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Abstract
Charles Richter’s observation that ‘only fools and charlatans predict earthquakes,’ reflects the
fact that despite more than 100 years of effort, seismologists remain unable to do so with
reliable and accurate results. Meaningful prediction involves specifying the location, time, and
size of an earthquake before it occurs to greater precision than expected purely by chance from
the known statistics of earthquakes in an area. In this context, ‘forecasting’ implies a
prediction with a specification of a probability of the time, location, and magnitude. Two
general approaches have been used. In one, the rate of motion accumulating across faults and
the amount of slip in past earthquakes is used to infer where and when future earthquakes will
occur and the shaking that would be expected. Because the intervals between earthquakes are
highly variable, these long-term forecasts are accurate to no better than a hundred years. They
are thus valuable for earthquake hazard mitigation, given the long lives of structures, but have
clear limitations. The second approach is to identify potentially observable changes in the
Earth that precede earthquakes. Various precursors have been suggested, and may have been
real in certain cases, but none have yet proved to be a general feature preceding all earthquakes
or to stand out convincingly from the normal variability of the Earth’s behavior. However, new
types of data, models, and computational power may provide avenues for progress using
machine learning that were not previously available. At present, it is unclear whether
deterministic earthquake prediction is possible. The frustrations of this search have led to the
observation that (echoing Yogi Berra) ‘it is difficult to predict earthquakes, especially before
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they happen.’ However, because success would be of enormous societal benefit, the search for
methods of earthquake prediction and forecasting will likely continue. In this review, we note
that the focus is on anticipating the earthquake rupture before it occurs, rather than
characterizing it rapidly just after it occurs. The latter is the domain of earthquake early
warning, which we do not treat in detail here, although we include a short discussion in the
machine learning section at the end.

Keywords: earthquakes, forecasting, nowcasting, machine learning

(Some figures may appear in colour only in the online journal)

1. Introduction

In order to provide an impartial test of earthquake predic-
tion the United States Geological Survey (USGS) initiated
the Parkfield (California) Earthquake Prediction Experiment
in 1985 (Bakun and Lindh 1985). Earthquakes on this section
of the San Andreas fault had occurred in 1847, 1881, 1901,
1922, 1934, and 1966. It was expected that the next earth-
quake in the sequence would occur in 1988 ± 5 years. An
extensive array of instrumentation was deployed. The expected
earthquake finally occurred on September 28, 2004. No precur-
sory observations outside the expected background levels were
observed (Bakun et al 2005). The earthquake had not been
predicted. This result has been interpreted to imply the infeasi-
bility of deterministic short-term prediction of earthquakes on
a consistent basis.

Successful near-term predictions of future earthquakes,
which have happened on occasion, are very limited. A notable
exception was the M = 7.3 Haicheng earthquake in north-
east China that occurred on February 4, 1975. This predic-
tion resulted in the evacuation of the city which saved many
lives. It was reported that the prediction was based on fore-
shocks, groundwater anomalies and animal behavior. It should
be noted, however, that no prediction was made prior to the
occurrence of the M = 7.8 Tangshan earthquake in China on
July 28, 1976. Reports suggest the death toll in this case was
as high as 600 000.

It seems surprising that it is not possible to make reliable
short-term predictions of the occurrence of a major earthquake
(Kanamori 2003, Keilis-Borok 2002, Mogi 1985, Scholz 2019,
Turcotte 1991). Based on analog laboratory experiments, pre-
cursory micro cracking expressed as small earthquakes should
occur, and precursory strain would also be expected. Fore-
shocks occur prior to about 25% of major earthquakes, but it is
difficult to distinguish foreshocks from background seismicity
since they are all ‘just earthquakes’.

An important recent development in this area was the
regional earthquake likelihood models (RELM) test of earth-
quake forecasts in California. Forecasts had to be sub-
mitted prior to the start of the evaluation period, so this
was a true prospective evaluation. Six participants submit-
ted forecasts for 7700 cells. Two of the forecasts showed
promise, these being the pattern informatics (PI) and epidemic
type aftershock sequence (ETAS) forecasts. We discuss this

competition, among many other topics, below. But first we
describe the history of earthquake prediction studies and the
search for reliable precursors.

2. History of earthquake precursor studies

In the 1960s and 1970s, well-funded government earthquake
prediction programs began in the US, China, Japan, and the
USSR. These programs relied on two approaches. One, based
on laboratory experiments showing changes in the physical
properties of rocks prior to fracture, involved searching for pre-
cursors or observable behavior that precedes earthquakes. A
second was based on the idea of the seismic cycle, in which
strain accumulates over time following a large earthquake.
Hence areas on major faults that had not had recent earth-
quakes could be considered ‘seismic gaps’ likely to have large
earthquakes.

The idea that earthquake prediction was about to become
reality was promoted heavily in the media. US Geological
Survey director William Pecora announced in 1969 ‘we are
predicting another massive earthquake certainly within the
next 30 years and most likely in the next decade or so’
on the San Andreas fault. California senator Alan Cranston,
prediction’s leading political supporter, told reporters that ‘we
have the technology to develop a reliable prediction system
already at hand.’ Although the President’s science advisor
questioned the need for an expensive program given the low
death rate from earthquakes, lobbying prevailed and funding
poured into the US program and similar programs in other
countries.

To date this search has proved generally unsuccessful. As
a result, it is unclear whether earthquake prediction is even
possible. In one hypothesis, all earthquakes start off as tiny
earthquakes, which happen frequently. However, only a few
cascade via a failure process into large earthquakes. This
hypothesis draws on ideas from nonlinear dynamics or chaos
theory, in which small perturbations can grow to have unpre-
dictable large consequences. These ideas were posed in terms
of the possibility that the flap of a butterfly’s wings in Brazil
might set off a tornado in Texas, or in general that minus-
cule disturbances do not affect the overall frequency of storms
but can modify when they occur (Lorenz 1995). In this view,
because there is nothing special about those tiny earthquakes
that happen to grow into large ones, the interval between large
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earthquakes is highly variable, and no observable precursors
should occur before them. If so, earthquake prediction is either
impossible or nearly so.

Support for this view comes from the failure to observe a
compelling pattern of precursory behavior before earthquakes
(Geller 1997). Various possible precursors have been sug-
gested—and some may have been real in certain cases—but
none have yet proved to be a general feature preceding all
earthquakes, or to stand out convincingly from the normal
range of the Earth’s variable behavior. In many previous cases,
it was not realized that a successful prediction scheme must
allow not only for successful predictions, but also failures-
to-predict and false alarms. Although it is tempting to note a
precursory pattern after an earthquake based on a small set of
data and to suggest that the earthquake might have been pre-
dicted, rigorous tests with large sets of data are needed to tell
whether a possible precursory behavior is real, and whether
it correlates with earthquakes more frequently than expected
purely by chance. In addition, after-the-fact searches for pre-
cursors have the advantage that one knows where to look. Most
crucially, any such pattern needs to be tested by predicting
future earthquakes. That is why the RELM test of earthquake
forecasts (discussed below) was a significant advance.

One class of precursors involves foreshocks, which are
smaller earthquakes that occur before a main shock, actually a
semantic definition. Many earthquakes, in hindsight, have fol-
lowed periods of anomalous seismicity. In some cases, there is
a flurry of microseismicity, which are very small earthquakes
similar to the cracking that precedes the snap of a bent stick.
In other cases, there is no preceding seismicity of any signif-
icance. However, faults often show periods of either elevated
(‘activation’) or nonexistent (‘quiescent’) microseismicity that
are not followed by a large earthquake. Alternatively, the level
of microseismicity before a large event can be unremarkable,
occurring at a normal low level. The lack of a pattern highlights
the problem with possible earthquake precursors. To date, no
changes that might be associated with an upcoming earthquake
are consistently distinguishable from the normal variations in
seismicity that are not followed by a large earthquake.

Another class of possible precursors involves changes in the
properties of rock within a fault zone preceding a large earth-
quake. It has been suggested that as a region experiences a
buildup of elastic stress and strain, microcracks may form and
fill with water, lowering the strength of the rock and eventually
leading to an earthquake. This effect has been advocated based
on data showing changes in the level of radon gas, presumably
reflecting the development of microcracks that allow radon to
escape. For example, the radon detected in groundwater rose
steadily in the months before the moment magnitude Mw 6.9,
1995 Kobe earthquake, increased further two weeks before the
earthquake, and then returned to a background level.

A variety of similar observations have been reported. In
some cases, the ratio of P- and S-wave speeds in the region
of an earthquake has been reported to have decreased by as
much as 10% before an earthquake. Such observations would
be consistent with laboratory experiments and would reflect
cracks opening in the rock (lowering wave speeds) due to
increasing stress and later filling (increasing wave speeds).

However, this phenomenon has not been substantiated as a
general phenomenon. Similar difficulties beset reports of a
decrease in the electrical resistivity of the ground before
some earthquakes, consistent with large-scale microcracking.
Changes in the amount and composition of groundwater have
also been observed. For example, a geyser in Calistoga, Cal-
ifornia, changed its period between eruptions before the Mw

6.9 1989 Loma Prieta and Mw 5.7 1975 Oroville, California,
earthquakes.

Efforts have also been made to identify ground deforma-
tion immediately preceding earthquakes. The most famous of
these studies was the report in 1975 of 30–45 cm of uplift
along the San Andreas fault near Palmdale, California. This
highly publicized ‘Palmdale Bulge’ was interpreted as evi-
dence of an impending large earthquake and was a factor in the
US government’s decision to launch the National Earthquake
Hazards Reduction Program aimed at studying and predict-
ing earthquakes. US Geological Survey director Vincent McK-
elvey expressed his view that ‘a great earthquake’ would occur
‘in the area presently affected by the. . . “Palmdale Bulge”. . .
possibly within the next decade’ that might cause up to 12 000
deaths, 48 000 serious injuries, 40 000 damaged buildings,
and up to $25 billion in damage. The California Seismic
Safety Commission stated that ‘the uplift should be consid-
ered a possible threat to public safety’ and urged immediate
action to prepare for a possible disaster. News media joined
the cry.

In the end, the earthquake did not occur, and reanalysis of
the data implied that the bulge had been an artifact of errors
involved in referring the vertical motions to sea level via a tra-
verse across the San Gabriel mountains. It was realized that
the apparent bulging of the ground was produced by a com-
bination of three systematic measurement errors. They were
necessarily systematic in space and in time. The culprits were
(i) atmospheric refraction errors that made hills look too small,
steadily declining as sight lengths were reduced from one lev-
eling survey to the next, which made the hills appear to rise, (ii)
the misinterpretation of subsidence due to water withdrawal.
Saugus was subsiding, as opposed to the areas surrounding
Saugus uplifting! (iii) The inclusion of a bad rod in some of the
leveling surveys. These discoveries were led by (i) Bill Strange
of the NGS, (ii) Robert Reilinger (then at Cornell) and (iii)
David Jackson at UCLA (Rundle and McNutt 1981, M Bevis,
personal communication, 2020).

Hence the Bulge changed to ‘the Palmdale
soufflé—flattened almost entirely by careful analysis of
data’ (Hough 2007). Subsequent studies elsewhere, using
newer and more accurate techniques including the global
positioning system (GPS) satellites, satellite radar interfer-
ometry, and borehole strainmeters have not yet convincingly
detected precursory ground deformation.

An often-reported precursor that is even harder to quan-
tify is anomalous animal behavior. What the animals are sens-
ing (high-frequency noise, electromagnetic fields, gas emis-
sions) is unclear. Moreover, because it is hard to distinguish
‘anomalous’ behaviors from the usual range of animal behav-
iors, most such observations have been ‘postdictions,’ coming
after rather than before an earthquake.
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Chinese scientists have attempted to predict earthquakes
using precursors. Chinese sources report a successful predic-
tion in which the city of Haicheng was evacuated in 1975, prior
to a magnitude 7.4 earthquake that damaged more than 90%
of the houses. The prediction is said to have been based on
precursors, including ground deformation, changes in the elec-
tromagnetic field and groundwater levels, anomalous animal
behavior, and significant foreshocks. However, in the follow-
ing year, the magnitude 7.8 Tangshan earthquake occurred not
too far away without precursors. In minutes, 250 000 people
died, and another 500 000 people were injured. In the follow-
ing month, an earthquake warning in the Kwangtung province
caused people to sleep in tents for two months, but no earth-
quake occurred. Similarly, no anomalous behavior was identi-
fied before the magnitude 7.9 Wenchuan earthquake in 2008.
Because foreign scientists have not yet been able to assess the
Chinese data and the record of predictions, including both false
positives (predictions without earthquakes) and false negatives
(earthquakes without predictions), it is difficult to evaluate the
program.

Despite tantalizing suggestions, at present there is still an
absence of reliable precursors. Most researchers thus feel that
although earthquake prediction would be seismology’s great-
est triumph, it is either far away or will never happen. How-
ever, because success would be of enormous societal benefit,
the search for methods of earthquake prediction continues.
To further this point, we now consider the famous Parkfield
earthquake prediction experiment.

2.1. The search for earthquake precursors

2.1.1. The Parkfield earthquake prediction experiment. Even
with the dates of previous major earthquakes, it is difficult
to predict when the next one will occur, as illustrated by the
segment of the San Andreas fault near Parkfield, California,
a town of about 20 people whose motto is ‘be here when it
happens.’ Earthquakes of magnitude 5–6 occurred in 1857,
1881, 1901, 1922, 1934, and 1966. The average recurrence
interval is 22 years, and a linear fit to these dates made 1988
± 5 years the likely date of the next event. In 1985, it was
predicted at the 95% confidence level that the next Parkfield
earthquake would occur before 1993, which was the USA’s
first official earthquake prediction (Bakun et al 2005).

Seismometers, strainmeters, creepmeters, GPS receivers,
tiltmeters, water level gauges, electromagnetic sensors, and
video cameras were set up to monitor what would hap-
pen before and during the earthquake. The US National
Earthquake Prediction Evaluation Council endorsed the highly
publicized $20 million ‘Parkfield’ project. The Economist
magazine commented, ‘Parkfield is geophysics’ Waterloo. If
the earthquake comes without warnings of any kind, earth-
quakes are unpredictable, and science is defeated. There will
be no excuses left, for never has an ambush been more care-
fully laid.’

Exactly that happened. The earthquake did not occur by
1993, leading Science magazine to conclude, ‘seismologists’
first official earthquake forecast has failed, ushering in an era
of heightened uncertainty and more modest ambitions’ (Kerr

1993). A likely explanation was that the uncertainty in the
repeat time had been underestimated by discounting the fact
that the 1934 earthquake did not fit the pattern well (figure 1)
(Savage 1993).

An earthquake eventually occurred near Parkfield on
September 28, 2004, eleven years after the end of the predic-
tion window, with no detectable precursors that could have led
to a short-term prediction (Kerr 2004). It is unclear whether
the 2004 event should be regarded as the predicted earthquake
coming too late, or just the next earthquake on that part of the
fault.

For that matter, we do not know whether the fact that earth-
quakes occurred about 22 years apart reflects an important
aspect of the physics of this particular part of the San Andreas,
or just an apparent pattern that arose by chance given that we
have a short history and many segments of the San Andreas
of similar length. After all, flipping a coin enough times will
give some impressive-looking patterns of heads or tails. With
only a short set of data, we could easily interpret significance
to what was actually a random fluctuation and thus be ‘fooled
by randomness’ (e.g., Taleb 2004). It is possible the 1983 Mw

6.4 Coalinga earthquake (Kanamori 1983) was the ‘missing’
Parkfield event suggesting that earthquake forecasting should
be based on regional spatial and temporal scales (Tiampo et al
2005) rather than fault based. As is usual with such questions,
only time will tell.

