newmethod of deriving prob-
ability estimates using the recently introduced long-term fault
memory (LTFM) model, which is designed to reflect the strain
accumulation and release processes and allows temporal clusters
of earthquakes and gaps between them (Salditch et al., 2020). We
apply this method to the Mojave section of the San Andreas fault
in California—a region with a well-documented earthquake his-
tory at Pallett Creek (Weldon et al., 2005; Scharer et al., 2010)—
and show how it can produce more accurate forecasts.

LIMITATIONS OF CURRENT EARTHQUAKE
PROBABILITY METHODS
The Mojave section of the San Andreas is of concern because
large earthquakes occur on average every 135 yr, most recently
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the 1857M 7.9 Fort Tejon earthquake. Prior to 1857, an M 7.5
earthquake occurred in 1812, which was preceded by a long
304 yr quiescent period (Scharer et al., 2011). Studies suggest
that the probability of a large earthquake here in next 30 yr is
20%–25% (Biasi et al., 2002; Field et al., 2015). How such prob-
abilities are calculated varies across studies but follows a gen-
eral methodology. Studies start with a paleoseismic record
giving dates of large past earthquakes (Fig. 1a) and fit some
probability density function (PDF) to the distribution of inter-
event times (Fig. 1b). Here we show three models, the time
independent (which assumes the probability is constant with
time) exponential—commonly referred to as the Poisson
model in seismological literature—and the time-dependent
(which assumes the probability changes with time) lognormal
and Brownian passage time (BPT) models. From these PDFs,
one can calculate the probability of a large earthquake during a
time period, typically the next 30 yr, given that one has not
occurred since 1857 (Fig. 1c).

For the time-independent exponential model, the 30 yr
probability stays constant at 20% (Fig. 1c). The 30 yr proba-
bilities change with time for the time-dependent lognormal
and BPT models. In 2022, the lognormal and BPT models pro-
duce similar 30 yr estimates (34%) but diverge in the future.
The lognormal and BPT probabilities have been relatively flat
since the expected mean recurrence time (∼1990s), but the log-
normal estimated probability decreases more rapidly than the
BPT, which levels off. The varying shapes of these curves reflect
different assumptions about how earthquake probability
changes with time.

The shortest interevent time (1812–1857) was preceded by
the longest interevent time (304 yr) in the Pallett Creek paleo-
seismic record, suggesting that the long quiescent period may

have influenced the exceptionally short subsequent interevent
time. However, the commonly used earthquake probability
models assume that the interevent times between earthquakes
are independent, treating earthquakes as a renewal process
(Cornell and Winterstein, 1988). In the time-independent
exponential model, this interevent time independence is
reflected in the constant earthquake probability with respect
to time. The time-dependent models incorporate this inde-
pendence assumption by resetting the probability to zero after
each earthquake. Hence, the calculated probability of the next
earthquake depends only on the time since the most recent
earthquake and the known distribution of interevent times
but not the specific sequence of interevent times for previous
earthquakes.

Because earthquakes release strain accumulated on a fault,
the independence assumption implies that an earthquake
releases all strain accumulated since the previous one. Although
assuming independence simplifies the probability calculation, it
ignores the wealth of geologic observations showing long tem-
poral gaps followed by clusters of earthquakes, suggesting that
earthquakes often only partially release the accumulated strain
(Wallace, 1970; Rockwell et al., 2000; Friedrich et al., 2003;

(a) (b) (c)

Figure 1. Estimating earthquake probabilities. (a) Pallett Creek paleoseismic
record of past earthquakes (Scharer et al., 2011, listed in Table S1).
(b) Histogram of interevent times (gray bars) and estimated probability
distributions for interevent times for exponential, lognormal, and Brownian
passage time (BPT) models. The lognormal and BPT models have a coef-
ficient of variation (CV) of 0.54. Also shown is the long-term fault memory
(LTFM) presented in this article. (c) Conditional probability of an earthquake
(EQ) in the next 30 yr given the 1857 date of the last earthquake. The color
version of this figure is available only in the electronic edition.
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Weldon et al., 2004; Sieh et al., 2008; Goldfinger et al., 2013;
Salditch et al., 2020; Hecker et al., 2021).

In this article, as discussed next, we present an LTFM earth-
quake probability model allowing partial probability drops,
reflecting partial strain releases in earthquakes. This behavior
allows LTFM to incorporate more available information—the
specific order of past earthquakes—in its forecasts. LTFM also
is designed to require that earthquake probability always
increases between earthquakes, reflecting monotonic strain
accumulation.

