Giant Earthquakes: Why, Where, When, and What We Can Do

Seth Stein, Northwestern University

December 2004 Indian Ocean earthquake and tsunami

October 2005
Pakistan earthquake

SAN FRANCISCO EARTHQUAKE April 18, 1906

3000 deaths
28,000 buildings
destroyed
(most by fire)
\$10B damage

"The whole street was undulating as if the waves of the ocean were coming toward me."

"I saw the whole city enveloped in a pile of dust caused by falling buildings."

"Inside of twelve hours half the heart of the city was gone"

EMERGENCY RESPONSE

Mayor formed citizen committee & took charge

Army immediately supported police & fire (how well?)

Prompt state, federal, & private aid

Displaced housed in tent cities with services

Free postal service provided

Tendency to blame fire rather than earthquake for damage

Eventually, earthquake damage accepted & safer buildings required

"If, as they say, God spanked the town for being over frisky

Why did he burn the churches down and spare Hotaling's whiskey?"

What caused it?

What shook the buildings?

THE GROUND MOVED!

Average 12 feet (4 m)
of motion
West side moved north

Motion along hundreds of miles of San Andreas Fault

What is the fault?

Why does the ground move?

ELASTIC REBOUND

Over many years, rocks on opposite sides of the fault move, but friction on the fault "locks" it and prevents slip

Eventually strain stored is more than fault rocks can withstand, and the fault slips in earthquake

Took 60 years to figure out why this happens!

WHAT SHOOK THE BUILDINGS?

MOVEMENT OF THE FAULT GENERATED SEISMIC WAVES

Travel through solid earth

Like sound waves, light (electromagnetic) waves, or water waves

RECORD MOTION OF GROUND (SEISMIC WAVES) WITH INSTRUMENT ON GROUND

2nd century Chinese seismograph

Balls come from dragon's mouth when waves arrive

Seismometer - spring & mass system records ground motion with time

- 3 components (north-south; east-west, up-down)
- Precise timing (GPS satellites)
- Amplitude calibrated
- Digital recording and data available on WWW

SEISMIC WAVES TRAVEL THROUGH EARTH

Use to study earthquakes & structure of the earth

Where was the earthquake? How big was it (magnitude)? Which way did the ground move?

EARTHQUAKE LOCATION

Use times when seismic waves arrive at many seismometers to find

Epicenter - position on surface

Hypocenter - location & depth

HOW BIG? USE MAGNITUDE

1906 magnitude 7.9

Bigger earthquakes:

Longer faults

Faulting to greater depth

Ground moves further

HOW DID THE FAULT MOVE?

Shapes of seismic wave pulses depend on where seismometer is relative to the fault

SEISMIC WAVES LET US "SEE" INSIDE THE EARTH

Like we do with:

Light waves

Sound waves

X-rays

LOOK FOR OIL & GAS

OR MUCH DEEPER...

SEISMOLOGY SHOWS EARTH IS A LAYERED PLANET

LAYERS EVOLVED OVER BILLIONS OF YEARS

COLD, STRONG
100 km OUTER
LAYER:
THE PLATES

("thin scum")

MOVE OVER
WEAKER
ASTHENOSPHERE

EARTH'S SURFACE DIVIDED INTO PLATES

San
Andreas
fault:
boundary
between
Pacific &
North
American
plates

EXCITING THINGS - EARTHQUAKES & VOLCANOES HAPPEN AT THEIR BOUNDARIES

PLATES MOVE AT A FEW INCHES PER YEAR (AS FAST AS FINGERNAILS GROW)

RIDGE - NEW PLATE FORMS

SUBDUCTION
- PLATE
DESTROYED

TRANSFORM - PLATES SLIDE BY

DIFFERENT MOTIONS MAKE DIFFERENT BOUNDARIES

WESTERN NORTH AMERICA

Three Plates:

Juan de Fuca

North America

Pacific

Three Boundaries:

Cascadia subduction zone

San Andreas transform

Gulf of California spreading center

SAN ANDREAS FAULT

San Francisco Bay Area

Over time, slip in earthquakes adds up to plate motion

About 35 mm/yr motion between Pacific and North America shown by offset stream

Expect earthquakes about every (3.5 m)/ (35 mm/yr) or 100 years

Actually more like 200 yrs because not all motion on San Andreas

San Andreas Fault - Carrizo Plain, California

Distributed motion between North American & Pacific Plates Most on San Andreas: some on other faults

San Francisco area - SAF broke in 1906: M 7.9

Hayward fault broke in 1868: M 7

Distributed motion between North American & Pacific Plates Most on San Andreas: some on other faults