2.1.2. Load unload response ratio (LURR). LURR is a
method that was developed in China and is widely used by
the Institute of Earthquake Forecasting of the China Earth-
quake Administration in the official yearly earthquake forecast
of China, which is required by law in that country (Yin et al
1995, 2004, Yuan et al 2010, Zhang et al 2008). However, this
method has not been widely researched or used in other coun-
tries. The basic idea is that tidal stresses on the Earth can be
used as a diagnostic for the state of increasing stress prior to
a major earthquake. Tidal stresses are cyclic, so in principle
there should exist an observable asymmetry in the response
to the daily tidal stressing. Based on similar observations of
acoustic emissions from stressed rock samples in the labora-
tory, it might be expected that microseismicity would be higher
in the increasing stress part of the cycle, and lower in the de-
stressing part (Zhang et al 2008). However, data from actual
field experiments are controversial (Smith and Sammis 2004).

2.1.3. Accelerating moment release (AMR). AMR was a
method that was based on the hypothesis that, prior to frac-
tures in the laboratory and the field, there should be a pre-
cursory period of accelerating seismicity or slip, otherwise
known as a ‘runup to failure’ (Varnes 1989, Bufe and Varnes
1993, Bufe et al 1994, Jaumé and Sykes 1999, Bowman and
King 2001, Sornette and Sammis 1995). In these papers, it
was proposed that the accelerating slip is characterized by a
power law in time, therefore suggesting the possible existence
of critical point dynamics. While based on a reasonable physi-
cal hypothesis of a cascading sequence of material failure, the
phenomenology has so far not been observed in natural fault
systems (Guilhem et al 2013).
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Figure 1. The Parkfield, CA earthquake that was predicted to occur within 5 years of 1988 did not occur until 2004. Black dots show when
the earthquake occurred, and the best-fitting line indicates when they should have occurred at intervals of 22 years.

3. Basic equations of earthquake science

3.1. Observational laws

The oldest observational laws of earthquake science are the
Gutenberg–Richter (GR) magnitude-frequency relation and
the Omori–Utsu relation for aftershock decay. The GR relation
states that the number of earthquakes M larger than a value m
in a given region and over a fixed time interval is given by:

N (M � m) = 10a10−bm. (1)

Here a and b are constants that depend on the time interval and
the geographic region under consideration. Note further that
equation (1) is not a density function, rather it is a survivor
function or exceedance function.

The magnitude m was originally defined in terms of a local
magnitude developed by C F Richter, but the magnitude m is
now most commonly determined by the seismic moment W:

1.5m = log10 W − 9.0. (2)

Expression (2) is in SI notation. The quantity W is found from
matching observational seismic timeseries obtained from seis-
mometers to a model involving a pair of oriented and opposed
double-couples (dipoles), thus giving rise to a quadripolar
radiation pattern. Its scalar value is given by:

W = μΔu A (3)

where μ is the elastic modulus of rigidity, Δu is the average
slip (discontinuity in displacement) across the fault, and A is
the slipped area. Combining equations (1) and (2), we find that
in fact, the GR law is a scaling relation (power law):

N = 10aW{− 2b
3 } (4)

where m is given by (2).
The remaining equation is the Omori–Utsu law (e.g.,

Scholz 2019), which was proposed by Omori following the
1891 Nobi, Japan earthquake, surface wave magnitude Ms

= 8.0, and expresses the temporal decay of the number of
aftershocks following a main shock:

dN
dt

=
K

(c + t)p
. (5)

In (5), p, K and c are constants, to be found by fitting
equation (4) to the observational data, and t is the time elapsed
since the main shock. In its original form, the constant c
was not present, it was later added by Utsu to regularize the
equation at t = 0. An example of Omori–Utsu decay is shown
in figure 3 below.

3.2. Elasticity

Models to develop and test earthquake nowcast and forecast
methodologies are based on the known processes of brittle
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fracture in rocks, typically modeled as a shear fracture in an
elastic material. The equations of linear elasticity are used to
describe the physics of the process. Most of the models used
for nowcasting, forecasting and prediction are either statisti-
cal or elastostatic, where seismic radiation is neglected. The
motivation for this approach is the focus on the slow processes
leading up to the rupture, rather than on details of the rupture
dynamics.

To understand the basic methods, let us define a stress tensor
in d = 3:

σ(x, t) = σi j(x, t) (6)

and a strain tensor:

ε(x, t) = εi j(x, t) =
1
2

(
∂ui(x, t)
∂x j

+
∂u j(x, t)
∂xi

)
(7)

where the (infinitesimal) displacement in the elastic medium
at location x and time t is u(x, t) = ui(x, t).

To relate the stress tensor to the strain tensor, the simplest
assumption is to use the constitutive law for isotropic linear
elasticity:

σi j(x, t) = δi j λ εkk(x, t) + 2μ εi j(x, t) (8)

where δij is the Kronecker delta, μ and λ are the Lamé
constants of linear elasticity, and repeated indices are summed.

The equation of elastic equilibrium can be stated in the
form:

∇ · σ(x, t) = f (x, t) (9)

where f(x, t) is a body force. It has been shown that the body
force appropriate to shear slip on a fault can be found by the
following method.

For a fault element at position x′, we wish to find the dis-
placement and stress at position x, i.e., we wish to find the
Green’s functions. To do so, we let:

u
(
x − x′, t

)
= û(t)δ(x − x′) (10)

where û is a unit vector, and δ(x) is the Dirac delta function.
We then compute the strain according to equation (7), followed
by taking the divergence of that strain tensor. The result is
solutions (Green’s functions) of the form:

ui (x, t) =
∫

Gikl

(
x − x′)Δuk

(
x′, t

)
nl dA (11)

σi j (x, t) =
∫

Ti jkl

(
x − x′

)
Δuk

(
x′, t

)
nl dA.

Here Gikl

(
x − x′) is the displacement Green’s function,

and Ti jkl

(
x − x′) is the stress Green’s function. As before,

Δuk

(
x′)is the displacement discontinuity across the fault in

kth direction at x′, and nl is the unit normal to the fault, with
dA being the element of fault area. Note that the detailed con-
struction of these Green’s functions for point and rectangular
faults can be found in many papers, with the most widely used
version being found in the paper by Okada (1992).

In many of the simple models used to describe a single pla-
nar fault, such as the slider block models discussed below, a
spatial coarse graining is used to subdivide a fault into a par-
tition of squares of area ΔA, each square representing a slider

block. Then, for example, we can write the force or stress on
a slider block (=element of area) schematically as:

σi (t) =
∑

j

Ti js j(t) (12)

where the Ti j are combinations of spring constants (discussed
below).

4. Complexity and earthquake fault systems

Most researchers have now set their sights on probabilistic
earthquake forecasting, rather than deterministic earthquake
prediction using precursors. The focus is presently on deter-
mining whether forecasts covering months to years are feasi-
ble, in addition perhaps to decadal time scales.

To understand the causes of the problems noted above, we
now briefly turn to an analysis of the structure and dynamics
of earthquake faults systems, and how these may influence our
ability to make reliable earthquake forecasts. We begin with
a discussion of the idea of earthquake cycles and supercycles.
In the context of complex systems, earthquake cycles can be
related to the idea of limit cycles in complex systems. In this
case a limit cycle is a repetitive behavior—a simple example
would be a sine wave. Of course, limit cycles are one man-
ifestation of the dynamics of complex systems, others being
chaotic and fixed-point dynamics.

4.1. Earthquake cycles and supercycles

Since the Mw 7.9 San Francisco earthquake of April 18, 1906,
the dominant paradigm in earthquake seismology has been the
earthquake cycle, in which strain accumulates between large
earthquakes due to motion between the two sides of a locked
fault. That strain is released by slip on the fault when an earth-
quake occurs (Reid 1910). Over time, this process should con-
ceptually give rise to approximately periodic earthquakes and
a steady accumulation of cumulative displacement across the
fault.

However, long records of large earthquakes using paleo-
seismic records—geological data spanning thousands of years
or more—often show more complex behavior, as reviewed by
Salditch et al (2020). The earthquakes occurred in supercycles,
sequences of temporal clusters of seismicity, cumulative dis-
placement, and cumulative strain release separated by intervals
of lower levels of activity.

Supercycles pose a challenge for earthquake forecasting
because such long-term variability is difficult to reconcile with
commonly used models of earthquake recurrence (Stein and
Wysession 2009). In the Poisson model earthquakes occur ran-
domly in time and the probability of a large earthquake is
constant with time, so the fault has no memory of when the pre-
vious large earthquake occurred. In a seismic cycle or renewal
model, the probability is quasi-periodic, dropping to zero after
a large earthquake, then increasing with time, so the probabil-
ity of a large earthquake depends only on the time since the
past one, and the fault has only ‘short-term memory.’

This situation suggests that faults have ‘long-term
memory,’ such that the occurrence of large earthquakes

6
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Figure 2. LTFM model. (Top) Simulated earthquake history. (Bottom) Earthquake probability versus time. Reprinted from (Salditch et al
2020), Copyright (2020), with permission from Elsevier.

depends on earthquake history over multiple previous
earthquake cycles (figure 2). Faults having long-term mem-
ory would have important consequences for earthquake
forecasting. Weldon et al (2004) point out that:

‘...resetting of the clock during each earthquake not
only is conceptually important but also forms the prac-
tical basis for all earthquake forecasting because earth-
quake recurrence is statistically modeled as a renewal
process... In a renewal process, intervals between earth-
quakes must be unrelated so their variability can be
expressed by (and conditional probabilities calculated
from) independent random variables. Thus, if the next
earthquake depends upon the strain history prior to that
earthquake cycle, both our understanding of Earth and
our forecasts of earthquake hazard must be modified. . .
There can be little doubt that the simple renewal model
of an elastic rebound driven seismic cycle will need to be
expanded to accommodate variations that span multiple
seismic cycles.’

A simple model for supercycles, long-term fault mem-
ory (LTFM), extends the standard earthquake cycle model.
It assumes that the probability of a large earthquake reflects
the accumulated strain rather than elapsed time. The proba-
bility increases as strain accumulates over time until an earth-
quake happens, after which it decreases, but not necessarily to
zero. Hence, the probability of an earthquake depends on the
earthquake history over multiple prior cycles.

LTFM is a stochastic process, a Markov chain with states
at discrete times corresponding to values of accumulated

strain, reflected in the probability P(t). The probability that an
earthquake occurs at time t, conditional on the history of strain
accumulation and release at prior times, depends only on the
most recent level of strain at time t − 1. Given P(t), the prob-
ability does not otherwise depend on time, so the history prior
to t is fully captured by P(t − 1).

LTFM can also be posed using the classic probability model
of drawing balls from an urn (Stein and Stein 2013). If some
balls are labeled ‘E’ for earthquake and others are labeled ‘N’
for no earthquake, the probability of an earthquake is that of
drawing an E-ball, the ratio of the number of E-balls to the
total number of balls. If after drawing a ball, we replace it, the
probability of an earthquake is constant or time-independent
in successive draws, because one happening does not change
the probability of another happening.

Thus, an earthquake is never ‘overdue’ because one has not
happened recently, and the fact that one happened recently
does not make another less likely. LTFM corresponds to an
alternative sampling such that the fraction of E-balls and the
probability of another event change with time. We add E-balls
after a draw when an earthquake does not occur and remove
E-balls when one occurs. Thus, the probability of an earth-
quake increases with time until one happens, after which it
decreases and then grows again. Earthquakes are not inde-
pendent, because one happening changes the probability of
another.

Viewing supercycles as a result of LTFM fits into a gen-
eral framework in the literature of complex dynamical systems.
Clustered events, described as ‘bursts,’ are observed in many
disparate systems, from the firing system of a single neuron

7



Rep. Prog. Phys. 84 (2021) 076801 Review

to an outgoing mobile phone sequence (Karsai et al 2012,
Rundle and Donnellan 2020, discussed below). Such systems
display ‘. . .a bursty, intermittent nature, characterized by short
timeframes of intense activity followed by long times of no or
reduced activity,’ (Goh and Barabasi 2008). The system’s state
depends on its history, so it has long-term memory (Beran et al
2013).

LTFM simulations over timescales corresponding to the
duration of paleoseismic records find that the distribution
of earthquake recurrence times can appear strongly periodic,
weakly periodic, Poissonian, or bursty. Thus, a given paleo-
seismic window may not capture long-term trends in seismic-
ity. This effect is significant for earthquake hazard assessment
because whether an earthquake history is assumed to con-
tain clusters can be more important than the probability den-
sity function (pdf) chosen to describe the recurrence times. In
such cases, probability estimates of the next earthquake will
depend crucially on whether the cluster is treated as ongoing
or finished.

4.2. Interactions and scales

Complex nonlinear systems are characterized by many inter-
acting agents, each agent having some type of nonlinear behav-
ior, as well as interactions with other agents. They have a mul-
tiplicity of scales in space and time, form coherent space–time
structures by means of their internal dynamics, have nonlinear
threshold dynamics, and are typically driven and dissipative
(e.g., Rundle et al 2003). Examples of these types of systems
include markets and the economy, evolutionary, biological and
neural systems, the internet, flocking of birds and schooling of
fish, earthquakes, and many more (Rundle et al 2019). None
of these systems evolve according to a central plan. Rather,
their dynamics are guided by a few basic bottom-up principles
rather than a top-down organizational structure.

In the example of earthquakes, these faults are embedded
in complex geomaterials, and are driven by slowly accumu-
lating tectonic forces, or, in the case of induced seismicity,
by injection of fracking fluids. Rocks make up the Earth’s
crust, and are disordered solids having a wide range of scales,
both structurally and dynamically as they deform (Turcotte and
Shcherbakov 2006, Turcotte et al 2003).

On the microscopic (micron) scale, dislocations and lat-
tice defects within grains represent important contributors to
solid deformation. On larger scales (millimeter), grain dynam-
ics including shearing, microcrack formation, and changes
in the porosity matrix contribute. On still larger scales (cen-
timeters to meters and larger), macroscopic fracturing in ten-
sion and shear, asperity de-pinning, and other mechanical
processes lead to observable macroscopic deformation. On
the largest (tectonic) scales, the self-similarity is also man-
ifested as a wide array of earthquake faults on all scales,
from the local to the tectonic plate scale of thousands of km
(Scholz 2019).

Observations of rock masses over this range of spatial scales
indicate that the failure modes of these systems, such as frac-
ture and other forms of catastrophic failure demonstrate scale
invariant deformation, or power law behavior, characteristic
of complex non-linear systems. These are observed in both

laboratory settings in acoustic emission experiments, as well
as in large scale field settings associated with tectonic faults
(GR magnitude–frequency relation; Omori relation for after-
shocks). One important reason for this behavior is that driven
threshold systems of rock masses in which defects interact
with long range interactions display near mean field dynam-
ics and ergodic behavior (Rundle and Klein 1989, Rundle et al
1996, Klein et al 1997, 2000a, 2000b, 2000c, 2007, Tiampo
et al 2002a). This result, which was first proposed based on
simulations and theory, was subsequently observed in field
observations on the tectonic scale (Tiampo et al 2002b).

In both laboratory and field scale settings, a wide variety
of timescales are also observed (Scholz 2019). These include
the source-process time scale of seconds to minutes on which
earthquakes occur, as well as the loading time scales of tens
to hundreds to thousands of years on which earthquakes recur
in active tectonic regions. Other phenomena, to be discussed
below, such as small earthquake swarms and other thermal and
physical processes, operate on time scales as short as days, and
as long as months to years (Scholz 2019).

Modeling these types of processes requires consideration
of fully interacting fields of dislocations, defects, damage, and
other material disorder. In much of the previous work over the
last decades on these types of systems, disordered fields were
assumed to be non-interacting, allowing classical solid–solid
mixture theories to be employed (e.g., Hashin and Shtrickman
1962). With respect to earthquake faults, it was only empha-
sized within the last few decades that earthquake faults interact
by means of transmission of tectonic stress, mediated by the
presence of the brittle-elastic rocks within which the faults are
embedded.