CALCULATING EARTHQUAKE PROBABILITIES WITH
LTFM
The LTFM model (Fig. 2a) builds on previous earthquake
probability models but with modifications to model the tem-
poral patterns of strain accumulation and release. LTFM, like
some earlier models (e.g., Lomnitz-Adler, 1983), assumes that
the probability of a large earthquake is linearly proportional to
the strain accumulated on the fault. The accumulated strain,
and hence probability, increases with time until an earthquake
happens, after which probability decreases, but not necessarily
to zero. The system thus retains long-term memory of earth-
quakes prior to the most recent, so the probability of an earth-
quake depends on prior earthquakes and so can remain
relatively high over multiple cycles. Unlike the renewal models,
the probability does not necessarily reset after an earthquake,
so interevent times are not independent.

As originally formulated by Salditch et al. (2020), LTFM has
two basic parameters: A, the rate at which strain, described by
earthquake probability, increases, and R, the drop in probability
(strain) from an earthquake. The drop R can be variable to sim-
ulate earthquakes of different magnitudes or constant for sim-
plicity because the paleoearthquake record generally shows that
past earthquakes were large enough to provide a clear record,
but their specific magnitudes are unknown. Salditch et al.
(2020) generally assumed a fixed R but indicated that it could
be variable. An additional probability (strain) threshold that
must be met or exceeded before an earthquake can occur can
be included but is not for this analysis. How much memory
is retained in the system after an earthquake depends on the

size of the probability drop (R) relative to the rate of probability
accumulation (A). If R≫A, the probability usually resets to zero
after an earthquake, as in renewal models. For smaller relative R
values, some residual probability (also known as memory) could
be (but not necessarily) retained after the earthquake. Thus, if an
interevent time much longer than the average interevent time
preceded the most recent earthquake, then residual strain
may have remained on the fault after the earthquake. This sim-
ple model can recreate a wide range of earthquake recurrence
patterns including clusters and gaps.

To calculate earthquake probabilities, we formulate the
LTFM model as a hidden Markov model that yields analytical
expressions. Markov models are stochastic models in which the
probabilities of future outcomes only depend on the system’s
most recent state (Çinlar, 1975; Feller, 1968; Girardin and
Limnios, 2018). For LTFM, the current state corresponds to
the accumulated earthquake probability (commensurate with
strain). This Markov process is hidden because we do not
observe what state the system is in (the level of strain on
the fault) (Rabiner, 1989). Instead, we only observe whether
an earthquake occurs. We discretize the probability range
0–1 into N states such that the probability of an earthquake
in state 1 is 0 and the probability of an earthquake in state
N is 1 (Fig. 2b). In this formulation, N= 1 + 1/A, in which
A is the probability increment in the original Salditch et al.
(2020) formulation. The earthquake drop D corresponds to
R/A in the original formulation. Conceptually, 1/N is the
annual increase in earthquake probability (or strain), and D
can be thought of as the number of years of accumulated prob-
ability (or strain) released by an earthquake.

At each epoch (timestep), an earthquake either occurs or
does not. If an earthquake occurs, the system moves from state

(a) (b) (c)

Figure 2. The LTFM as a hidden Markov process. (a) Example with three
earthquakes. (b) Representation of (a) as a Markov model with the
probability space discretized into 11 states. (c) Transition probability matrix
indicating probability of transition from state j to state k for this set of model
parameters. The color version of this figure is available only in the electronic
edition.
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n to a lower state n − D or 1 (whichever is larger—LTFM’s
formulation does not allow for strain overshoot). If no earth-
quake occurs, the system moves to state n + 1. The conditional
probability that an earthquake occurs in the current epoch
given that the state is n equals (n − 1) / (N − 1). Figure 2c
shows the transition matrix giving the probability of transition-
ing from state j to state k. This simple example contains 11
states with a fixed earthquake drop of three states. For example,
in state 5, the probability of an earthquake is 0.4. Therefore, the
probability of having an earthquake and moving down to state
2 is 0.4, and the probability of no earthquake occurring and
moving up to state 6 is 0.6. If we assume a fixed earthquake
drop D (which we do for the rest of this article), the transition
probability matrix is very sparse. Each row contains at most
two entries—one corresponding to an earthquake occurring
and one for an earthquake not occurring. All values in this
N × N matrix are determined by and calculated from the
parameters D and N. The number of states N should be large
enough that the probability of ever entering state N (in which
the probability of an earthquake equals 1) should be essen-
tially zero.

Using this matrix, we can calculate earthquake probabilities
following the procedures in the supplemental material available

to this article. Similar to the
existing probability models, we
do not explicitly account for
the different earthquake magni-
tudes in the paleoseismic rec-
ord. Instead, we forecast the
recurrence of large earthquakes
that can have a range of magni-
tudes, but we treat each earth-
quake as having the same
magnitude. Although the
LTFM can be modified to allow
for variable magnitude earth-
quakes, this would introduce
additional model parameters,
which would be difficult to con-
strain because most paleoseis-
mic records contain little or
no magnitude information.