Los Angeles area - SAF broke in 1857: M 7.9

Smaller but damaging earthquakes on other faults

1994 Northridge M 6.7 58 deaths, \$20B damage

FIND FAULT & PLATE MOTIONS USING GPS GLOBAL POSITIONING SYSTEM Find site position to few mm

Change in position over time gives motion to precision of mm/yr

SOME
PACIFIC NORTH
AMERICA
MOTION
SPREAD AS
FAR EAST
AS UTAH &
MONTANA

GPS site
motions
relative to
North America
- and
earthquakes show broad
boundary zone

Wasatch fault, Salt Lake City, Utah

Hebgen Lake, Montana 1959 M 7.5

JUAN DE FUCA PLATE SUBDUCTING BENEATH NORTH AMERICA

Epicenter II miles northeast of Olympia More than two dozen buildings damaged Dozens of injuries; no South Sound deaths

6.8 QUAKE

WHAT YOU NEED TO KNOW NO

ENOW NOW

INDOSE DAMAGE

The Fourth Anomale
riches has been closed
rated by because of
author bowing.

BUILDING DAMAGE

until they can be asoccured.

• 13 buildings in Obergolihe ve been van safet and will remain dosed pending stractural evaluations.

• 15 buildings in Obynigaths ve keen yolke- tagged for a stractural assessment. They can only be writtened to secure of the secure of times.

POAD CLOSURES

Washington idea
for Fifth to Legion
Priffs dawned from
apidal Way to

Assistançãos o Saved Michael Maria Parlacing Javadige Ceive to PRIS. Mill artis Nigel Berlind si hao lampo livelement Integra and Lill y march. Millor Histogra (III) Millor Histogra (III) HUS. Helghour (III) morth of Gutle Houste R vere ol annot Millor Histogra (III) Millor (

SCHOOL GLOSUPES

If the Objump a, Murth
Thurston, and Thurseyater
actives in self the excepter
actives in self the
Evergence St. slee College,
Sant Marter's Callege
And Martin's Callege
Community College will
be upon.

If the Objump a Canton

If the Objump a Canton

If the Objump a Canton

iday.

workers

• School district

replayers and state

deligne in large of the deligned of the delign

State

Buildings
shut till

Monday

WANTE GORBAN

FOR FORMAN

FORMAN

COMPAN

2001 Nisqually earthquake (\$2B damage)

Mt Saint Helens 1980 eruption (57 deaths; \$2B damage)

MOST EARTHQUAKES AT PLATE BOUNDARIES, WHERE MOTION IS FAST

SOME FROM SLOW MOTION INSIDE PLATES

New Madrid seismic zone in central U.S.

M 7 earthquakes in 1811-12

Small earthquakes continue

Big ones might happen again

Don't know why, when, how dangerous

INDIA MOVES NORTH COLLIDING WITH EURASIA

COMPLEX PLATE
BOUNDARY ZONE

Deforms large region

Many small plates (microplates)

Burma microplate

Earthquakes result:

12/2004 Sumatra

10/2005 Pakistan

TSUNAMI GENERATION I: OVERRIDING PLATE FLEXED BETWEEN MAJOR EARTHQUAKES

Indian plate subducts beneath Burma microplate

TSUNAMI GENERATION II: SEAFLOOR REBOUNDS DURING EARTHQUAKE

2004 Sumatra Earthquake 010 min

Islands went up & down

R. Bilham

Water motion:

Red - up, blue down

Tsunami generated along fault, where sea floor displaced, and spreads outward

Travels at speed of jet plane

Reached Sri Lanka in 2 hrs, India in 2-3 2004 Sumatra Earthquake 010 min

http://staff.aist.go.jp/kenji.satake/animation.gif

Tsunami damage

BANDA ACEH

THAILAND

SEISMOGRAMS SHOW RUPTURE PROPAGATED ALONG 750 MILE LONG AFTERSHOCK ZONE IN 500 SECONDS: 5,400 miles per hour

Ishii et al., 2005

MAGNITUDE 9.3 FAULT AREA:

750 miles long

125 miles down dip

AVERAGE SLIP:

33 feet

Aftershocks show fault area

MAGNITUDE DEPENDS ON FAULT AREA X AVERAGE SLIP

MAGNITUDE 9 EARTHQUAKES ARE INFREQUENT

Only 3 since 1960

Figure 1.2-2: Comparison of frequency, magnitude, and energy release.

AFTERSHOCKS FOR MONTHS AFTER DECEMBER 26 EARTHQUAKE RAISED STRESS ON SEGMENT TO SOUTH

WHAT'S NEXT?