With the development of new high-performance computing
hardware and algorithms, together with new theoretical meth-
ods based on statistical field theories, we can now model a wide
variety of fully interacting disordered systems. One interesting
example of such a macroscopic model is the interacting earth-
quake fault system model ‘Virtual California’ (Rundle 1988,
Heien and Sachs 2012), used in understanding the physics of
interacting earthquake fault systems. We will briefly consider
and review this type of tectonic/macroscopic model in a later
section, inasmuch as it allows the construction of simulation
testbeds to carry out experiments on the dynamical timescales
and spatial scales of interest.

An interesting new development is associated with earth-
quakes in regions where oil and gas are being mined, termed
induced seismicity. These earthquake events are the result of
new fracking technology that has transformed previously rela-
tively non-seismic regions—such as the US state of Oklahoma
and the Groningen region of the Netherlands—into zones
of frequent and damaging seismic activity (Luginbuhl et al
2018c).

In association with this new induced seismicity, an impor-
tant new model that can be considered is the invasion percola-
tion (‘IP’) model. IP was developed by Wilkinson and Willem-
sen (1983) and Wilkinson and Barsony (1984) at Schlum-
berger–Doll Research to describe the infiltration of a fluid-
filled (‘oil’ or ‘gas’) porous rock by another invading fluid
(‘water’). The model has been studied by (Roux and Guyon
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1989, Knackstedt et al 2000, Ebrahimi 2010, Norris et al 2014,
Rundle et al 2019) primarily for applications of extracting oil
and gas from reservoirs, and also in the context of the compu-
tation of scaling exponents. Laboratory examples of IP have
also been observed (Roux and Wilkinson 1988).

Until now, most of the research on this model has been
concerned with understanding the scaling exponents and uni-
versality class of the clusters produced by the model (Roux
and Guyon 1989, Paczuski et al 1996, Knackstedt et al 2000).
Direct application to flow in rocks has been discussed by
Wettstein et al (2012).

Yet the physics of the model can be applied to a number of
other processes, for example the progressive development of
slip on a shear fracture or fault. Notable among the physical
processes of IP is the concept of bursts. These can be defined
as rapid changes in the configuration of the percolation lattice
and correspond physically to the formation of a sub-lattice hav-
ing greater permeability or conductivity than the site(s) from
which the sub-lattice originates.

The multiplicity of these spatial and temporal scales,
together with the power-law scaling observed in the GR and
Omori statistical laws, lend support to the basic view that
earthquake fault systems are examples of general complex
dynamical systems, in many ways similar to systems seen
elsewhere. Examples of other types of physical systems that
display similar behaviors include stream networks, vascular
networks, spin systems approaching criticality, and optimiza-
tion problems. Examples of systems from the social sciences
displaying similar dynamics include queuing problems, and
social science network problems in biology and economics
(Ebrahimi 2010).

5. Nucleation and phase transitions

5.1. Nucleation and fracture

The idea that earthquakes are a shear fracture has allowed
progress to be made using ideas from statistical physics. Frac-
ture can be viewed as a catastrophic event that begins with
nucleation, a first order phase transition. Griffith (1921) was
the first to recognize that there is a similarity between nucle-
ation of droplets and/or bubbles in liquid and gases as pro-
posed by Gibbs (1878), and fracture. For example, we note
that the Griffith (1921) model of an fracture or crack is found
by writing the free energy (Rundle and Klein 1989):

F = −B l2 + 2γ l (13)

where B is a bulk free energy and 2γ is a surface free energy.
Or in other words, B is the elastic strain energy lost when a
crack of length l is introduced into the elastic material, and 2γ
is the energy required to separate the crack surfaces. Instability
occurs and the crack extends when the crack length l exceeds
a critical value lc determined by the extremum of F:

dF
dl

= 0 => lc =
γ

B
. (14)

In general, nucleation is usually modeled as a competition
between a bulk free energy (B), and a surface free energy

(2γ). The bulk free energy tends to lower the overall energy
at the expense of the surface free energy. In the case of ther-
mal and magnetic phase transitions, the surface free energy is
also called a surface tension. Since the material damage that
precedes fracture has a stochastic component, whether it is
annealed or quenched, the relation between damage and failure
is statistical. This makes the methods of statistical mechanics
relevant and the analysis of the relation between damage and
catastrophic failure in simple models an important component
for elucidating general principles. Several excellent articles
and texts in physics, materials science and Earth science com-
munities document these ideas and serve as good references
on progress in these fields (Alava et al 2006, Kelton and Greer
2010, Ben-Zion 2008).

Earthquake seismicity has also been viewed as an example
of accumulating material damage leading to failure on a major
fault, and has been described by statistical field theories. For
example, one can decompose a strain field Ei j (x, t) into an
elastic εi j (x, t) and damage αi j(x, t) component:

Ei j (x, t) ≡ εi j (x, t) + αi j(x, t). (15)

One can then write a Ginzburg–Landau type field theory for
the free energy for the energy in terms of the strain and dam-
age fields, and then find the Euler–Lagrange equation by a
functional derivative. The result are equations that modify
the elastic moduli in the constitutive laws by factors such as
μ→ μ

(
1 − α2

)
, so that as damage accumulates (α increases),

the rigidity of the material decreases, and large displacements
and fractures become inevitable.

Earthquake nucleation has therefore been described as an
example of nucleation near a classical spinodal, or limit of
stability (Klein et al 2000a, 2000b, 2000c). In this view, earth-
quake faults can enter a relatively long period of metastability,
ending with an eventual slip event, an earthquake. Unlike clas-
sical nucleation, spinodal nucleation occurs when the range of
interaction is long. In this physical picture, the slip on the fault,
or alternately the deficit in slip relative to the far-field plate
tectonic displacement, is the order parameter. Scaling of event
sizes is observed in spinodal nucleation, but not in classical
nucleation.

Other views of earthquakes have emphasized the similarity
to second order phase transitions. Several authors view frac-
ture and earthquakes as a second order critical point (Sornette
and Virieux 1992, Carlson and Langer 1989), rather than as a
nucleation event (Rundle and Klein 1989, Klein et al 1997).
Recall that second order transitions, while they do show scal-
ing of event sizes, are in fact equilibrium transitions, whereas
nucleation is a non-equilibrium transition. The heat generated
by frictional sliding of the fault surfaces is considered to be the
analog of the latent heat in liquid–gas or magnetic first order
phase transitions.

Shekhawat et al (2013) used a two-dimensional model of a
fuse network to study the effect of system size on the nature
and probability of a fracture event. A fuse network is a model
in which an electric current is passed through an array of con-
nected electrical fuses, which can burn out or fail if the current
is too large. The model was used as an analog for fracture
of materials. They argued that there were different regimes of
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fracture and established a phase diagram in which the nature of
the event crosses over from a fracture process that resembled
a percolation transition (a second order transition) to one that
resembled the nucleation of a classical crack, as the system
size increased. Experimental support for the idea that fracture
is a phase transition can be seen in several investigations as
described below.

Laboratory experiments can elucidate the relation between
material damage and the onset of a catastrophic failure event
that could lead to material degradation. The latter, for example,
seems to be characteristic of the foreshocks that sometimes
seem to precede major earthquakes. Although there have been
significant advances in locating and characterizing this type
of precursory damage in materials (Li et al 2012, Hefferan
et al 2010, Guyer et al 1995, Guyer and Johnson 2009) there
has been little progress in relating the type and distribution of
damage to the onset of a major catastrophic failure such as is
observed in major earthquakes.

Fracture under pressure in fiber boards has been studied by
Garcimartin et al (1997) who recorded the acoustic emissions
generated by the formation of micro cracks that preceded the
catastrophic fracture event. Noting the power law size distribu-
tion of these events the authors conclude that the fracture could
be viewed as a critical phenomenon. Although there have been
significant insights obtained from studies such as the ones cited
above, a general framework that can unify these results is still
lacking and many questions remain.

Damage can also initiate nucleation via the heterogeneous
nucleation process. A great deal of work has been done to
understand heterogeneous nucleation in special cases such as
nucleation on surfaces (Klein et al 1997, 2000a, 2000b, 2000c,
2007, 2009, Kelton and Greer 2010, Muller et al 2000, Koster
et al 1990) and aerosols (Flossman et al 1985, Hamill et al
1977, Hegg and Baker 2009). As with fracture, an overall
framework is lacking. The role of defects such as vacancies
or dislocations in crystal–crystal transitions is not understood
(Kelton and Greer 2010), and neither is the effect of quench
rates in multi-component systems (Gunton et al 1983).

The fact that the state of the fields of nucleation and fracture
are similar is not surprising. They are in many ways the same
phenomenon. As noted, Griffith (1921) was the first to under-
stand that the formation of a classical crack in a brittle mate-
rial was a nucleation event. Rundle and Klein (1989) adapted
a field theoretic approach used to study nucleation near the
spinodal in long range interaction systems (Unger and Klein
1984). Their model was applied to nucleation in metals. They
obtained a theoretical description of the process zone asso-
ciated with acoustic emissions produced by molecular bonds
breaking ahead of the advancing crack opening (e.g., Broberg
1999).

5.2. Nucleation and failure cascades

The idea of spinodal nucleation as a process leading to earth-
quakes is associated with the idea that earthquakes are part
of a cascading process, where earthquakes that begin with
small slipping areas progressively overcoming ‘pinned’ sites
to grow into large events. Pinned sites are called ‘asperities’

in the literature (Scholz 2019). Models for this type of pro-
cess are often characterized by the question of ‘why do earth-
quakes stop?’ A model for the cascade process was proposed
by Rundle et al (1998) based on the idea that slip events
extend by means of a fractional Brownian walk through a ran-
dom field via a series of burst events. More recent work has
related this type of Brownian walk to bond percolation theory
(Rundle et al 2019).

With respect to earthquakes as a kind of generalized phase
transition and a cascade to failure, Varotsos et al (2001, 2002,
2011, 2013, 2014, 2020) and Sarlis et al (2018) have proposed
that earthquakes represent a dynamical phase transition asso-
ciated with an order parameter k1. That parameter is defined
as the variance of a time series of seismic electric signals
(SES). Furthermore, they define an entropy in natural time, and
show that this quantity exhibits a series of critical fluctuations
leading up to major earthquakes, both in simulation models,
and in nature (Varotsos et al 2011). These ideas depend on
a definition of ‘natural time’, that is discussed in more detail
below (Varotsos et al 2001).

Other work on similar ideas has been presented by Chen
et al (2008a, 2008b). They proposed an alternative variant
of the sandpile model with random internal connections to
demonstrate the state of intermittent criticality or nucleation.
The modified sandpile model (long-range connective sandpile
model) has characteristics of power-law frequency–size dis-
tribution. The model shows reductions in the scaling expo-
nents before large avalanches that mimics the possible reduc-
tion of GR b-values in real seismicity (Lee et al 2008). Lee
et al (2012) also consider failure in a fiber-bundle model to
address the problem of precursory damage. The study observes
a clearly defined nucleation phase followed by a catastrophic
rupture (Lee et al 2012).

6. Earthquake data

Earthquake data that are available for the study of dynamical
processes fall into several categories. The first is seismicity
data, that includes hypocentral data from catalogs, which list
the location of initial slip, the magnitude of the eventual earth-
quake, and the origin time. Other data are measures of sur-
face deformation, including global navigation satellite system
(GNSS) data, previously referred to as GPS data. Another form
of surface deformation data arises from radar satellites or air-
craft that illuminate the Earth and can be processed into inter-
ferometric synthetic aperture radar (InSAR) products. Stereo
photogrammetric pairs can also be used to determine deforma-
tion from large events. These are the primary types of data that
we discuss, although still other types of data include chemical,
thermal, and electromagnetic (Donnellan et al 2019).

6.1. Earthquake seismicity

Earthquake data are organized and available in online cata-
logs maintained by organizations such as the USGS. Cata-
log data include the origin time, magnitude, latitude, longi-
tude, depth and other descriptive information on the location
where the earthquake rupture first begins (the hypocenter).
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Figure 3. Seismicity having magnitudes M � 2 within 600 km of Los Angeles from 1992–1995.

Magnitudes can be of several types, but the most used is the
moment magnitude scale, based on the seismic moment of
the event (Hanks and Kanamori 1979). The seismic moment
is a measure of the mechanical and thermal energy release
of the system as the earthquake occurs and is typically com-
puted by fitting models of the source to waveforms observed on
seismograms.

The data show that earthquakes of all magnitudes are known
to cluster strongly in space and time (e.g., Scholz 2019,
Reasenberg 1985). As noted, such burst phenomena are widely
observed in many areas of science (Bahar Halpern et al 2015,
Mantegna and Stanley 2004, Paczuski et al 1996). One can
introduce a definition of seismic bursts that encompasses both
seismic swarms and aftershock sequences, with applications
to other types of clustered events as we describe below. An
example of aftershock sequences within 600 km of Los Ange-
les in association with several major earthquakes is shown
in figure 3. It can be seen that the activity following the
main shock subsides to the background within several months.
This is an example of Omori’s law of aftershock occurrence
(e.g., Scholz 2019).

6.2. Global navigation satellite systems (GNSS)

GNSS data, of which GPS is one of the earliest and most famil-
iar examples, is another type of data being analyzed for use in
earthquake forecasting and nowcasting. Significant work has
been done in the development of cost effective and efficient
GNSS-based data systems to quickly and efficiently estimate

a number of vital earthquake-related parameters (e.g. Hudnut
et al 1994, Tsuji et al 1995).

GNSS is also useful for tracking crustal deformation asso-
ciated with the earthquake cycle (e.g. Hager et al 1991, Sagiya
et al 2000). GNSS data an also be used to illuminate many of
the processes present in postseismic deformation, and thereby
to contribute understanding to earthquake physics (Melbourne
et al 2002). GNSS can even be used to track tsunami waves that
arise as a result of great submarine earthquakes for communi-
ties nearest the earthquake’s epicentre and as they propagate
to distant coastlines around the world through the effects of
ionospheric gravity waves (LaBrecque et al 2019). In short,
GNSS measurement of crustal deformation can be used to
measure tectonic deformation prior to earthquakes, coseismic
offsets from earthquakes with decreasing latency, and postseis-
mic motions, all of which inform models of how the Earth’s
crust accumulates strain, then fractures, and finally recovers.

Another important application of GNSS is the observation
and analysis of episodic tremor and slip (ETS), a phenomenon
that was discovered by Dragert et al (Dragert et al 2001, 2004,
Brudzinski and Allen 2007) along the Cascadia subduction
zone along the Pacific Northwest coast of California, Ore-
gon, Washington and British Columbia (figure 4). These events
occur at relatively shallow depths of 30 km or so on the plate
interface and are associated with brief episodes of slip and
bursts of small earthquakes. ETS has been observed elsewhere
in the world as well, including such locations as Costa Rica
(Walter et al 2011) and central Japan (Obara and Sekine 2009)
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Figure 4. Role of GNSS observations in the analysis of ETS. At left is the region of the Cascadia subduction zone off the Pacific Northwest,
showing a map of stations at which GNSS observations are routinely monitored. Of note are stations ALBH at the southern end of
Vancouver island, and station DRAO in the stable continental interior. At right above is shown the displacement of ALBH with respect to
DRAO over the years 1995–2004. Displacement is shown as the blue circles and red lines that represent best fits to the data. The green line
shows the steady aseismic trend. Bottom right is a record of the regional small earthquake bursts that accompany the slip events. The gold
line in the middle represents the correlation of the slip data with a detrended sawtooth curve, illustrating the repetitive nature of the events.
Reproduced from Dragert et al (2004). CC BY 4.0.

Measurement of crustal deformation to inform earthquake
fault behavior dates back to the early 1980s (e.g., Davis et al
1989). By the early 1990s GNSS had been used to identify
additional contributions to the Pacific–North American plate
motion from faults beyond the San Andreas fault proper (Feigl
et al 1993). On a more local to regional scale, GNSS crustal
deformation measurements combined with modeling identi-
fied the geometry of faults near the Ventura basin and were
used to estimate the earthquake potential of the faults as capa-
ble of producing an M6.4 earthquake (Donnellan et al 1993a,
1993b). In early 1994 the M = 6.7 Northridge earthquake
occurred (Jones et al 1994), demonstrating the value of apply-
ing measurement of crustal deformation to earthquake hazard
assessment.