Markov models have been
used in seismic hazard analysis
(Anagnos and Kiremidjian,
1988; Ebel et al., 2007; Votsi
et al., 2013) but generally did
not tie the states to strain incre-
ments as LTFM does. Anagnos
and Kiremidjian (1985) pro-
posed a Markov formulation
with linear strain increments
but specified a fixed strain

threshold for earthquake occurrence, whereas LTFM allows
earthquakes to randomly occur. Although calculating probabil-
ities with LTFM is more complicated than current approaches,
LTFM is designed to model the earthquake process and the
history of earthquakes on the fault.

With just two estimated parameters—number of states N and
earthquake drop size D—LTFM can replicate a wide range of
observed earthquake recurrence patterns (Salditch et al.,
2020). Figure 3 shows a set of simulations with a fixed N and
increasing D and the resulting long-run distribution of intere-
vent times. This long-run PDF shows the expected distribution
of interevent times if we observed the fault for a sufficiently long
time, analogous to the exponential, lognormal, and BPT PDFs in
Figure 1b. We use equation (S.12) from the supplemental
material to calculate the LTFM’s long-run distributions.

Simulations (1–3) in Figure 3a show how fixing the number
of states N and increasing the size of the earthquake drop D
changes the behavior of the LTFMmodel. For each simulation,
we show the state space history showing the probability (strain)
history and the corresponding earthquake record. In simula-
tion (1), D≪ N, so after an earthquake, the system rarely drops
to the lowest state (in which the probability of an earthquake
equals 0), leaving residual probability for another earthquake.

(a) (b)

Figure 3. The LTFM simulations with different input parameters. (a) Earthquake record simulations with fixed number
of states N and increasing earthquake drop D (1–3). (b) Long-run interevent time probability distributions for the
simulations in panel (a). Thicker lines indicate larger values of D. Mean (μ), standard deviation (σ), and CV
indicated. The color version of this figure is available only in the electronic edition.
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In this case, residual strain can build up after earthquakes, so
the earthquake record contains clusters and long gaps.
However, as D increases relative to N (simulations 2 and 3),
the system increasingly drops to the lowest state after an earth-
quake, making residual probability less likely. This reduces the
number of short recurrence intervals and so increases the mean
expected long-run interevent time and decreases the coefficient
of variation (CV, standard deviation divided by the mean)
(Fig. 3b). With a lower CV, the earthquake record looks more
regular (and periodic) with fewer outlier (short or long) inter-
event times. If the system ever reached state 2500 (N), the
probability of an earthquake would equal 1; however, the prob-
ability of reaching this state is essentially zero. In Figure 3a
simulations, the system’s state never exceeds 250 (0.1 N).

The shapes of the long-run interevent time distributions
(Fig. 3b) illustrate how likely memory is to be retained after
an earthquake based on the size of D relative to N. Higher
y-intercepts indicate more residual strain (probability) after
an earthquake in the long run, making very short interevent
times possible, as in simulation (1) for D ≪ N. Conversely,
simulation (3) has a y-intercept of essentially zero, so very
short recurrence times are very unlikely. For D large relative
to N, LTFM behaves in the long run like a renewal model with
no residual strain after an earthquake. Beyond a certain point,
increasing D relative to N does not impact the expected inter-
event time distribution. A simulation with D = 500 and
N = 2500 would be indistinguishable from simulation (3) with
D = 250 and N = 2500, and the CV does not continue to
decrease below ∼0.5 without the addition of a third parameter
(the threshold parameter) in the model.

INTEREVENT TIME ORDER MATTERS FOR LTFM
The advantages of LTFM’s partial strain (probability) drop are
illustrated by two synthetic paleoseismic records that contain
the same interevent times but in a different order (Fig. 4a,b). In
Figure 4a, recent interevent times have been short, whereas in
Figure 4b, they have been long. We use a maximum-likelihood
estimation (MLE) approach to find the distribution parameters
that best fit each record. The MLE approach allows us to
find the combination of parameters that most likely produced
that specific sequence of earthquakes. Because the exponential,
lognormal, and BPT models assume interevent time independ-
ence, the order does not matter, so the best-fitting parameters
(and therefore probability distributions) for these models are
the same for both records (Fig. 4c.d). However, LTFM behaves
differently. Using an MLE grid search, we estimate the best-fit-
ting number of states N and earthquake drop size D for both
records. (Details of the MLE procedure and calculation of the
probability density and hazard curves are in the Supplemental
Methods section in supplemental material). Because LTFM
does not assume interevent time independence, N = 11,300
and D = 100 for the original record, and N = 7100 and D = 180
for the reordered record.