WHAT CAN WE DO?

- Learn more about earthquakes, their causes, & effects
- Predict earthquakes (looks hard or impossible)
- Prepare for earthquakes & mitigate their damage (natural processes become disasters because of human actions)
- Accept earthquakes as part of our living planet

HARD TO PREDICT EARTHQUAKES time between them is very variable

Extend earthquake history with geologic record

M > 7 mean 132 yr σ 105 yr Estimated probability in 30 yrs 7-51%

SEISMIC GAP MODEL

Long plate boundary like San Andreas or oceanic trench breaks in segments

Expect plate motion to cause earthquakes in gaps that haven't broken for a long time

Japanese waiting for Tokai earthquake for 50+ years

Nothing yet...

Ansei I D (1854)32 hr Ansei II **Triggered?** В (1854)90 yr Tonankai (1944)Nankaido В **Triggered?** (1946)**NOTHING YET** Tokai

Figure 5.4-27: Time sequence of large subduction zone earthquakes along

В

JAPAN

D

Interval

147 yr

the Nankai trough.

Hoei

(1707)

Α

Ando, 1975

PARKFIELD, CALIFORNIA SEGMENT OF SAN ANDREAS

M 5-6 earthquakes about every 22 years: 1857, 1881, 1901, 1922, 1934, and 1966

In 1985, expected next in 1988; predicted at 95% confidence by 1993 Didn't occur till 2004 (16 years late)

RESEARCH NEWS

Parkfield Quakes Skip a Beat

Seismologists' first official earthquake forecast has failed, ushering in an era of heightened uncertainty and more modest ambitions

WHY CAN'T WE PREDICT EARTHQUAKES?

So far, no clear evidence for observable behavior before earthquakes.

Maybe lots of tiny earthquakes happen frequently, but only a few grow by random process to large earthquakes

In chaos theory, small perturbations can have unpredictable large effects - flap of a butterfly's wings in Brazil might set off a tornado in Texas

If there's nothing special about the tiny earthquakes that happen to grow into large ones, the time between large earthquakes is highly variable and nothing observable should occur before them.

If so, earthquake prediction is either impossible or nearly so.

"It's hard to predict earthquakes, especially before they happen"

U.S. average 6 deaths per year, but can be many more for large earthquake

Some foreign countries much more (more people living along plate boundary, weaker construction)

U.S. EARTHQUAKES

Infrequent, but occasionally major, fatalities and damage

Moderate (M 6.7) 1994 Northridge earthquake: 58 deaths, \$20B damage

Challenge: find mitigation strategy that balances cost of safer construction with benefits, given other possible uses of resources

Tough problem!

Table 1.2-3. Some causes of death in the United States, 1996.

Heart Attack	733,834
Cancer	544,278
Stroke	160,431
Lung disease	106,143
Pneumonia/Influenza	82,579
Diabetes	61,559
Motor vehicle accidents	43,300
AIDS	32,655
Suicide	30,862
Liver disease/Cirrhosis	25,135
Kidney disease	24,391
Alzheimer's	21,166
Homicide	20,738
Falling	14,100
Poison	10,400
Drowning	3,900
Fires	3,200
Suffocation	3,000
Bicycle accidents	695
Severe Weather ¹	514
In-line skating ²	25
Football ²	18
Skateboards ²	10
Earthquakes (1811-1983) ³	9
Earthquakes (1984-1998)	9

¹From the National Weather Service (property loss due to severe weather is \$10-15 B/year, comparable to the Northridge earthquake, and individual hurricanes can go up to \$25 B.

All others from the National Safety Council and National Center for Health Statistics.

²From the Consumer Product Safety Commission

³From Gere and Shah [1984].

DAMAGE DEPENDS ON WHERE AND HOW WE BUILD

"Earthquakes don't kill people; buildings kill people."

1989 LOMA PRIETA, CALIFORNIA EARTHQUAKE: M 7.1

Mile of two level freeway collapsed, crushing cars & causing 42 deaths

1989 LOMA PRIETA, CALIFORNIA EARTHQUAKE

Houses
collapsed in
Marina district
of San
Francisco, on
landfill that
amplified
shaking

DAMAGE DEPENDS ON BUILDING TYPE RESISTANT CONSTRUCTION REDUCES EARTHQUAKE RISKS

Pigs had it wrong

STRONGER SHAKING

ADOBE

BRICK

10/05 Pakistan M 7.6 80,000 deaths

12/03 Bam, Iran M 6.6 27,000 deaths CONCRETE

2/71 San Fernando, California M 6.6 65 deaths

MODERN CONSTRUCTION WITHOUT SEISMIC STRENGTHENING: Concrete buildings

USGS

40,000 in California. 8,000 schools, including 239 in Los Angeles. Downtown Los Angeles has about 500.