The success of GNSS for understanding earthquakes led
to the deployment of continuous GNSS networks in Califor-
nia (Blewitt et al 1993, Bock et al 1993, Hudnut et al 2001),
the western US (Herring et al 2016), Japan (Tsukahara 1997),
and globally (Larson et al 1997). By the early 2010s GPS net-
works were relied on for understanding crustal deformation
and fault activity. Surface deformation was incorporated into
the most recent Uniform California Earthquake Rupture Fore-
cast version 3 (UCERF-3) led by the USGS with input from the
California Geological Survey (CGS) and research community
(Field et al 2013, Field et al 2014). These long-term forecasts
provide an assessment of earthquake hazard and intermediate
fault behavior.

Retrospective real-time analysis of GNSS networks have
shown that the moments and slip displacement patterns of
large magnitude earthquakes can be calculated within 3–5 min
(Ruhl et al 2017, Melgar et al 2020). Furthermore, algorithms
now exist to use these earthquake source models to assess the
likelihood of tsunamis and to predict the extent, inundation
and runup of tsunami waves. Recently for example, a joint
NOAA/NASA effort has further demonstrated the consistent

estimates of tsunami energy using GNSS for improved early
warning (Titov et al 2016).

An important application of real-time GNSS data is for
tsunami early warning, as a result of great submarine earth-
quakes. The 2004 M = 9.2 Sumatra–Andaman event (Ammon
et al 2005, Ishii et al 2005, Lay et al 2005, Stein and Okal 2005,
Subarya et al 2006) resulted in over 250 000 casualties, the
majority of them on the nearby Sumatra mainland, with inun-
dation heights of up to 30 m (Paris et al 2007). Improvements
in earthquake forecasting can be expected to yield significant
benefits in tsunami warning as well. As another example, the
M = 8.8 2010 Maule earthquake in Chile (Lay et al 2010,
Delouis et al 2010) resulted in 124 tsunami related fatalities
and wave heights up to 15–30 m in the near-source coast (Fritz
et al 2011).

Still another example is the 2011 M = 9.0 Tohoku-oki
earthquake in Japan (Simons et al 2011, Lay and Kanamori
2011), which generated a tsunami with inundation amplitudes
as high as 40 m. That event resulted in over 15 000 casualties
(Mori and Takahashi 2012) and was the first case of a large
tsunami impinging upon a heavily developed and industrial-
ized coastline in modern times. In addition to the tragic loss of
life, the economic collapse of the near-source coastline, which
spans nearly 400 km, was almost complete (Hayashi 2012).

Retrospective analysis in simulated real-time mode of high-
rate (1 Hz) GNSS (primarily GPS) data was collected during
the 2011 Tohoku-oki event on the Japanese mainland from a
network of more than 1000 stations. Those data convincingly
demonstrated that tsunami warnings in coastal regions imme-
diately adjacent to large events could be effectively issued
without regard for magnitude or faulting type (Melgar and
Bock 2013, Song et al 2012, Xu and Song 2013).

By 2020, there will be over 160 GNSS satellites including
those of GPS, European Galileo, Russian GLONASS, Chinese
BeiDou, Japanese QZSS, Indian IRNSS and other satellite
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Figure 5. Interferogram of the South Napa earthquake of August 24, 2014 captured by the NASA uninhabited aerial vehicle synthetic
aperture radar instrument. L-band fringes represent displacements of 24 cm along the line of sight to the instrument. Reproduced with
permission from https://nisar.jpl.nasa.gov/mission/get-to-know-sar/interferometry. Credit: NASA/JPL.

constellation broadcasting over 400 signals across the L-band,
nearly double the number today at any location. The expanded
GNSS constellation will improve the accuracy of the system
and will likely provide future advancements in early warning
capabilities.

In summary, the augmentation of existing monitoring net-
works with real-time GNSS would enable more accurate
and timely determination of the magnitude for large earth-
quakes (>∼M = 8), identification of the location, geom-
etry, and extent of fault rupture and the orientation of
ground displacement as input to earthquake forecasts and
improved tsunami forecasting and real-time prediction mod-
els. Increased access and use of real-time GNSS data from
existing and modernized networks would avoid or minimize
underestimating the likelihood of devastating earthquakes and
tsunamis (Goldberg et al 2018, 2019, Donnellan et al 2019,
LaBrecque et al 2019).

6.3. Interferometric synthetic aperture radar (InSAR)

InSAR is a satellite-based radar technology that produces
images of deformation of the Earth’s surface following
dynamic events. Since the 1992 M = 7.3 Landers earthquake
(Massonnet et al 1993), InSAR measurements and data scenes
have progressed from innovative promise to a relatively rou-
tine capability (e.g. Glowacka et al 2010, Brooks et al 2007,
Ryder and Burgmann 2008, Johanson and Burgmann 2010,
Tong et al 2010, Wisely and Schmidt 2010, Wei et al 2015,
Xue et al 2015, Dreger et al 2015), although the number of
interferograms available is still limited by the lack of satellites
or airborne vehicle platforms.

Examples of both satellite-based imagers (figure 5, left,
[1]) from data obtained by the European Space Agency (ESA)
Sentinel-1 radar satellite (e.g., Fielding et al 2014), and air-
borne imagers for the magnitude Mw 6.0 West Napa earth-
quake show a consistent pattern. Together with data from the
NASA UAVSAR instrument, these data show that the earth-
quake occurred on the near vertical, NNW striking West Napa
right-lateral strike slip fault with average slip of approximately
∼0.5 m. UAVSAR is the uninhabited aerial vehicle synthetic
aperture radar aircraft.

Earthquakes in the Los Angeles basin can produce major
damage and loss of life, examples include the 1933 M = 6.4
Long Beach earthquake and the 1993 M = 6.7 Northridge
earthquake. The seismic moment of aftershocks from the
earthquake represented only about 24% of the total deforma-
tion, as revealed by the geodetic measurements (Donnellan
et al 1998, 2000).

More interesting was the M = 5.1 La Habra earthquake of
28 March 2014 that occurred between the Puente Hills thrust
fault and the Whittier Narrows faults (Donnellan et al 2015).
Deformation associated with the La Habra earthquake was
captured by the UAVSAR vehicle (figure 2 in Donnellan et al
2015). The UAVSAR data were collected in the Los Ange-
les basin since 2009 as a part of an experiment to (1) forecast
earthquakes in California (Rundle et al 2002, 2003, Holliday
et al 2007) and (2) validate the forecasts with a systematic
program of observation via alternate data acquisition methods.
These forecasts indicated a high probability of an earthquake
at the southern boundary of the transverse ranges in the area
where the 2008 Chino Hills M = 5.5 earthquake occurred.
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The surface deformation signature of the La Habra earth-
quake revealed by the UAVSAR instrument was subtle but
illustrative of the power of the data. Features including cracked
pavement, broken curbs, and damaged structural foundations
were found to be associated with the UAVSAR images and
were found via field investigations that might otherwise not
have associated the damage with the fault (Donnellan et al
2015). Simple analyses of the historical seismicity near Los
Angeles indicate that the probability of a major earthquake of
magnitude M = 6.1 to M = 6.7 is high at the present time
within a circle of radius 100 km of Los Angeles (Donnellan
et al 2015).

As a final example, UAVSAR captured slip from the 2020
M = 7.2 El Mayor–Cucapah earthquake that ruptured in Baja
Mexico to just north of the US-Mexico border, but triggered
slip on an extensive network of faults even farther to the north
(Rymer et al 2010, Wei et al 2011, Donnellan et al 2014).
The M = 5.7 Ocotillo aftershock occurred about 2.5 months
after the mainshock, northwest of the rupture and just south of
the Elsinore fault, suggesting that the two faults systems could
be connected and possibly loading the Elsinore fault from the
2010 event.

In addition to these data, NISAR (the planned NASA-ISRO
SAR mission), is another space-based radar instrument that is
planned to launch in the 2022 timeframe. NISAR promises to
generate vast quantities of new imaging data for crustal defor-
mation research. This mission, which is a collaborative effort
between NASA and the Indian Space Research Organization
ISRO, is designed to operate both an L-band and an S-band
radar in order to obtain data at two wavelengths for a mini-
mum of 3 years. NISAR is planned to measure at least two
components of the point-to-point vector displacements with a
sampling interval of 12 days or shorter over at least 80% of
12 days or shorter intervals. The maximum gap in temporal
sampling is expected to be 60 days over pre-specified regions
of Earth’s land surface. Accuracy is expected to be 3.5 (1 +
L1/2) mm or better, over length scales 0.1 km < L < 50 km,
with resolution of 100 m, over at least 70% of the specified
regions.

7. Models for earthquake failure

Models for earthquake failure have been proposed as two basic
types, statistical models and physical models. The statistical
models assume some form of a probability distribution, and
then attempt to define the parameters in terms of observables.
The idea here is to determine expressions for the probability
of earthquake occurrence based on the assumed statistical dis-
tribution. The physical models begin with a description based
on stress and strain, and use some form of dynamics to pro-
duce catalogs of computational simulation data that can then
be analyzed statistically for failure probabilities. Dynamics are
important as they relate to the underlying tectonic forces and
stresses to the observed displacements at the Earth’s surface,
and to the patterns of earthquake events that occur in space and
time. Here we briefly summarize several of these models and
approaches.

7.1. Statistical distributions for models

The most widely used statistical distribution has been a Pois-
son model for earthquake occurrence, since large earthquakes
are known to recur on major faults. Thus in this view, the
physics is considered to be similar to nuclear decay processes
or cars arriving at a store. The Poisson model for an earthquake
to occur within a future random time t is:

Pm(T � t) = 1 − e−υmt. (16)

Here υm is the rate of occurrence of an earthquake of a given
magnitude m or larger. An interesting property of the Poisson
distribution is that it has no memory of past events. This is
easily shown by computing the conditional probability that at
earthquake occurs within a time Δt after t, given that it has not
occurred before t:

Pm(T|T � t) =
Pm (t +Δt) − Pm(t)

1 − Pm(t)
= 1 − e−υmΔt. (17)

As can be seen, the final expression does not depend on the
time t, only on the future time interval Δt.

A generalization of the Poisson model is the Weibull (1952)
model, which is often used in failure analysis for engineering
materials:

Pm(T � t) = 1 − e−( t
τ )β . (18)

Parameters include the nominal failure time τ and the expo-
nent β. As we show below, the Weibull model can be used to
develop forecast models that can be tested with statistical test
protocols.

Other commonly used models included the Brownian Pas-
sage time model, more commonly called the inverse Gaussian
model. Here the expression for the probability is more com-
plex, in that it describes the time a Brownian process takes
to reach a fixed time t. Another probability model often used
is the log–normal distribution, which describes multiplicative
random processes.

7.2. Simple physical models

Simple models for the earthquake sliding process have been
developed and compared to experiments and observations
where applicable. The first model was introduced by Burridge
and Knopoff (1967) (‘BK’), a dynamic model using sliding
frictional blocks and massive blocks connected by springs. The
first cellular automaton slider block model was introduced by
Rundle and Jackson (1977) (‘RJ’) using massless blocks.

In both models, each block is connected to neighbors by
coupling springs of strength KC, thereby allowing the blocks
to interact. In addition, each block is connected to a slowly
moving and persistently advancing loader plate by a spring of
constant KL that serves to increase the stress on all the blocks.
These models were introduced to the physics community by
Carlson and Langer (1989) (‘CL’) and by Olami et al (1992)
(‘OFC’).

An example of this type of model in d = 2 is shown in
figure 6. In these models, each block or site is assigned a
failure threshold and a residual stress. The system is initial-
ized by assigning a stress at random to each site. Stress on
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Figure 6. Schematic image of a slider block model. The small
blocks slide with friction on the fixed plate and are loaded by the
moving plate. Small blocks interact by means of the coupling
springs.

each site increases linearly with time between slip events due
to the action of a ‘loader plate’, representing the increase of
tectonic stress on the fault. Each site is visited and if the
stress is larger than the threshold, the site fails. Once a site
fails, it can trigger sliding at other sites to which it is con-
nected by coupling springs (the interactions). As a result, some
of the stress is lost, while the remainder is transferred to
neighbors. Once the cascade of failing blocks ends, the cycle
begins again.

More specifically, the force or stress on each slider block
can be represented by a generalization of equation (11):

σi = −

⎧⎪⎪⎨
⎪⎪⎩KC

∑
i �= j
j<R

s j (t) + KL [si (t) − Vt]

⎫⎪⎪⎬
⎪⎪⎭ (19)

where si (t) is the slip at time t on block i, V is the velocity of
the loader plate. In the original dynamic model of Burridge and
Knopoff (1967), the time-dependent positions of the blocks
were found by solving coupled equations for blocks of mass
m:

m
d2si

dt2
= σi (t) − σF

i . (20)

Here σF
i is the frictional resistance to sliding on block i. In the

original BK models, the frictional force had the form:

σF
i = σF

o − θ
vi(t)

vi(t) + vC
(21)

where σF
o , θ, and vC are constants, and

υi (t) =
dsi

dt
. (22)

On the other hand, with the massless slider block RJ mod-
els, the elastic stress was computed using expression (19), and
a slip value was computed by an update rule such as:

si (t + 1) = si (t) +ΔsiΘ
[
σi (t) − σF

i

]
. (23)

Here Θ[∗] is the Heaviside step function, and Δs and σF
i are

constants. For the special case of d = 2, and each block is con-
nected to 4 neighbor blocks by coupling springs, the jump in
slip Δs is often expressed in terms of a ‘stress drop’ term, Δσ
= σF

i :

Δsi =
Δσ

KL + 4KC
(24)

so that slip of the block reduces the stress σi to zero.
In this model, which is typically initiated with random ini-

tial conditions, a block fails when the persistently advancing
plate loads enough stress onto a block so that the failure thresh-
old is reached. At that point, the block fails. Slip of a single
block can induce a cascade or avalanche of failing blocks by
virtue of the coupling springs, with each slipping block con-
tinuing the cascade as it transfers stress to its neighbors. It is
worth noting that the OFC model is the same model but for-
mulated in terms of stress variables rather than displacement
or slip variables.

In a variety of papers, (Rundle and Klein 1992, Rundle et al
1995, Klein et al 2000a, 2000b, 2000c, Serino et al 2011) have
adapted this model in several ways. First, the stress transfer
range R is assumed to be large, R→∞, to model elastic forces,
which can be shown to have an infinite range of interaction.

In the large R limit the system demonstrates Guten-
burg–Richter (GR) scaling of small to medium size earthquake
events (Klein et al 2000a, 2000b, 2000c). The dynamics also
show rare large events that do not scale, and have the properties
of nucleation events (Klein et al 2000a, 2000b, 2000c, 2009).
The scaling of the events is generally the same as the scaling of
precursors to the main fracture event in the chipboard fracture
experiment (Garcimartin et al 1997).

Another variation on this model is the traveling density
wave model (Rundle et al 1996) in which the frictional or
pinning force is derived from a potential in the form of a trav-
eling harmonic wave consisting of sines and cosines. The idea
is that the population of pinning points can be decomposed
into a Fourier series. Numerical simulations show that pop-
ulations with identical phases produce one repetitive, large
earthquake, often called a ‘characteristic earthquake’ in the
literature (Scholz 2019). Populations of pinning points hav-
ing random phases, by contrast, produce a scaling distri-
bution of earthquakes. Thus the randomness of the phases
is a kind of control that can be used to obtain a diversity
of dynamics.

Another adaptation was to introduce damage as described
above (Rundle and Klein 1992, Rundle et al 1995, Klein et al
2007). Damage was introduced by modeling micro cracks as
sites at random that dissipate any stress that was transferred
to it under shear. Serino et al (2011) were able to show that
the addition of this form of damage introduced an exponential
cutoff to the GR scaling in the model.