These parameters yield LTFM’s long-run distribution of
interevent times (solid LTFM-LR lines in Fig. 4c,d). Although
both records contain the same interevent times, LTFM fit to
the original record indicates that the fault has more memory
(retained strain) in the long run compared with the LTFM fit to
the reordered record. This is shown by the LTFM-LR distribu-
tion fit to the original record having a larger positive y-inter-
cept (Fig. 4c) than when fitted to the reordered record (Fig. 4d).
The coefficients of variation for the LTFM-LR models differ
from the time-dependent renewal models. For the lognormal
and BPT models, the MLE produces parameters that match the
paleoseismic record’s CV. LTFM-LR, however, assumes that a
paleoseismic record is described by both the CV and the order
of events, so the MLE parameter estimates reflect both pieces of
information. As Salditch et al. (2020) demonstrated, records
with the same CV can look very different, so the CV only tells
part of the story about the earthquake record.

Furthermore, we can use LTFM to calculate short-term
earthquake probabilities conditional on the most recent
sequence of interevent times (equation S.27 in the supplemen-
tal material). These short-term probabilities incorporate extra
information—the timing of the most recent prior P interevent
times (LTFM-P1, LTFM-P2, and LTFM-P3 for P = 1, 2, and 3).
The corresponding short-term forecasts of the distribution of
the time until the next earthquake can vary greatly from the
long-run probability distribution. In contrast, because the
exponential, lognormal, and BPT assume interevent time inde-
pendence, their short- and long-term forecasts are the same.
For clustered paleoseismic records, seismologists often must
decide whether to assume the fault is currently in a cluster
(shorter average interevent time) or a gap (longer average
interevent time) and produce forecasts accordingly (Sieh et al.,
1989). By allowing residual earthquake probability, LTFM
takes this difficult decision out of the hands of the analyst
by effectively making continuous adjustments in a data-driven
manner.

LTFM long-run and short-term forecasts estimate the prob-
ability that the fault is in a given state to calculate earthquake
probabilities. If the fault is in a low state (low earthquake prob-
ability), then it will likely be a while until an earthquake occurs.
Conversely, a high state (high earthquake probability) means
an earthquake is more likely to occur soon. With the additional
information about the specific timing of the most recent P
interevent times, the short-term forecast updates these state
probability estimates to produce an updated earthquake fore-
cast. In our analysis, after conditioning on the first few recent
interevent times, the short-term forecast stabilizes and does not
change noticeably with the inclusion of additional interevent
times further back in time.

For the original record, conditioning on the most recent 1, 2,
or 3 interevent times decreases the probability of an earthquake
in the near future by shifting the probability distributions
(LTFM-P1, LTFM-P2, and LTFM-P3 in Fig. 4c) to the right.
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This increases the expected mean interevent time for the next
earthquake relative to the long-run distribution (LTFM-LR).
The distribution shifts to the right because the most recent inter-
event times are short compared with the others in the record.
LTFM in effect infers that the fault must have released a lot of
strain recently, so there is likely little residual strain (probability)
left over after the most recent earthquake. LTFM-P2 and LTFM-
P3 are similar because when information about the two most
recent interevent times is used, the third provides little addi-
tional information. However, LTFM behaves differently for
the reordered record. Here, conditioning on the 1, 2, or 3 most
recent interevent times shifts the distribution to the left (LTFM-
P1, LTFM-P2, and LTFM-P3 in Fig. 4d) with a lower expected
mean interevent time until the next earthquake. The distribution
shifts to the left because the recent interevent times have been
exceptionally long, leaving significant residual strain (probabil-
ity) after the most recent earthquake.

APPLYING LTFM TO THE MOJAVE SECTION OF
THE SAN ANDREAS FAULT
To explore how LTFM compares with other models when
applied to real paleoseismic records, we use the Pallett Creek
record to create forecasts after the four most recent earthquakes
in 1339, 1508, 1812, and 1857 (Fig. 5a). For each earthquake, we

produce a forecast immediately after the earthquake occurred.
These forecasts include the paleoseismic record up to and
including the most recent earthquake but no future earthquakes.
This allows us to assess how well the various models forecast the
next earthquake. We include an additional time-dependent
renewal model—the Weibull distribution, discussed shortly—
for comparison. The LTFMmodel shown is the short-term fore-
cast incorporating all the preceding earthquakes.