RETROFIT FOR SEISMIC STRENGTHENING

Problem: retrofit cost close to that of razing building & starting over. \$24 B needed for California hospital retrofits!

USGS

PROBLEM: UNFUNDED MANDATE

Property
owners don't
benefit (can't
charge higher
rent) & so
resist

Maybe society should fund: Would public pay higher taxes for safety?

October 11, 2005 latimes.com : California E-mail s

How Risky Are Older Concrete Buildings?

State officials say many should be retrofitted for quakes. Others say cost would outweigh benefit.

By Sharon Bernstein, Times Staff Writer

Tens of thousands of older concrete buildings across California represent the state's largest remaining risk of serious damage in a major earthquake, seismic safety officials say.

Constructed as department stores, schools, parking structures and office buildings from the 1930s through the early 1970s, these buildings typically consist of large, open lower stories held up by unreinforced or poorly reinforced concrete pillars.

ADVERTISEMENT

CEDARS-SINAL

After several collapsed in the 1971 San Fernando earthquake, seismic safety codes were upgraded to require that any new concrete buildings be better constructed. Many seismic experts say preexisting structures — known as nonductile concrete buildings — need to be retrofitted to bring them up to current standards.

"It's well recognized within the earthquake professional community that many California non-ductile concrete buildings are at unacceptable risk of collapse in moderately strong shaking," said Thomas Heaton, professor of engineering seismology at Caltech.

Because many of the older concrete buildings tend to be filled during the day with office workers, schoolchildren or people parking their cars, the death and injury toll from an earthquake that caused several of the structures to collapse could be staggering, said Heaton.

But building owners and business organizations have long fought efforts to require retrofits, arguing that the risk is overstated. And they say that in some cases, the cost of retrofits comes close to that of razing a building and starting over. Neither the state nor local governments have required that the structures be reinforced.

"If you're going to use a 'sky is falling' scenario, then maybe you can justify" a retrofit requirement, said Carol Schatz, president of the Central City Assn. "But if you're going to put a bunch of commercial property owners out of business in the process, what have you accomplished?"

Property owners and business associations opposed a proposal last year by City Councilmen Greig Smith and Alex Padilla to count the number of unreinforced concrete buildings in Los Angeles. The measure didn't make it out of a council committee.

HAZARD MAPPING

Try to predict future shaking

Tough: requires assuming how large & often future earthquakes will occur - and what shaking they'll do

Uncertain: "a game of chance, of which we still don't know all the rules"

Won't know how we did for 100s or 1000s of years

Even tougher to balance funds spent on earthquake

Maps for different assumed magnitudes & shaking

\$100M seismic retrofit of Memphis VA hospital, removing nine floors, bringing it to California standard

Does this makes sense? No right answer.

RISK/BENEFIT BALANCE

SEISMOMETERS DETECT MAJOR EARTHQUAKES

Challenges:

-Decide if there will be a tsunami in time to warn

- -Get warning out
- Get people to act

TSUNAMI WARNING

Ocean buoys can measure wave heights, verify tsunami and reduce false alarms

GPS COULD HELP

Giant earthquakes like
Sumatra cause 5-10
inch ground motions
hundreds of miles from
epicenter

South Asia Tsunami

Failure to Gauge the Quake Crippled the Warning Effort

Earthquake's giant size & tsunami risk could have been identified in 15 minutes; not the hours it took

Volcanoes produce atmospheric gases (carbon dioxide CO₂; water H₂O) that support life and keep planet warm enough for life ("greenhouse")

May explain how life (at midocean ridge hot springs)

Raises continents above sea level

Produces resources including fossil fuels

WE NEED EARTHQUAKES: PLATE TECTONICS IS DESTRUCTIVE TO HUMAN SOCIETY BUT CRUCIAL FOR HUMAN LIFE

Plate tectonics maintaining the atmosphere may be part of why life survived on Earth, not Mars & Venus

Venus is too hot

Earth is just right Mars is too cold

"CIVILIZATION EXISTS BY GEOLOGICAL CONSENT - SUBJECT TO CHANGE WITHOUT NOTICE"

12/03 Bam, Iran M 6.6 27,000 deaths 12/03 San Simeon, CA M 6.5 2 deaths

Collapsed adobe buildings

Collapsed wine barrel stacks

NEED TO UNDERSTAND EARTHQUAKES, LIVE WITH THEM, & MINIMIZE THEIR EFFECTS ON SOCIETY