Applying this model to single faults in the Southern Cali-
fornia fault system, Serino et al (2011) showed that the fault
scaling could be fit by an exponentially damped power law.
Since faults in a fault system could have different amounts of
damage, to obtain the GR scaling for a fault system Serino et al
(2011) superimposed the ensemble of single fault scaling laws
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to obtain a different exponent that had a larger range of power
law fit and whose value depended on the number of faults with
a given level of damage, thus explaining how different fault
systems can have slightly different GR scaling exponents.

This result is similar to what is expected for systems with
damage. Since damage will not be uniformly distributed in
a sample, scaling laws (for e.g. fracture bursts) must be a
superposition of scaling from different regions of the mate-
rial. This paradigm can explain the observed differences in
the scaling laws for different materials seen in Garcimartin
et al (1997) and demonstrates how simple models can lead to
important insights into the behavior of real materials. Under
tensile stress, damage can result in regions that can no longer
support loads leading to stress concentration (Shekhawat et al
2013, Kanninen and Popelar 1985).

Another type of model was recently proposed by Rundle
et al (2019) to model fault rupture in the presence of pore flu-
ids. This model is a type of invasion percolation model, first
proposed by Wilkinson and Willemsen (1983). The model is
intended to represent the occurrence of burst-like dynamics
such as are seen in earthquake swarms and aftershocks, based
on a type of constrained Leath invasion percolation (CLIP)
model.

Interpreting the percolation sites as units of energy release,
Rundle et al (2019) showed that the model reproduces the
observed natural scaling of earthquakes with the correct scal-
ing exponent in the limit that the occupation probability equals
the critical bond percolation probability for the onset of con-
nection across the grid. Comparing these results to observed
scaling of earthquakes in several geological regimes, they find
good quantitative agreement, in which the GR b-value (scaling
exponent) is b = 1 at p = pocc, and b > 1 at p < pocc.

7.3. Topologically realistic earthquake simulators

Earthquake simulators are a type of model in which earthquake
faults are represented as topologically realistic dislocation sur-
faces subject to slow long-term loading at tectonic rates, and
upon which frictional models are used to prescribe the physics
of stick-slip motion. Virtual Quake (formerly Virtual Califor-
nia, Rundle 1988) is such a model, and its history and use is
described in Sachs et al (2012). Virtual Quake has been used
to compute earthquake probabilities by simulating a long his-
tory of synthetic earthquakes, then using the statistics in the
simulated catalogs to compute probabilities of future events
(Rundle 1988, Rundle et al 2006, Van Aalsburg et al 2007,
Yikilmaz et al 2010). Other simulators based on similar prin-
ciples now exist as well, including RSQSim, ViscoSim, and
AllCal (Tullis et al 2012).

The Virtual Quake model includes stress accumulation and
release as well as stress interactions between faults in the
model, including the San Andreas fault and other adjacent
faults. The model is based on a set of mapped faults with
estimated slip rates, a prescribed plate tectonic motion, earth-
quakes on all faults, and purely elastic interactions (Rundle
1988, Rundle et al 2001, 2002, 2004). Earthquake activity data
and slip rates on these model faults are obtained from geologic
databases.

To implement the Virtual Quake model, one first defines a
set of fault surfaces, and applies a coarse graining algorithm
to partition the faults into smaller areas. Once these partitions
are defined, the resulting model can be treated essentially as
a slider block model. One then assigns properties including
coefficients of friction and long term slip velocities. Since the
faults are embedded in a d = 3 medium, the failure threshold
is then defined by:

σF
i = μS,iσN,i (25)

where μS,i is a coefficient of static friction on the ith coarse-
grained fault partition, and σN,i is the local normal stress,
which is composed both of a time-varying dynamical element,
and the gravitational overburden.

The time-varying stress fields are given by equation (11),
with the addition of a loading term:

σ (xi, t) = σi(t) = −

⎧⎪⎪⎨
⎪⎪⎩
∑
j�=i
j<R

Ti js j (t) + Tii [si (t) − Vit]

⎫⎪⎪⎬
⎪⎪⎭ (26)

where the Tij are the spring constants KC and KL as in (19), and
are found by integrating the stress Green’s functions in (11)
over the elementary coarse grained fault elements. The quan-
tity Vi is the long-term rate of offset across the fault element
located at xi.

Other simulators use a similar approach as far as the fault
interactions are concerned, but typically differ in their use of
friction laws. The RSQSim simulator of Richards-Dinger and
Dieterich (2012) uses a significantly modified version of rate-
and-state friction, which is a model in which the coefficient of
friction μ (θ(t), V(t)) depends linearly on a state variable θ(t)
together with a logarithmic dependence on the slipping veloc-
ity of the fault interface V(t) (Dieterich 1979, 1992, 1994).
A criticism of this model is that if the fault is locked so that
V = 0, a logarithmic singularity appears. Later modifications
of the model addressed ways to remove this problem. The
state variable is taken to represent the contact time of pin-
ning points on the fault, and evolves in response to the driv-
ing velocity V(t). The AllCal simulator of Ward (2012) uses
a set of scales to prescribe rupture and healing properties.
The ViscoSim simulator of Pollitz (2012) uses a more conven-
tional Coulomb type friction law with a dynamic overshoot
parameter.

At the present time, Virtual California is also the only
code that has developed a useful crustal deformation com-
ponent to accompany the slip history simulator. Both sur-
face deformation and interferograms are routinely com-
puted. A typical example of interferograms from simulated
earthquakes are shown in (figure 7). The crustal deformation
component of the model is useful when comparing model dis-
placements to observed displacements from GNSS or InSAR
measurements.

It should also be noted that the earthquake simulators
described above all use some form of boundary element (BE)
method to compute the stress transfer and kinematic Green’s
functions. With BEs, one defines a series of rectangular fault
elements and uses the tabulations in Okada (1992) to compute
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Figure 7. Two frames from a Virtual Quake simulation of 200 years of earthquakes in California, with events represented as InSAR L-band
interferograms. The assumed look angle from the satellite to the ground is shown at upper right. At lower left is the GR magnitude–frequency
diagram that is built over the course of the simulation. In the right panel of each figure, events larger than M6.5 are indicated by bubbles with
horizontal line indicators, all other events as points. Simulation courtesy of M Sachs (Rundle Group). Statistics of events from simulations
can be used to identify potential earthquake patterns in space and time, and to forecast future events after comparing the patterns with the
known history of large earthquakes in the region. Reproduced with permission from (Sachs (2013)). Rundle group, UC Davis.

the stress transfer coefficients and the surface displacement
Green’s functions. The same method can be used to compute
the gravity change Green’s functions using the Okubo (1992)
tabulations. The advantage of the BE approach is that it is an
order N method, where N is the number of BEs, so that com-
putation time grows only with the number of fault elements.
However, the disadvantage is that stresses are only computed
on the BEs themselves, so stresses at arbitrary locations within
the Earth are not computed. Also, displacements are generally
only computed at the free (Earth’s) surface.

Virtual Quake is the only earthquake simulator code
whose source code, documentation and user manual
are freely available either through the NSF-sponsored
site Computational Infrastructure for Geodynamics
(https://geodynamics.org/cig/software/vq/),or via the commu-
nity site GitHub (https://github.com/geodynamics/vq/issues).

7.4. Statistical forecast models

A current model that is frequently used for the forecast of
future earthquake aftershocks is the ETAS model (Ogata 1988,
1998, 2004, 2011, Helmstetter and Sornette 2003). The orig-
inal earthquake is the parent and the parent produces off-
spring which are first order aftershocks. The offspring can
then become parents generating offspring that are second order
aftershocks, and so forth. The frequency–magnitude statis-
tics of the offspring are given by the GR law and the time
dependence by Omori’s law.

The key parameter in the ETAS model is the branching
ratio n which is the number of offspring earthquakes gener-
ated on average by a parent earthquake. If n is greater than
one the number of earthquakes grows without bound and is
thus unrealistic. If n is near one a large fraction of earthquakes
can be aftershocks. Smaller values of n require more random
background earthquakes. A typical value is n = 0.8 but it is

very difficult to separate background random earthquakes from
ETAS aftershocks in terms of observations.

The key equations in the ETAS are then the GR magni-
tude–frequency law (1), the Omori law of aftershock decay
(5), and an earthquake productivity relation that specifies
the probability that an earthquake will give rise to daughter
earthquakes:

K (m) = A10α(m−mc). (27)

Here K (m) is the rate of production of magnitude m earth-
quakes above the completeness threshold mc of the catalog.
Combining the rate (27) with the GR (1) and Omori (5) laws,
one obtains a time-dependent rate of earthquake occurrence
that can then be inserted into the Poisson probability law, thus
yielding a probability for an earthquake of magnitude m to
occur.

An alternative model is the branching aftershock seismicity
sequence (BASS) model (Holliday et al 2007). Both ETAS and
BASS models consider multiple generations of aftershocks.
The ETAS model uses the productivity relation (27) based on
an average parent–offspring ratio. The ETAS model requires
two parameters, A and α, for this relation without physical
justification.

On the other hand, the BASS model utilizes the modified
form of Bath’s law specified by observations, in which the
average difference in magnitude between a mainshock and its
largest aftershock obtained from the aftershock GR distribu-
tion, Δm is used. This term is introduced into the GR law
(1), and replaces the productivity relation (27). The BASS
model is the self-similar limit of ETAS. The arbitrary pro-
ductivity relation in ETAS is replaced by Bath’s law that on
average the largest aftershock is a fixed magnitude difference
Δm (∼1.2) less than the main shock. A major advantage of the
BASS modal is that the two unconstrained parameters in the
ETAS productivity relation are replaced byΔm and the b-value
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scaling exponent in GR scaling, both directly constrained by
observations.

In the BASS model, the fraction of main shocks that have
foreshocks is independent of mainshock magnitude, while
in ETAS the dependence is assumed to be exponential, an
assumption not confirmed by observations. However, in a num-
ber of studies on the statistical variability of Δm (Vere-Jones
1969, Console et al 2003, Helmstetter and Sornette 2003) it
has been argued that this law might be an artifact caused by the
different criteria that seismologists apply to define mainshocks
and aftershocks. Another criticism of the BASS model is that
it can produce infinite numbers of aftershocks. However, this
problem is easily removed by a physically acceptable limit on
the upper magnitudes of aftershocks. This is equivalent to an
inverse Bath’s law that an aftershock cannot be Δm ∼ 3 bigger
than a mainshock.

7.5. Invasion percolation

The process of energy extraction by fracking has led to many
analyses of induced seismicity, which is observed to proceed
by sudden clusters or bursts of activity. Here we consider new
invasion percolation (‘IP’) models. IP was a model devel-
oped by Wilkinson and Willemsen (1983) and Wilkinson and
Barsony (1984) at Schlumberger-Doll Research to describe
the infiltration of a fluid-filled (‘oil’ or ‘gas’) porous rock by
another invading fluid (‘water’). An interesting recent review
of the literature in this area has been given by Ebrahimi (2010).
In fact, remarkably little research has been carried out on this
model despite the broad applicability of the physical processes.
Understanding the processes of cluster formation in models
like IP leads to new ideas, discussed below, for analysis of
earthquake clusters or bursts in nowcasting models.

Until now, most of the research on this model has been
concerned with analyzing the scaling exponents and univer-
sality class properties of the clusters produced by the model
(Roux and Guyon 1989, Paczuski et al 1996, Knackstedt et al
2000). Discussion of direct application to flow in rocks has
been detailed in Wettstein et al (2012). Laboratory examples
of IP have also been observed (Roux and Wilkinson 1988).

Invasion percolation is a very simple model in which a lat-
tice of sites is specified with bonds between them. The sites are
taken to represent larger ‘pores’ in the rock, with the bonds rep-
resenting small capillaries (flow paths) between the pores. To
further specify the model, a series of uniformly distributed ran-
dom numbers are generated and assigned to each of the bonds
in the lattice. These random numbers are taken to represent
the tendency for the invading or wetting fluid to pass through
the capillaries. Resistance to the invading fluid is via capillary
forces rather than viscous fluid forces.

In the ‘standard’ model for invasion percolation, the invad-
ing fluid is introduced along one side (say, the left-hand side) of
a square lattice. The dynamics proceeds by locating the bond
with the lowest value of probability p, and then marking that
bond and the connecting site as having been ‘invaded’. In the
next step, the bonds leading out from all invaded sites are then
examined, the lowest value of probability p is found, and the
bond and its connected site are marked as ‘invaded’.

This process is repeated until the invaded fluid encounters
the opposite boundary (say, the right-hand side of the lattice).
By definition, there is one connected cluster of sites extending
from the left side to the right side. This cluster is essentially
the same as the ‘infinite’ or ‘spanning’ cluster of random site
percolation (Stauffer and Aharony 1994).

8. Prediction, forecasting, nowcasting, testing

As described above, prediction in the context of earthquakes
can be regarded as the precise specification of time, location,
and magnitude of an impending earthquake. The process of
producing a prediction generally involves a search for hypothe-
sized precursory phenomena. As discussed earlier, many stud-
ies have found that reliable earthquake prediction, with asso-
ciated estimates of successful predictions, false alarms, and
failures to predict, is extremely difficult, if not impossible.

On the other hand, forecasting is the specification of the
probability of a future earthquake, usually within some level
of confidence. To make a forecast, one must assume a proba-
bility law governing the system, an assumption that is subject
to debate.

Finally, a nowcast is the computation of the current state
of risk of the system, often by proxy data (Rundle et al 2016b,
2018, 2019). Although a nowcast implies a level of near-future
hazard, it is not explicitly stated. In this review, we will not
further consider the earthquake prediction problem, rather we
focus on forecasting and nowcasting.

8.1. Long-term forecasting

Long-term earthquake forecasts have often been proposed for
future time periods of decades. Most long-term earthquake
forecasts are posed as the probability that an earthquake will
occur in a given future time window. These estimates involve
two primary choices, the data that are used to describe when
and where previous earthquakes occurred, and the models that
are used to forecast when future earthquakes will happen. The
effect of these choices can be illustrated with simple examples
as we discuss below.

8.2. Medium-term forecasting

Several general methods of medium-term forecasting have
been proposed for time periods of months to years. Typically,
these are based on the use of simulations of earthquakes, as in
the following.

• Using statistical simulations such as ETAS or BASS, the
observed background rate of small earthquake activity is
used to drive the model, producing a statistical ensem-
ble of possible ‘future’ events. These simulated events,
which generally follow a GR magnitude frequency rela-
tion, an Omori law of aftershock decay, and a subsidiary
relation such as productivity or Bath’s law, are then used
to compute a probability of a future large earthquake. Note
that these three equations are temporal statistics. Addi-
tional assumptions must be invoked to forecast locations
of possible future events.
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• Topologically realistic earthquake simulations can be
used to produce large catalogs of ‘realistic’ earthquakes
using simulators such as the Virtual Quake or RSQSim
models. These catalogs are then searched to find ‘past’
sequences of events that match as well as possible the
recent actual sequence observed in the given geographic
region of interest. Then one uses the ensembles of the sim-
ulated ‘future’ events to estimate the probability of a large
earthquake (Van Aalsburg et al 2007).

8.3. Nowcasting

Nowcasting is a much more recent idea that is based on sim-
ilar approaches in finance and weather/climate research. The
idea is to use proxy data to estimate the current hazard of the
system, without assuming any type of probability model. The
proxy data are used to track the changing state of the system
through time. It implies, but does not explicitly state, a current
and near-future level of hazard. Examples of proxy data for
nowcasts of large earthquake hazards that are useful include
small earthquake numbers from earthquake catalogs, GNSS
and InSAR data, and other records of ongoing activity and
crustal deformation.

Earthquake nowcasting (Rundle et al 2016a and 2016b,
2018, 2019, Pasari and Mehta 2018, Pasari 2019, 2020, Pasari
and Sharma 2020) can be used to define the current state of
risk from large earthquakes. These methods have begun to
be applied to India (Pasari 2019), Japan (K Nanjo, personal
communication, 2020) and Greece (G Chouliaras, personal
communication, 2019). We discuss these in more detail below.