Figure 5b shows the estimated PDFs for the next interevent
time after the 1339 earthquake. The models do not “know” that
the next earthquake will occur in 1508. We assess the different

(c) (d)

(a) (b)

Figure 4. The LTFM applied to sample records. (a) Earthquake record with
interevent times labeled. The best-fitting LTFM model parameters for this
sequence of interevent times yield long-run probability distributions for the
time until the next earthquake (LTFM-LR) and conditional probability dis-
tributions for the next earthquake given the most recent P interevent times
(LTFM-P1, LTFM-P2, and LTFM-P3). (b) Reordered version of the record in
panel (a), such that recent interevent times have been long. (c) Estimated
interevent time probability distributions for the record in panel (a) with mean
(μ), standard deviation (σ), and CV indicated. (d) Estimated interevent time
probability distributions for the record in panel (b). The exponential, log-
normal, and BPT forecasts are the same as in panel (c), but the LTFM
forecasts differ because they depend on the order of interevent times. The
color version of this figure is available only in the electronic edition.
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models in two ways. First, we look at how well the models fit
the available preceding data using the corrected Akaike infor-
mation criterion (AICc) (Hurvich and Tsai, 1989), in which
lower scores are better. Second, we assess how well the models
forecast when the next earthquake occurs. In Figure 5b, the
vertical dashed line shows when the next earthquake (1508)
occurs. Figure 5c shows the cumulative distribution functions
(CDFs), the PDFs integrated from 0 to n, which indicate the
probability of an earthquake occurring within n years.

None of the models stand out for the post-1339 forecast.
The AICc values are similar (Fig. 5b), and the estimated prob-
abilities of an earthquake within 169 yr (when the next

(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 5. Earthquake forecasts after recent Pallett Creek sequence earth-
quakes. (a) Pallett Creek paleoseismic record with the four most recent
earthquakes labeled. (b) Estimated probability density functions (PDFs) for
interevent time until the next earthquake after the 1339 earthquake. AICc,
empirical mean (μ), and standard deviation (σ) indicated for each model.
Vertical dashed line indicates when the next earthquake actually occurred.
(c) Cumulative distribution functions (CDFs) for models in panel (b).
Probability of earthquake occurring within 169 yr (the actual observed
interevent time) is indicated. (d) PDFs after the 1508 earthquake. (e) CDFs
after the 1508 earthquake. (f) PDFs after the 1812 earthquake. (g) CDFs
after the 1812 earthquake. (h) PDFs after the 1857 earthquake for the
current quiescent period. Vertical dashed line indicates the year 2022.
(i) Estimated 30 yr earthquake probabilities with the year 2022 indicated.
The color version of this figure is available only in the electronic edition.
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earthquake actually occurs) are nearly indistinguishable
(Fig. 5c). The exponential model has the highest AICc and
the lowest probability of the next earthquake occurring when
it did. For the post-1508 earthquake forecasts (Fig. 5d,e), all the
models perform equally poorly. No model stands out based on
the AICc, and none forecasted the long 304 yr interevent time.
In the PDF plot (Fig. 5d), the dashed line (indicating the next
earthquake in 1812) intersects the expected PDFs at relatively
low values, indicating that such an exceptionally long quiescent
period was unexpected. The occurrence of such a low-proba-
bility event should make one carefully consider whether the
model fails to hold. Correspondingly, the CDF curves with val-
ues of essentially 1 (Fig. 5e) indicate that all models expected
the next earthquake to occur long before it actually did.

LTFM, however, distinguishes itself for the forecast after the
1812 earthquake (Fig. 5f,g). The next earthquake occurred in
1857—a remarkably short interevent period—but how well
would any of the models have forecast such a short interval?
Although the AICc again does not distinguish how well the
models fit the past data, LTFM better forecasts the short time
until the next earthquake in 1857 (Fig. 5f). LTFM forecasts that
on average, the next earthquake will occur in about 71 yr,
whereas the other models forecast an interevent time double
that. LTFM’s large positive y-intercept suggests that a lot of
residual strain remains after the 1812 earthquake, which makes
intuitive sense considering the exceptionally long, preceding
304-yr interevent time. The CDFs (Fig. 5g) show that the prob-
ability of such a short interevent time is extremely low in the
lognormal (0.01), BPT (0.01), and Weibull (0.05) models. The
exponential model (0.27)—which assumes constant earth-
quake probability—forecasts a higher probability of a short
interevent time compared with the renewal models. LTFM,
which conditions on the specific sequence of preceding earth-
quakes and so explicitly incorporates the recent long prior
interevent time, forecasts the highest probability (0.41) of an
earthquake by 1857, as actually occurred. This example sug-
gests that allowing residual earthquake strain and conditioning
on the prior interevent times provides a more accurate assess-
ment of future earthquake hazards, especially when the most
recent earthquake is preceded by a relatively long intere-
vent time.

Figure 5h shows the estimated earthquake interevent time
distribution after the most recent earthquake in 1857. This is
the forecast for the earthquake that has not happened yet.
Despite LTFM’s good performance forecasting the 1857 earth-
quake, the AICc scores are still nearly indistinguishable. The
current quiescent period up through 2022 (indicated by the
dashed vertical line) is slightly longer than the expected mean
interevent times of the models. We have plotted the estimated
30 yr earthquake probabilities for the Weibull and LTFMmod-
els (Fig. 5i) and compare them with the 30 yr probabilities pre-
viously shown in Figure 1c. The Weibull forecast is nearly
identical to the LTFM forecast. In 2022, the LTFM is

indistinguishable from the time-dependent models. However,
moving forward, the LTFM diverges. If no earthquake occurs
by 2050, the lognormal and BPT models give probabilities of
35% and 34%, whereas LTFM predicts 39%. This difference
continues to grow as the quiescent period continues.
However, if an extremely long (and statistically unlikely) qui-
escent period occurs, it could indicate that the estimated model
parameters are incorrect.

ASSUMPTIONS ABOUT EARTHQUAKE
PROBABILITY AND ACCUMULATED STRAIN
The differences in the estimated 30 yr earthquake forecasts
(Fig. 5i) reflect assumptions about accumulated strain and
earthquake probability. To better understand the accumulated
strain (probability) relationship, we examine each PDF’s cor-
responding hazard-rate function. The hazard rate is conceptu-
ally similar (although not identical) to the conditional
probability of an earthquake occurring in the next time incre-
ment (in this case, 1 year) given that one has not occurred since
the most recent earthquake. It can be calculated using f(t) / (1 −
F(t)), in which t is the time since the most recent earthquake;
f(t) is the PDF; and F(t) is the CDF, the integral of the PDF.
Figure 6a shows four PDFs with the same mean and standard
deviation (except for the exponential PDF whose mean is also
the standard deviation), and Figure 6b shows the correspond-
ing hazard-rate functions.

Although the hazard rate is a function of time, we can also
interpret it in terms of accumulated strain. The agreement
between long-term plate motions that load faults and the
short-term loading seen geodetically (Gordon and Stein, 1992)
indicates that strain steadily accumulates on faults in the inter-
seismic period between large earthquakes, so we can substitute
strain for time. The hazard rate thus indicates how earthquake
probability changes with accumulated strain, and the deriva-
tive of the hazard-rate function (Fig. 6c) shows whether each
additional unit of accumulated strain increases or decreases
earthquake probability. The exponential distribution’s haz-
ard-rate derivative is zero, so additional accumulated strain
does not affect the probability of an earthquake. For the log-
normal and BPT PDFs, each additional unit of accumulated
strain has a different probability increment. The corresponding
probability change for each strain increment increases quickly
after an earthquake, then begins to decrease, and then ulti-
mately turns negative, indicating that future strain accumula-
tion decreases earthquake probability. How much the BPT
hazard-rate curve decreases depends on its parameters, but
it eventually levels off, mimicking the time-independent
behavior of the exponential model. Unlike the other models,
in LTFM each additional strain unit corresponds to a constant
increase in earthquake probability.

Interestingly, LTFM’s assumptions about accumulated
strain (earthquake probability) are shared by the Weibull dis-
tribution. This distribution, used in reliability engineering, has
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been used to describe the distribution of earthquake interevent
times (Hagiwara, 1974; Chou and Fischer, 1975; Brillinger,
1982). The Weibull distribution has two parameters: a scale
parameter η and shape parameter β. The shape parameter β
controls the PDF’s CV (Fig. 7a) and the shape of the haz-
ard-rate function (Fig. 7b). For β<1, the hazard rate decreases
with time, making failure less likely as time passes. For β�1,
the hazard rate is constant because the Weibull distribution
becomes the exponential distribution. For β>1, the hazard rate
increases with time, making failure more likely. For β�2, the
hazard rate increases linearly, implying a linear increase in the
earthquake probability, as in LTFM. Brillinger (1982) noted
that when β�2, the linear increase in earthquake probability
appropriately mimics the steady strain increases that drive
earthquakes.

Plotting observed earthquake interevent times against
cumulative hazard probabilities shows that the Weibull
distribution is often appropriate (Chou and Fischer, 1975).
The cumulative hazard is the integral of the hazard rate and
can be calculated by sorting the interevent times and open qui-
escent period in ascending order (1–K), calculating the reverse
rank (for the kth ordered interval, the reverse rank is K − k + 1),
taking the inverse of the reverse rank to get the hazard value,
and finally cumulatively summing the hazard value of only the
closed interevent times to get the cumulative hazard at each
data point. If the resulting data can be fit by a straight line
on a log–log plot, then the slope of the line is the inverse of
the shape parameter β. Brillinger (1982) and Sieh et al.
(1989) applied this method to an earlier Pallett Creek dataset,
finding shape parameters of ∼2 and 1.5 ± .8. A similar analysis
(Fig. 8a) shows that the Pallett Creek dataset we used is well-
fitted by a line whose corresponding β value is 1.84. This sug-
gests that a model with linearly increasing earthquake proba-
bility (β�2) is reasonable.