8.4. Testing

Forecasts (in particular) must be tested to determine the
accuracy of the forecasts. While testing of forecasts is
relatively new in the earthquake community, valuable
methods can be found from similar forecasts made in
the weather and climate community (see, for example,
https://cawcr.gov.au/projects/verification/). In general, the
testing schema that can be used for backtesting are methods
that have been developed in the meteorological validation and
verification community (Joliffe and Stephenson 2003, Casati
et al 2008).

For our purposes, these tests are of two types: reliabil-
ity/attributes (R/A) diagrams (Murphy 1973, Hsu and Mur-
phy 1986, Murphy 1988), and receiver operating characteristic
(ROC) tests (Green and Swets 1966, Kharin and Zwiers 2003,
Joliffe and Stephenson 2003). The R/A test is conditioned on
the forecasts (i.e., given the forecast probability Y, what actu-
ally happened?). The ROC test is conditioned on the obser-
vations (i.e., given that X occurred, what was the forecast?).
These tests have a long provenance and have properties that
are well understood.

Tests such as ROC and reliability/attributes diagrams are
used as standard methods for evaluating the accuracy and
precision of forecasts and nowcasts. In many applications of
machine learning (ML), for example, use and analysis of ROC

diagrams is standard, along with skill scores, correlation coef-
ficients and other statistics derived from the underlying con-
tingency table, which is more typically called the confusion
matrix in ML applications.

In the following, we describe several examples of new
methods and analyses, and follow with a discussion. We note
that the selection of these forecast methods is not exhaustive,
rather the discussion should be regarded as illustrative of the
broad classes of proposed methods.

9. Examples of proposed earthquake forecast and
nowcast methods

9.1. Earthquake cycle models and long-term forecasts

We first consider the Pacific Northwest of the United States.
The earthquake (and associated tsunami) hazard in the Pacific
Northwest that is primarily due to subduction of the Juan de
Fuca plate beneath North America. This tectonic plate bound-
ary is known to produce massive earthquakes that had mag-
nitudes as large as M9, the last such event being the event of
January 28, 1700CE (Goldfinger et al 2012, 2013). That event
is recorded in geological tsunami deposits along the Pacific
Northwest coast, a series of drowned forests, and correspond-
ing as well to an ‘orphan tsunami’ that struck the eastern coast
of Japan 10 h later.

Note in particular that this subduction zone along the Pacific
Northwest was the site at which the phenomenon of ETS
was first identified (Dragert et al 2004) as discussed above.
ETS corresponds to slow slip events accompanied by bursts
of small magnitude seismicity at regular intervals of approx-
imately 13–16 months. It is not known at this time whether
these events signal an accumulation or a release of accumulat-
ing stress. We discuss forecasting of these events in the section
on ML below.

Although no large earthquakes have occurred along the
plate interface for hundreds of years, a record of large pale-
oearthquakes has been compiled from subsidence data on land
and using turbidites, which are offshore deposits recording
slope failure. This record (figure 8), spanning 10 000 years,
is among the world’s longest (Goldfinger et al 2012, 2013).

Other types of precursors have been studied in several con-
texts. For example, decadal-scale geodetic precursors have
been studied by Mavrommatis et al (2015) and Ito et al (2013).
These events were interpreted as a preparation process for
the March 11, 2011 M9.1 Tohoku earthquake that eventually
occurred. The geodetic events appeared to show an accelera-
tion in the rate of recurrence of the mainshock as the rupture
time approached. These studies in Japan may have a direct
bearing on the similar events in the Pacific Northwest of the
United States.

The recurrence intervals, differences between the dates of
successive paleo-earthquakes, are key to estimating when the
next may occur. The 18 intervals have a mean of 530 years and
a standard deviation of 271 years. However, earthquakes seem
to have happened in clusters of events, separated by 700–1000
years gaps. The recent cluster covering 1500 years has a mean
of 326 years, and standard deviation of 88 years. Earthquakes
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Figure 8. (a) Geometry of the Cascadia subduction zone. (b) Paleoearthquake history from turbidite deposits. (c) Probabilities of an
earthquake in the next year as a function of time assuming a Gaussian distribution of recurrence times with mean and standard deviation
corresponding to the recent cluster (red/dashed lines) or the entire paleoearthquake record (blue/solid lines). Shaded area under the curves
corresponds to the probability in next 50 years. (d) Conditional probability of an earthquake in the next 50 years, given that last was in 1700,
depending on whether we are still in the recent cluster and whether earthquake recurrence is described by a time-independent or
time-independent process. Reproduced with permission from Stein et al (2017). © 2017, The Geological Society of America.

within a cluster occur more frequently and regularly than in the
full record. Hence when to expect the next earthquake depends
on whether we assume that we are in the recent cluster, or that
the cluster is over.

Despite years of effort, seismologists have not found an
optimal, compelling way to describe earthquake probabili-
ties (Stark and Freedman 2003, Parsons 2008, Matthews et al
2002, Kagan et al 2012). Shimazaki and Nakata (1980) pro-
posed that great earthquake cycles occur with either time-
predictable or slip-predictable dynamics. In the former, if slip
in past earthquakes is known, extrapolation of current rates
of offset is used to predict the time of the next event. The
slip-predictable model is the reverse, if the time of the next
event is known, the slip can be inferred. Neither of these
approaches has been found to be satisfactory for anticipating
future earthquake recurrence (Rubinstein et al 2012).

Although many methods for understanding long-term
earthquake recurrence are used, all fall into two basic
classes. In one, large earthquake recurrence is described by a
time-independent (Poisson) process. This has no ‘memory,’ so

a future earthquake is equally likely immediately after the past
one and much later. The probability of an earthquake in the
next t years is approximately t/τ , where τ is the assumed mean
recurrence time. Because this probability is constant, an earth-
quake cannot be ‘overdue.’ Using the entire paleo-earthquake
record, the chance of an earthquake in the next 50 years is
50/530 = 0.094 or 9.4%. Alternatively, assuming that we are
still in the recent cluster gives a probability about twice as
large: 50/326 = 0.15 or 15%.

However, seismological instincts favor earthquake cycle
models, in which strain builds up slowly after an earthquake
to produce the next one. In this case, the probability of a
large earthquake is small immediately after one occurs and
grows with time. In such time-dependent models, the recur-
rence interval is described by a pdf. The simplest uses the
familiar Gaussian distribution. The ‘bell curves’ in figure 8(c)
show probabilities of an earthquake in the next year, which
peak at dates corresponding to the assumed mean recurrence.
Assuming we are in the recent cluster, the probability is high,
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because the 317 years since 1700CE is about the mean recur-
rence of 326 years. The probability is lower assuming that
we are not in the cluster, because the mean recurrence for
the entire record is 530 years, so we are not as far into the
cycle.

To find the probability of an earthquake within 50 years, we
integrate under a bell curve from a start time to 50 years in the
future and include the condition that the earthquake has not
happened by the start time. The resulting curves (figure 8(d)),
giving the conditional probabilities, are small shortly after
1700CE and increase with time. Using the entire record, the
chance of an earthquake in 50 years after 2020 is 0.074 or
7.4%. However, assuming that we are still in the recent clus-
ter gives a probability about 6 times larger: 0.41 or 41%. The
higher probability results from the smaller mean recurrence
time and standard deviation.

Figure 8(d) also shows flat lines starting at 1700CE, corre-
sponding to time-independent models. If the time-dependent
model predicts higher probability than the time-independent
model, an earthquake can be considered ‘overdue’, which
occurs if we are in the cluster.

Comparing these cases shows how earthquake probabil-
ity estimates depend on the probability model chosen and the
data used to choose the model parameters. Other plausible
choices are possible. Various pdfs can be used. The data can be
treated in more complex ways: considering different subsets,
assigning different magnitudes to different paleo events, and
assuming that different events broke different parts of the
subduction zone. Each choice yields a different probability
estimate. Thus, although it is often said that ‘the probabil-
ity of an earthquake is N%,’ any estimate involves specifying
the assumptions made. Different plausible assumptions yield
different probabilities.

One of the more frequent methods proposed to fore-
cast earthquakes involved changes in the GR b-value (see
equation (1)), which can be viewed as the ratio of small earth-
quakes to large earthquakes. The idea is that if the b-value
declines in value, a large earthquake becomes relatively more
probable (Haberman 1986, 1991, Wiemer and Wyss 2000).
While some of the changes in b-value may be real, an impor-
tant part of that story was the appearance of many later stud-
ies of apparent seismicity changes that were at least artifi-
cial due to changes in the seismic network detection threshold
over time (so, for example, as the seismic networks improved,
more low magnitudes events were detected and included in the
catalogs).

9.2. Pattern informatics method for earthquake forecasting

This method was developed by Tiampo et al (2002b), Run-
dle et al (2002) and Holliday et al (2007) as means of fore-
casting the locations of future large earthquakes. It was tested
retrospectively and prospectively in the RELM competition as
described below.

The approach divides the seismogenic region to be stud-
ied into a grid of square boxes or pixels whose size is related
to the magnitude of the earthquakes to be forecast. The rates
of seismicity in each box are studied to quantify anomalous

behavior. The basic idea is that any seismicity precursors rep-
resent changes, either a local increase or decrease of seismic
activity, so our method identifies the locations in which these
changes are most significant during a predefined change inter-
val. The subsequent forecast interval is the time window during
which the forecast is valid.

The PI method starts by constructing a spatial coarse-
graining of a region such as California, i.e., a partition of grid
boxes centered on the locations xi. A state vector ψi (xi, t) is
then constructed that, each component of which represents the
number of small earthquakes (larger than a catalog complete-
ness level mC) over a time interval Δt = t − tb. One then
computes the change in state vector at each location xi:

Δψi (xi, t1 → t2) = ψi (xi, t2) − ψi (xi, t1) . (28)

Defining an average 〈•〉 over all values in the catalog tb �
t, we finally compute the PI value at each location xi:

PI(xi, t1 → t2) = |Δψi (xi, t1 → t2) |2. (29)

In figure 9 below, the log10(PI) is plotted for the Southern Cal-
ifornia region for a 5 years period corresponding to the relative
earthquake likelihood model competition (Field 2007).

9.3. Medium-term forecasts: the RELM test

The RELM test of earthquake forecasts in California (Field
2007) was the first competitive evaluation of forecasts of future
earthquake occurrence, carried out in a completely prospec-
tive manner. A set of rules was first specified for all entrants
into the competition, a common data set was defined, and a
future testing period was identified. According to the terms
of the competition, once a forecast for the future period of
5 years was submitted, no further changes or adjustments
were allowed for the period during which the competition
was held.

Participants submitted expected probabilities of occurrence
of M � 4.95 earthquakes in 0.1◦ × 0.1◦ cells in a region
defined as greater California for the period 1 January 2006 to
31 December 2010, a 5 years interval. Probabilities were sub-
mitted for 7682 geographic grid boxes or cells in California
and adjacent regions.

During this period, 31 M � 4.95 earthquakes occurred in
the test region. These ‘large’ earthquakes occurred in 22 of the
predefined test cells. Seismic activity during this period was
dominated by earthquakes associated with the M = 7.2, 4 April
2010 El Mayor–Cucapah earthquake in northern Mexico. This
earthquake occurred in the test region, and 16 of the other 30
earthquakes in the test region could be associated with it. Nine
complete forecasts were submitted by six participants.

After the close of the test period, the data were analyzed
by Lee et al (2011). The results were presented in a very sim-
ple way that allowed the reader to evaluate which forecast is
the most ‘successful’ in terms of the locations of future earth-
quakes. Lee et al (2011) suggest ways in which the results can
be used to improve future forecasts. The six participants in
the competition used very different methods to construct their
forecasts. Of note were two of the forecasts, one that used the
ETAS method, and one that used a method called ‘PI’ (Lee

21



Rep. Prog. Phys. 84 (2021) 076801 Review

Figure 9. Earthquake forecast ‘scorecard’ produced and displayed on an NASA web site at the request of NASA program managers. The
original map with colored patches was published in 2002 in the Proceedings of the National Academy of Sciences. The small blue circles
represent earthquakes that occurred over the subsequent 8 years. The red circles represent the recent M = 7.1 El Mayor–Cucapah, Mexico
earthquake on April 4, 2010 (circle 31), and the M = 7.2 Ridgecrest, CA earthquake of July 5, 2019, that occurred well after the evaluation
period ended. The results show that the original colored patches calculated in 2001 for the most part identified the location of the future
events successfully, with few false positives, as far as 18 years into the future.

et al 2011, Rundle et al 2002, Tiampo et al 2002a, 2002b),
discussed below.

The results are shown in table 1, which considers only the
forecasts of whether a test earthquake was expected to occur in
the cells in which earthquakes actually occurred. These prob-
abilities are given in table 1 and are the probabilities that an
M 4.95 will occur in the ith cell during the test period. The
probabilityλi is normalized so that the sum of the probabilities
over all cells is 22, the number of cells in which earthquakes
actually occurred.

A perfect forecast would have λi = 1 in each of these cells
and λi = 0 in all other cells. Seven submissions of probabil-
ities are given in table 1. The details of the way in which the
submitted probabilities λi were used to obtain the normalized
probabilities are given in Lee et al (2011), along with further
details of the submitted forecasts. It is also of interest to com-
pare the submitted forecast probabilities with random (no skill)
values, which is the (non-normalized) constant value λi = 2.86
× 10−3 = 22/7682.

In table 1, the competitors are identified as (1) Bird and Liu
(B and L), (2) Ebel et al (Ebel), (3) Helmstetter et al (Helm),
(4) Holliday et al (Holl), (5) Ward combined (W-C), (6) Ward
geodetic (W-G), (7) Wiemer and Schorlemmer (W and S). The
31 earthquakes are identified as (A–V). The highest (best)
probabilities are designated with gray bars. However, other
groups (Schorlemmer et al 2010, Zechar et al 2013) using

analysis methods different from those of Lee et al obtained
different results.

From table 1, the two most successful forecasts were the
Holliday et al forecast, and the Weimer–Schorlemmer fore-
cast. The Holliday forecast led all forecasts with 8 of the high-
est probabilities, while the W-S forecast had 6 of the high-
est probabilities. Recall that the Holliday forecast used the PI
method, whereas the W-S forecast used a method based on the
GR law.

Note that the PI method is similar to another method named
relative intensity (RI) method, which posits that future large
earthquakes will occur at locations having the largest num-
ber of small earthquakes over a defined period of time. The PI
method differs from the RI method in that for the PI method, it
is assumed that the future large earthquakes will occur at loca-
tions where the change in the number of small earthquakes is
the largest (Holliday et al 2006).

Forecast testing experiments have been conducted not only
in California but also in other seismically active regions, such
as Italy (Taroni et al 2018) and Japan (Nanjo et al 2012,
Ogata et al 2013). Other authors have extended the meth-
ods such as the PI and RI methods to ensemble approaches.
Cheong et al (2014) has proposed a model based on what
they term a fusion–fission process of sticking points, or
asperities, on plate interfaces. These asperities are shown to
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Table 1. From Lee et al (2011). Normalized probabilities of occurrence of an earthquake with M > 4.95 for the 22 cells in which
earthquakes occurred during the test period. The association of cell id’s (A–V) with the earthquake id’s (1–31) from table 1 is
illustrated in figure 3. Seven submitted forecasts are given: (1) Bird and Liu (B and L), (2) Ebel et al (Ebel), (3) Helmstetter et al
(Helm), (4) Holliday et al (Holl), (5) Ward combined (W-C), (6) Ward geodetic (W-G), (7) Wiemer and Schorlemmer (W and S). The
highest (best) probabilities are highlighted in gray.

Cell ID EQ ID B and L Ebel Helm Holl W-C W-G W and S

A 1, 7, 8, 16, 24 1.99 × 10−2 2.20 × 10−2 1.17 × 10−1 3.32 × 10−2 1.87 × 10−2 1.28 × 10−2 1.24 × 10−1

B 2 1.41 × 10−2 3.40 × 10−2 7.20 × 10−2 3.32 × 10−2 1.08 × 10−3 1.86 × 10−3 4.99 × 10−2

C 3 7.40 × 10−3 6.59 × 10−3 7.41 × 10−3 3.32 × 10−2 8.93 × 10−4 1.54 × 10−3 7.91 × 10−3

D 4 3.54 × 10−2 3.29 × 10−2 6.97 × 10−2 3.32 × 10−2 9.50 × 10−4 1.64 × 10−3 3.59 × 10−2

E 5 7.23 × 10−3 1.10 × 10−3 2.29 × 10−3 9.72 × 10−5 9.25 × 10−4 1.59 × 10−3 1.58 × 10−7

F 6 9.37 × 10−3 2.85 × 10−2 3.07 × 10−2 3.32 × 10−2 5.29 × 10−3 8.12 × 10−3 4.55 × 10−2

G 9, 10 9.11 × 10−3 5.49 × 10−3 2.55 × 10−2 3.32 × 10−2 2.25 × 10−2 1.27 × 10−2 2.38 × 10−2

H 11 3.42 × 10−4 5.49 × 10−3 9.15 × 10−4 1.62 × 10−4 3.77 × 10−4 6.49 × 10−4 2.06 × 10−4

I 12 2.14 × 10−3 1.10 × 10−3 3.65 × 10−3 2.05 × 10−4 1.14 × 10−3 1.96 × 10−3 9.89 × 10−3

J 13 1.68 × 10−3 8.78 × 10−3 1.11 × 10−2 3.32 × 10−2 8.11 × 10−3 5.12 × 10−3 1.13 × 10−2

K 14 3.12 × 10−2 2.20 × 10−2 3.30 × 10−2 3.32 × 10−2 1.93 × 10−2 1.17 × 10−2 5.90 × 10−2

L 15 2.07 × 10−3 5.49 × 10−3 6.93 × 10−3 3.32 × 10−3 4.80 × 10−3 5.45 × 10−3 2.64 × 10−3

M 17, 18 1.74 × 10−3 2.20 × 10−3 5.78 × 10−3 3.32 × 10−2 3.88 × 10−3 4.61 × 10−3 5.38 × 10−4

N 19 5.83 × 10−2 6.59 × 10−3 1.49 × 10−2 3.32 × 10−2 1.65 × 10−2 1.23 × 10−2 7.44 × 10−3

O 20 1.25 × 10−2 1.43 × 10−2 9.45 × 10−3 3.32 × 10−2 9.30 × 10−4 1.60 × 10−3 1.62 × 10−2

P 21 6.48 × 10−3 3.29 × 10−2 2.71 × 10−2 3.32 × 10−2 9.03 × 10−4 1.55 × 10−3 7.46 × 10−3

Q 22, 25, 28 2.88 × 10−2 2.20 × 10−2 2.84 × 10−2 3.32 × 10−2 1.66 × 10−2 1.30 × 10−2 5.23 × 10−2

R 23, 26 3.06 × 10−2 1.54 × 10−2 1.43 × 10−2 1.73 × 10−4 1.78 × 10−2 1.38 × 10−2 1.58 × 10−2

S 27 2.13 × 10−2 5.49 × 10−3 1.26 × 10−2 3.32 × 10−2 9.55 × 10−3 7.93 × 10−3 1.19 × 10−2

T 29 1.83 × 10−2 1.32 × 10−2 2.43 × 10−2 3.32 × 10−2 6.35 × 10−3 3.90 × 10−3 4.99 × 10−2

U 30 1.26 × 10−2 3.07 × 10−2 1.03 × 10−1 3.32 × 10−3 1.61 × 10−2 5.47 × 10−3 5.16 × 10−2

V 31 6.76 × 10−3 1.54 × 10−2 5.55 × 10−3 3.32 × 10−2 1.54 × 10−2 1.43 × 10−2 2.64 × 10−3

coalesce in predictable statistical ways prior to major earth-
quakes such as the 1999 Chi-Chi, Taiwan, earthquake. Chang
et al (2020) have proposed an ensemble model, the ‘PI
Soup of Groups’ model, for Italian earthquakes. This PISOG
method was found to reduce the inherent noise in the PI
method prior to the 2009 L’Aquila and 2016 Nocia, Italy,
earthquakes.

9.4. Medium-term forecasts based on earthquake
simulations using the ETAS and BASS models

In this method, statistical earthquake simulations are carried
out with the intention of producing ‘realistic’ simulated cata-
logs of earthquakes. As described above, these statistical sim-
ulations are based on the GR relation, the Omori relation,
and either an earthquake productivity relation (ETAS), or the
Båth’s law for maximum aftershock magnitude (BASS). These
stochastic catalogs can then be data-mined for space–time pat-
terns of small earthquake activity that may precede large earth-
quakes. Similar patterns of activity would then be searched in
observed earthquake activity with the idea of using these as the
inputs to forecast probabilities.

Yoder et al (2015) introduced a method of estimating the
near-field (near the rupture boundary and immediately fol-
lowing the mainshock) spatial density and temporal rate of
aftershocks based on a fractal dimension D > 0 model of
mainshock and aftershock events. From this model, the ETAS
parameter space can be tightly constrained to facilitate accu-
rate estimates of aftershock rates and probabilities, based on

earthquake scaling relations, with minimal operator input and
data fitting.

The model was then compared to six 6 < M < 9 recent
earthquakes, followed by a discussion of the implications of
this model both with respect to earthquake physics and as they
relate to seismic hazard assessment. Note that this model is
particularly well suited to automated, web-deployed, and rapid
response seismic hazard applications (Yoder et al 2015).

The model discussed in Yoder et al (2015) is based
on the BASS–ETAS model for simulating earthquake seis-
micity, specifically including and focusing on aftershocks.
The model is initiated with a ‘seed’ catalog of one or
more earthquakes. This seed catalog can be based on back-
ground seismicity—suggesting regional earthquake forecast
applications, or it can include only one or a few specific
earthquakes—suggesting local short-term aftershock hazard
applications.

Given a seed catalog, each member earthquake produces
aftershocks. Each of these aftershocks is treated as an indepen-
dent earthquake which produces its own aftershocks, which
produce aftershocks, and so forth. In contemporary ETAS,
earthquakes are treated as dimension 0 point-like objects,
located at the event epicenter.

The model is parameterized so that the expected intensity of
each recursive generation is weaker than its parent event(s), so
eventually the process dies out. Synthetic catalogs of discrete
events (earthquakes) can be generated.

In other instances, including the model presented in
Yoder et al (2015), it is sufficient to simply calculate local
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productivity rates, from which earthquake probability fields
and foreshock statistics can be calculated directly, as a function
of position and time.

This method was deployed for the April 24, 2015 M = 7.8
Nepal earthquake and its May 12, 2015 M = 7.3 aftershock.
The forecast was prepared and presented at several telecons
that were conducted in response to the M = 7.8 mainshock.
On the morning (in the United States) of May 11, 2015, at
9:00 am PDT, a telecom was held to discuss NASA data needs,
at which the BASS–ETAS aftershock was presented (D Green,
personal communication, 2015). The aftershock forecast cor-
rectly predicted the location of the M = 7.3 aftershock that
occurred a few hours later on May 12, 2015 Nepal Standard
Time.

9.5. Forecasts based on earthquake simulations, Virtual
Quake and the Uniform California Earthquake Rupture
Forecast (UCERF)

As in the BASS–ETAS simulation approach, catalogs of real-
istic earthquake ruptures can be produced using the topo-
logically realistic earthquake simulators such as the Virtual
Quake model. These catalogs can be used to produce forecasts,
by matching patterns of simulated activity to observed earth-
quake histories, and then using the optimally matched catalogs
to project activity forward in time. In general, an ensemble
approach is used in which future earthquake probabilities are
computed by considering groups of simulations.

As a group, topologically realistic earthquake simulators
are high performance computational simulations that include
(1) realistic and detailed fault geometries, (2) loading of the
faults so that the earthquake rate averaged over the previ-
ous thousands of years is at the observed rate, (3) interac-
tions between faults mediated by elastic or perhaps viscoelas-
tic stress transfer, and (4) friction laws motivated by laboratory
or field observations. They may also be extended to include
seismic wave simulation codes and can and will be used to
provide the initial conditions for the wave codes.

A project led by T Tullis (Brown University) compared
the results of various existing simulators to determine how
well their statistics agreed with each other, and how well they
agreed with the observations of observed earthquake statistics
(Tullis et al 2012). The project involved the creation of an
archive of long-term synthetic catalogs of earthquakes in Cal-
ifornia using these simulators. There were four simulations in
the archive:

(a) Virtual California (‘VirtCal’, now called Virtual Quake).
A summary of this simulation has been recently given by
Sachs et al (2012)

(b) RSQSim. A summary of this simulation approach has
been discussed by Richards-Dinger and Dieterich (2012).

(c) All Cal. A summary has been given by Ward (2000).
(d) ViscoSim. A summary has been given by Pollitz (2012).

These simulations were used to generate time-independent
(Poisson) probabilities of occurrence for earthquakes in Cali-
fornia. Simulations have been used to generate synthetic cat-
alogs having durations of tens of thousands of years on the

different fault BEs in the models. These catalogs were then
used to compute rates of earthquake occurrence for specified
magnitude bands. As in other rate-based models, the rates were
then smeared over several tens of km radius to generate earth-
quake rate maps similar to those computed in the UCERF
models. Forecast probability (rate) maps of occurrence for
earthquakes having M � 6 per year per km2 are given in
figure 10.

Another example of the use of VQ-type simulations in fore-
casting is based on interval statistics on the fault segments.
In Rundle et al (2005), it was shown that in 40 000 years of
simulations for the San Francisco section of the San Andreas
fault system, 395 events occurred having an average recur-
rence interval of 101 years. Using the time intervals between
successive events, estimated probabilities were constructed for
earthquakes in the San Francisco area.

To use these data in forecasting real earthquakes, time t
is measured forward from the time of occurrence of the last
great earthquake. The time is the time of the last great earth-
quake. For San Francisco, this is now 114 years ago. The wait-
ing time is measured forward from the present. Given a best-
fitting probability distribution, as well as the current waiting
time since the last major earthquake, one can use the simu-
lation data to compute a conditional probability for the next
major earthquake on the San Andreas fault near San Francisco
(Wesnousky et al 1984).

That is, given the time of the last large earthquake and
a forecast time interval, one can estimate the probability of
the next such large earthquake from the simulation data. As
Rundle et al (2005) showed, the Weibull distribution, which
is commonly used in failure and reliability analysis, provides
an excellent fit to both the distribution of interval times as
well as the statistics of the waiting times. In both simulations
and in our Weibull fit, the median waiting times systemati-
cally decrease with increases in the time since the last great
earthquake.

9.6. Natural time

Natural time is an idea originally proposed by (Varotsos et al
2001, 2002, 2013, 2014, 2020, Sarlis et al 2018). Natural time
is just the count or number of small earthquakes between large
earthquakes. It can be contrasted with the clock time, which
is the days–weeks–months–years between large earthquakes.
They developed the idea to analyze SESs prior to large earth-
quakes. SES are low frequency (�1 Hz) transient changes of
the electric field of the Earth that have been found to precede
earthquakes with lead time ranging from several hours to a few
months and their analysis enables the estimation of the epicen-
tral area. As discussed above, they introduce an event count,
the natural time of a series of events, and proposed that its
variance was an order parameter for the second order seismic
phase transition, an idea discussed above. They found that the
variance k1 of the SESs approached a critical value for large
earthquakes in Greece (Varotsos et al 2001, 2002).

Subsequently, they found that these ideas applied to events
in Japan as well (Varotsos et al 2013). Furthermore, Varot-
sos et al (2014) applied detrended fluctuation analysis to the
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Figure 10. Time independent probabilities of earthquake occurrence obtained by the four simulations. Reproduced with permission from
Tullis et al (2012). Copyright © 2012 Seismological Society of America. We note that the uniform California earthquake rupture forecast
project (UCERF) has adopted this type of methodology for the forecasting of California earthquakes. It is in development by other countries
around the world as well. As of this time, the reasons for differences in the four results have not been identified.

seismic electric time series, and they find that the earthquake
magnitude time series exhibits several minima as the time of
the earthquake approached.

Sarlis et al (2018) define an entropy in terms of nat-
ural time and find that it exhibits a minimum in the
Olami–Feder–Christensen (Olami et al 1992: OFC) model for
earthquakes, a cellular automaton slider block model. With this
idea, they examined the seismicity leading up to the March
11, 2011 M9.3 Tohoku earthquake. They observed similar

fluctuations before that event. Further details can be found in
those papers.

The natural time concept was adopted by Holliday et al
(2006). As in the preceding, the idea is to use counts of small
earthquake events as a measure of ‘time’ between large events.
The motivation for this idea is the GR magnitude–frequency
relation, which specifies that on average, a statistically aver-
age number of small earthquakes is associated with a larger
earthquake of a given size.
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For example, in California the seismic b-value, which char-
acterizes this relation, is observed to be b = 0.85, implying
that there are 357 magnitude M > 3 earthquakes for every
M > 6 earthquake. Note that this relationship is stated as an
exceedance (survivor distribution function) rather than a pdf.
Thus, the natural time interval between M > 6 earthquakes is
on average a count of 357 M > 3 events.

9.7. Statistical forecasts using natural time

As an example of how natural time may be used in forecasting,
we consider the natural time Weibull (NTW) forecast method
(Holliday et al 2016, Rundle et al 2016a, 2016b). The NTW
model is based on the idea that progress through the seismic
cycle of small earthquakes in a region influences the probabil-
ity for the next major earthquake. It is therefore of interest to
consider the statistical structure of the seismic cycle, building
on the idea of nowcasting discussed below. It is a Bayesian
forecast model since it explicitly assumes a conditional prob-
ability distribution, the Weibull (1952) model, to project the
current activity forward in time. This idea can be extended by
combining statistical data of this type with data from GNSS,
InSAR, and other types of data. Examples can be found in
Rundle et al (2016a).

To illustrate how to compute the NTW probability, we
define a large seismically active area A that includes dozens
of large earthquakes of M > 6. From the GR relation, we find
the number N of small earthquakes that are expected for each
large earthquake. We identify the most recent of these large
earthquakes and compute the number n(t) of small earthquakes
6 > M � 3 that have occurred since the last large event.

Using the Weibull distribution (equation (18)), we compute
the probability that a large earthquake will occur following an
additional Δn small earthquakes, conditioned on the fact that
no large earthquake has occurred prior to the current count of
small earthquakes n(t):

P(n +Δn|n) = 1 · − exp

{
−
(

n +Δn
N

)β

+
( n

N

)β
}
.

(30)
To estimate the future clock time (as opposed to the natural

time) at which a major earthquake might occur, we assume that
the current average (or ‘Poisson’) rate ν of small earthquakes
continues to hold for short intervals into the future. Thus, to
convert natural time to clock time, we set:

Δn ≈ νΔt. (31)

The best fitting value for the exponentβ is found by retrospec-
tive testing to be β ≈ 1.4 (Rundle et al 2012).

9.8. Nowcasting methods

As described previously, Rundle et al (2016b, 2018, 2019)
and Luginbuhl et al (2018a, 2018b, 2019) applied the idea of
nowcasting to seismically active regions to determine the cur-
rent state of the fault system, and its current level of progress
through the earthquake cycle. In the implementation of this
idea, they used the global catalog of earthquakes, using ‘small’

earthquakes to determine the level of hazard from ‘large’
earthquakes in the region.

In the past, this determination of the state of a regional fault
system has focused on trying to estimate the state of stress in
the Earth, its relation to the failure strength of the active faults
in a region, and the rate of accumulation of tectonic stress
(Scholz 2019). Determining the values of these parameters
would allow researchers to estimate the proximity to failure of
the faults in the region. This would be an answer to the question
of ‘how far along is the region in the earthquake cycle?’.