The long-run LTFM-LR and Weibull models (either with
best-fitting β or with a fixed β�2) have quite similar PDFs
(Fig. 8b). The hazard-rate functions (Fig. 8c) further highlight
the similarities, with both indicating a constantly increasing

earthquake probability reflecting the linear accumulation of
strain. They differ slightly because LTFM assumes that on
average, there will be some residual strain after an earthquake,
so there may be some very short recurrence times (Fig. 8b). The
Weibull model, which is a renewal model, lacks long-term
memory and so does not predict these. Hence, Weibull, like
the common renewal models, does not describe clusters and
gaps and so does much worse than LTFM in forecasting the
1857 Fort Tejon earthquake (Fig. 5g).

UNCERTAINTY IN LTFM FORECASTS
Understanding the uncertainty in the LTFM model is critical
for assessing the usefulness of its estimated probabilities.
Figure 9a shows the outcome of the MLE grid search to find
the best N and D LTFM parameters for the complete Pallett
Creek record. The best-fitting solution is marked by the orange
x, in which the negative log likelihood is minimized. There is a
very broad region of similar log-likelihood values. We use the
negative log-likelihood values to approximate the LTFM’s 68%
and 95% confidence intervals (CIs) using NLLmin�χ22�1−α�=2,
in which NLLmin is the negative log-likelihood value of the
best-fitting N and D pair and χ22 is the chi-squared distribution
with two degrees of freedom, and α is the critical value of inter-
est (Bolker, 2008).

The 68% CI has an upper N bound but not an upper D
bound. However, the lack of an upperD bound is inconsequen-
tial because an ever-increasing D ultimately does not change
the predicted behavior, as noted in Figure 3. The 95% CI is

(a) (b) (c)

Figure 6. Comparison of probability models. (a) PDFs for the interevent time
with same mean and standard deviation—except exponential where mean
equals standard deviation. (b) Corresponding hazard-rate functions. The
hazard rate at time t is the probability density that an earthquake will occur
at t given that one has not occurred since the past earthquake. (c) The
derivative of each hazard-rate curve shows whether the hazard rate is
increasing, decreasing, or staying constant with time as each new strain
increment accumulates. The color version of this figure is available only in
the electronic edition.
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not as well bounded with open contours in both the N and D
directions. We selected some parameter combinations within
the 95% CI (gray stars in Fig. 9a) and calculated the corre-
sponding 30-yr earthquake forecasts (Fig. 9b). The forecasts
for 2022 (Fig. 9b) range from approximately a 15%–45% prob-
ability of an earthquake in the next 30 yr. Although this range
may seem large, a similar uncertainty analysis of the time-
dependent BPT yields a forecast spread just as large. Using
the Hessian matrix evaluated at the BPT’s MLE solution, we
calculate the covariance matrix for the BPT’s two parameters
and then randomly sample from a 2D Gaussian distribution
constructed from the BPT’s parameter uncertainties to get
new BPT parameters. The corresponding 30 yr earthquake
forecasts for 200 of these samples are shown in light red
(Fig. 9b). These BPT forecasts show a spread even larger than
the LTFM forecasts, ranging from anywhere between 20% and
more than 80%.

The LTFM forecasts are constructed based on the estimated
current state of the system after the most recent earthquakes.
We do not know the initial state at the start of the sequence,
but we can calculate the probability of being in a given state
using the long-run state probability vector π (equation S.3 in
the supplemental material). Figure 10 shows histories for the
Pallett Creek sequence for the best-fitting MLE parameter
combination assuming the system was in state 50, 200, or
300 before the first earthquake. Given the initial starting state,
it is straightforward to calculate the history given the number
of states (N) and the size of the earthquake drop (D). Because
the average earthquake drop D (175) is larger than any of the
initial interevent times, all three curves converge after the first
few earthquakes, indicating that any initial residual strain at
the beginning of the sequence is soon released and so the
uncertainty of the starting residual strain is unimportant to

the probability estimates today. The history stays in the lowest
portion of the state space nowhere near the maximum state of
12,500. To reach such a high state would require an exception-
ally long (∼10,000 yr) quiescent period, which is very unlikely
along the San Andreas fault.

SELECTING THE MOST APPROPRIATE MODEL
Determining which model is most appropriate for earthquake
forecasts is challenging. As shown in Figure 5 with the AICc
analysis, statistical tests struggle to differentiate between mod-
els when paleoseismic records contain so few earthquakes.
Other studies have found that time-dependent models tend
to fit the observed interevent times better than a time-indepen-
dent model (Scharer et al., 2010), but differentiating the time-
dependent models is challenging because of the relatively few
earthquakes in a paleoseismic record (Matthews et al., 2002).
As a result, one must look beyond statistical measures when
justifying model choice.

Bookstein (2021) argued (using maximum entropy) that in
the absence of any additional information besides the earth-
quake dates, the interevent times will follow a truncated
Gaussian distribution. However, we have more information
about the earthquake process than just the dates of the earth-
quakes: we know that the earthquake process is fundamentally
about strain accumulation and release. We believe that these
strain considerations should not be ignored. In particular,
because of the limited length of the paleoseismic time series,

(a) (b)

Figure 7.Weibull distribution with different shape parameters (β). (a) Weibull
PDFs plotted with same scale parameter η but different β shape parameters.
CV indicated. (b) Hazard-rate functions for the PDFs shown in panel (a). The
color version of this figure is available only in the electronic edition.
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(a) (b) (c)

Figure 8. Comparisons of Weibull and LTFM. (a) Pallett Creek interevent
time cumulative hazard plot for Weibull distribution with 1σ uncertainties
of the interevent times indicated. (b) Comparison of best-fitting Weibull
distribution and β�2 Weibull distribution to the long-run LTFM-LR

interevent time distribution. Interevent time mean (μ) and standard
deviation (σ) are indicated. (c) Corresponding hazard-rate functions for
PDFs in panel (b). The color version of this figure is available only in the
electronic edition.

(a) (b)

Figure 9. LTFM uncertainty analysis. (a) Plot of LTFM Pallett Creek negative
log-likelihood values for different N and D combinations. Best-fitting
parameters are indicated by orange X. Gray contours indicate 68% and
95% confidence intervals. Stars indicate parameter combinations used in
panel (b). (b) Corresponding 30 yr earthquake forecasts for the parameter
combinations. Thick orange line corresponds to the LTFM best-fitting

parameters (orange X in panel a). Thin gray lines correspond to the ran-
domly sampled LTFM parameter combinations. Labeling indicates LTFM
parameter combination shown in panel (a). The solid pink line is the best-
fitting BPT forecast and light pink lines are 200 randomly sampled BPT
forecasts based on its estimated parameter uncertainty. The color version of
this figure is available only in the electronic edition.
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it is important to incorporate as much information as possible
about the earthquake process to produce more robust forecasts.

Currently, attention is primarily paid to how the shape of the
PDF fits the distribution of interevent times but not to the strain
implications of the hazard function. As shown in Figure 6, the
constant probability of the time-independent exponential model
means it is strain agnostic—no matter how much strain accu-
mulates on a fault, the earthquake probability stays the same.
The time-dependent lognormal and BPT models, however,
reflect implicit assumptions about accumulated strain and earth-
quake probability. Traditionally, the lognormal distribution was
preferred because its PDF’s fatter right tail better fits interevent
time data that are mildly bimodal, but as Matthews et al. (2002)
noted, the hazard-rate function eventually decreases to zero,
indicating the cessation of the process driving earthquakes.
Matthews et al. (2002) instead proposed the BPT, whose
PDF has a similar shape to the lognormal’s PDF but whose haz-
ard-rate function levels off for long quiescent periods. The BPT
mimics a constant stress loading rate with random stress per-
turbations reflecting outside stress interactions.

LTFM’s explicit modeling of both linearly increasing earth-
quake probability with time (mimicking linearly increasing
strain) and partial probability drops (allowing residual strain)
attempts to more accurately reflect the underlying process that
drives earthquakes. LTFM’s accurate forecast for the 1857 Fort
Tejon earthquake demonstrates the usefulness of incorporating
our understanding of the strain process into the model’s
design. However, it is just one earthquake, and because of
the stochastic nature of the forecasts, there are likely instances
where LTFM performs worse. Although all earthquake prob-
ability models make simplifying assumptions to make calcula-
tions tractable, it is important to understand and acknowledge
such trade-offs when selecting a model.

CONCLUSIONS
LTFM advances beyond the current time-dependent renewal
models by assuming earthquake probability increases with

accumulated strain and
allowing residual strain after
an earthquake. It incorporates
the specific earthquake history,
allowing estimates of earth-
quake probabilities conditioned
both on the time of the last
earthquake and the specific
sequence of preceding earth-
quakes. Incorporating the
specific history impacts earth-
quake probability calculations,
especially when the most recent
earthquake is preceded by a rel-
atively long interevent time.
Although LTFM is computa-

tionally more complex than the existing earthquake probability
models, it is far more powerful. It allows forecasts based on more
information than the currentmodels can include and should lead
to more accurate earthquake probability estimates, especially
when an earthquake record contains long gaps and clusters of
earthquakes.
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