The nowcasting method is based on the idea of an earth-
quake cycle as discussed above. A specific region and a spe-
cific large earthquake magnitude of interest are defined, ensur-
ing that there is enough data to span at least ∼20 or more large
earthquake cycles in the region, which holds for the example
below. An ‘earthquake potential score (EPS) is then defined
as the cumulative probability distribution P(n < n(t)) for the
current count n(t) for the small earthquakes in the region.
Physically, the EPS corresponds to an estimate of the level of
progress through the earthquake cycle in the defined region at
the current time.

An example application of this method is shown in
figure 11, which shows the EPS for the region surrounding Los
Angeles within a circle of radius 150 km, for earthquakes of
magnitude M � 6 (Rundle et al 2016b, 2018). The last such
earthquake was the Northridge, CA earthquake of January 17,
1994. The green vertical bars represent a histogram of the num-
ber of small earthquakes between large earthquakes M � 6
in a region 4000 km × 4000 km surrounding Los Angeles.
The solid red line is the corresponding cumulative distribution
function (CDF). The thin dashed lines represent the 68% con-
fidence bound on the CDF. The red dot represents the number
of small earthquakes that have occurred in the region since the
Northridge event.

In addition to this method, Rundle et al (2019) have shown
that Shannon information entropy can also be used to define
the EPS. Shannon information entropy was developed to char-
acterize the information content transmitted between a source
and a receiver by means of a communication channel (Shannon
1948, Cover and Thomas 1991, Stone 2015).

Nowcasting methods are also being applied to earthquakes
in India (Pasari 2019, Pasari and Mehta 2018, Pasari and
Sharma 2020), Greece (G Chouliaras, personal communica-
tion, 2020), and Japan (K Nanjo, personal communication,
2020). In the case of India, Pasari and Mehta (2018) showed
that EPS values for events having magnitudes M � 6 in a
300 km circular area in New Delhi, Chandigarh, Dehradun
and Shimla reach about 0.56, 0.87, 0.85 and 0.88, respec-
tively. For events M � 6 in a 250 km circular area around
Dhaka and Kohlkata are 72% and 40% respectively (Pasari
2019). Results for other regions in India are listed in Pasari
and Sharma (2020).

In a recent paper, Perez-Oregon et al (2020) have shown
how to transform nowcasting models into forecasting mod-
els for two model systems, one being the slider block model
of Olami–Feder–Christensen, and the other being a system in
which the events obey a log–normal distribution. These are toy
models as described above but may be applicable to real data.
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Figure 11. EPS determined by the nowcasting method. Green vertical bars represent the histogram of number of small earthquakes M �
3.99 within a region of 4000 km2 around Los Angeles between large earthquakes of M � 6. Solid red curve is the CDF corresponding to the
histogram. Dashed lines represent the 68% confidence interval. Red dot represents the number of small earthquakes within 100 km of Los
Angeles, indicating that the EPS for this region around Los Angeles is 86.5%, or alternatively, that this region has progressed 86.5% through
the typical earthquake cycle of M � 6 events in the Los Angeles region. ‘Thermometer’ on the right is a visual representation of the EPS.

The forecast methods are tested by means of the ROC method
as briefly described above in the section on testing and found
to produce high quality results.

9.9. Machine learning

ML is a generic term that includes a variety of supervised and
unsupervised methods to extract patterns and other types of
information from data (e.g., Geron 2019, Kong et al 2019,
Trugman 2017). Methods of interest in this area include not
only cluster analysis (unsupervised learning), but also opti-
mization (supervised learning), a form of regression. Here
we describe several very new approaches that make use
of ML for the purpose of anticipating future earthquake
activity and relating that activity to the underlying physics
(Burkov 2019).

9.9.1. Seismic bursts and radial localization. As discussed in
Rundle and Donnellan (2020), seismic bursts are sequences
of small earthquakes strongly clustered in space and time
and include seismic swarms and aftershock sequences. A
readily observable property of these events is the radius of
gyration of the event locations which was found by Rundle
and Donnellan (2020) to connect the bursts to the temporal

occurrence of the largest M � 7 earthquakes in California
since 1984.

Their definition of a seismic burst is the occurrence of an
unusual sequence of earthquakes closely clustered in space and
time (i.e., Hill and Prejean 2007, Peresan and Gentili 2018,
Zaliapin and Ben-Zion 2016a, 2016b). They define two general
types of bursts, type I and type II:

• A type I seismic burst is a mainshock–aftershock
sequence, in which the initiating event has the largest
magnitude in the sequence and is typically followed by
a power-law Omori decay of occurrence of smaller events
(Omori 1900, Scholz 2019).

• A type II seismic burst is defined as a sequence of similar
magnitude events in which the largest magnitude event is
not the initiating event, and in which there is not typically
a subsequent power-law decay.

The earthquakes defining the bursts are small, usually of
magnitudes characterizing the catalog completeness level. For
the Southern California region, they consider small earth-
quakes of magnitudes M � 3.3. This magnitude threshold
was chosen as a value high enough to ensure completeness of
the catalog data used. The catalog containing these events is
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Figure 12. Change in the radius of gyration of small earthquake bursts in time computed using an exponential moving average (EMA).
Region considered is a circle of radius 400 km around Los Angeles. Small earthquakes had minimum magnitude of M � 3.29. Vertical red
dashed lines are the 4 large earthquakes with magnitudes M > 7 earthquakes since 1985: Landers (June 28, 1992 M = 7.3); Hector Mine
(October 16, 1999 M = 7.1); El Mayor–Cucapah (April 4, 2010 M = 7.2); Ridgecrest (July 5, 2019 M = 7.1). Vertical black dotted lines are
the times at which events having 6 � M < 7 occurred.

downloaded from the US Geological Survey earthquake search
database.

Rundle and Donnellan (2020) investigated the Southern
California region contained within a 600 km circle surround-
ing Los Angeles, California. They also consider time series
beginning after 1984/1/1, after the data became most reliable
in terms of catalog completeness, with accurate locations. The
region is arbitrary in terms of method but requires a complete
catalog to be adequately applied and tested. If small earth-
quakes are missing from the catalog, the clusters so defined
will likewise not be correctly defined—they will have missing
events. Or potentially important clusters will not be present at
all.

In the Southern California earthquake catalog, hundreds of
these potentially coherent space–time structures were identi-
fied in a region defined by a circle of radius 600 km around Los
Angeles. The horizontal radius of gyration, RG, was computed
for each cluster, the radius of gyration RG being defined as:

R2
G =

1
NC

∑
i

(Xi − XCM)2 + (Yi − YCM)2 (32)

where XCM, YCM are the longitude and latitude of the center
of mass (centroid) of the burst (cluster), Xi, Yi are the longi-
tude and latitude of the epicenters of the small earthquakes that
make up the burst, and NC is the number of small earthquakes
in the burst.

The bursts are then filtered to identify those bursts with
large numbers of events closely clustered in space, which Run-
dle and Donnellan (2020) call ‘compact’ bursts. The basic
assumption is that these compact bursts reflect the dynamics
associated with large earthquakes.

Once the burst catalog is filtered, an EMA is applied to con-
struct a time series for the Southern California region. The RG

of these bursts systematically decreases prior to large earth-
quakes, in a process that we might term ‘radial localization.’
The RG then rapidly increases during an aftershock sequence,
and a new cycle of ‘radial localization’ then begins.

These time series display cycles of recharge and discharge
reminiscent of seismic stress accumulation and release in the
elastic rebound process as described in their figure 2. The
complex burst dynamics observed are evidently a property
of the region, rather than being associated with individual
faults. This new method improves earthquake nowcasting for
evaluating the current state of hazard in a seismically active
region. An example of this phenomenon is shown in the
figure.

As figure 12 shows, the minimum radius of gyration (mini-
mum RG) prior to M � 7 mainshocks in California is typically 1
to 2 km. Achievement of each of these RG values was followed
within 1–3 years by an M � 7 earthquake, the only exception
being the M = 6.5 December 22, 2003 San Simeon earthquake.

However, the time series recovered from that event and soon
evolved toward the minimum RG again. It is found that no M
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� 7 earthquakes are observed at RG values greater than the
ensemble mean value of 2.5 km. For that reason, RG = 2.5 km
can be considered to define a ‘low risk’ threshold for M � 7
earthquakes.

In more recent work, we have shown that similar time series
illustrating apparent stress accumulation and release for the
seismic cycle in Southern California can be computed using
principal component analysis and timeseries prediction and
ML methods (Rundle et al 2021).

9.9.2. Supervised machine learning using decision tree classi-
fication. Recently Rouet-Leduc et al (2017) and Hulbert et al
(2018) have shown that ML might be useful in earthquake fore-
casting applications, using laboratory experiments on sheared
rock samples of model faults. The experiments were stick-slip
events in sheared model faults and were intended to model the
physics of earthquake failure in a simple way. They find that
the acoustic signals produced during the shearing events can
be identified using ML methods. Specifically, their goal was
to predict the time of failure of the sheared rock by analysis of
the acoustic emission signals.

To carry out this program, they constructed labeled feature
vectors using 100 of the potentially relevant statistical proper-
ties of the acoustic signals. These properties were the mean,
variance, kurtosis and other higher moments of the acoustic
emission signals in a boxcar moving time window, each win-
dow overlapping the previous one by 90%. The labels for the
training set represented the time remaining until the next major
slip event. They then used a random forest classifier (Burkov
2019), each time window using 1000 decision trees, to predict
the time remaining to the next major slip event. Random for-
est classifiers are easily programmed using the Scikit-Learn
library of Python codes. They found that the classifier per-
formed well, with a coefficient of determination R2 = 0.89,
much better than a naïve model based on the periodicity of
events, for which R2 = 0.3.

Rouet-Leduc et al (2019) then applied this method to the
seismic sequences observed as ETS in the Cascadia subduc-
tion zone off the coast of the Pacific Northwest of the United
States. In these events, quiescent periods of roughly 14 months
are punctuated by sudden rapid slip along with the emission of
small seismic signals during a short time window. In a sim-
ilar way to the laboratory experiments, they find that their
method can predict the displacement rates along the fault with
a Pearson correlation coefficient of 0.66.

9.9.3. Supervised learning using convolutional neural nets.
It has been suggested by studies of models of earthquake faults
and fault systems that the existence of Gutenburg–Richter
(GR) scaling implies that earthquakes are associated with fluc-
tuations at a critical point (Klein et al 2007, Klein et al 2000a,
2000b, 2000c, Rundle and Jackson 1977, Olami et al 1992,
Rundle et al 2003) and the concepts of scaling and renormal-
ization group would imply that the physics of the events is the
same on all scales (Stanley 1971, Wilson 1983, Serino et al
2011). This would imply that there is no information in small
events that can be used to characterize large events. The ques-
tion then naturally arises as to whether ML algorithms would
be effective in forecasting large events.

To investigate the efficiency of ML in systems with GR scal-
ing Pun et al (2020) study the predictability of event sizes in the
Olami–Feder–Christensen (Olami et al 1992) model, which
simulates an earthquake fault, at different proximities to the
critical point using a convolutional neural network (CNN). The
distribution of event sizes satisfies a power law with a cutoff for
large events. They find that predictability decreases as critical-
ity is approached and that prediction is possible only for large,
non-scaling events. Their results suggest that earthquake faults
that satisfy GR scaling are difficult to forecast.

Pun et al (2020) address the question of predictability near
and at criticality by applying ML to the OFC model. Previous
work (Pepke and Carlson 1994) showed that predictability in
the OFC model decreases as the conservative limit (a critical
point) is approached. Pun et al (2020) find consistent results
and investigate the predictability of events near another critical
point in the OFC model: the recently observed noise transition
critical point (Matin et al 2020). By using a CNN, they find
that the event sizes are more difficult to forecast as the criti-
cal point is approached and that only large events that do not
satisfy power-law scaling can be successfully predicted.

Pun et al (2020) found evidence that events whose size dis-
tribution satisfies a power law lack distinguishable features
that allow the machine to predict their size. This lack of distin-
guishable features is related to the difficulty of distinguishing
between the fluctuations and the background at critical points
(Coniglio and Klein 1980). For the large nonscaling events,
there exists features that allow the machine to successfully pre-
dict the event sizes. Similar conclusions are found for the dis-
sipation (Christensen and Olami 1992) transition. Their results
suggest that large nonscaling events are qualitatively different
from the smaller scaling events. This conclusion agrees with
the conjecture (Bak and Chen 1989) that prediction is not pos-
sible at a true critical point, where there is no deviation from a
power law for large events.

10. Earthquake early warning

As described in the introduction, the focus of this review was
intended to be on the anticipation of earthquake ruptures. How-
ever, once the rupture has begun modern technology makes it
possible to alert distant locations of impending strong shaking
so that preparations can be made, an emerging technology of
earthquake early warning (EEW).

In an EEW system, local seismic networks automatically
and immediately locate an earthquake and determine its size
(Allen 2013). P-waves recorded at seismic stations near the
epicenter are used to rapidly estimate whether shaking due to
later-arriving S waves larger S-waves will reach a level deemed
hazardous. If so, a warning can be sent ahead of the S-wave
arrivals to more distant locations where weaker shaking is
expected. The warning is relayed via internet or mobile phones
(figure 13).

Although the warning times are short, a few tens of sec-
onds at most, they could in principle be useful in seismically
active areas along the west coast of the US. People could take
cover and medical procedures can be immediately stopped.
Generators could come online rapidly. Automatic systems

29



Rep. Prog. Phys. 84 (2021) 076801 Review

Figure 13. Schematic diagram of an EEW system (USGS). Reproduced from https://www.usgs.gov/media/
images/public-lecture-flyer-jan-2018. Image stated to be in the public domain.

could slow or stop trains, elevators, and airport takeoffs and
landing, and shut down or secure sensitive facilities such as
power plants (Stein 2010, USGS ShakeAlert 2017).

Interesting questions are being studied about what infor-
mation can be given to different potential users. In general,
users who are willing and able to take action quickly at low
levels of shaking will get more warning time in exchange
for more false alarms, with earthquakes that do not produce
high levels of shaking. How useful the warnings will be is
unclear (Minson et al 2018, Wald 2020). Because strong shak-
ing decays rapidly with distance from an earthquake, areas
with the greatest shaking will receive little to no warning; areas
with moderate shaking will likely receive a short, ∼10 s, warn-
ing; and areas with light shaking areas will most likely receive
a significant warning, 10 s or more.

Other nations with significant seismic activity already
deploy EEW systems. These nations and economies include
Japan, Taiwan, and Mexico.

11. Conclusion

In this paper, we have discussed recent developments in earth-
quake forecasting and nowcasting. We have briefly summa-
rized some of the history of earthquake prediction studies
and their search for precursory phenomena. In fact, the Park-
field earthquake prediction experiment, and the eventual M6.0
September 28, 2004 earthquake, led to a fundamental reap-
praisal of the possibility of deterministic, short-term, earth-
quake prediction. As discussed above, most researchers are
currently pessimistic about the prospect. Much of the early
enthusiasm was based on the few successful predictions that
had been made, such as the M7.3, February 4, 1975, Haicheng,
China prediction, while ignoring the many false alarms and
failures-to-predict.

It is now recognized that earthquake forecasts must be eval-
uated using standard statistical tests that do not assume in
advance any properties of the unknown statistical interevent
distribution. Evaluation tests of forecast methods must con-
sider not only successful forecasts, but also false alarms
and failures-to-predict. These can be properly included
using confusion matrices, also called contingency tables

(Geron 2019), leading to ROC curves, reliability diagrams,
and skill scores.

One of the more interesting tests was the RELM contest.
As discussed above, RELM was a true prospective test of
medium-term earthquake forecasting methods, in which a pre-
scribed data set was used. The contest was for 5 years into the
future, and the results were subsequently made freely available
for analysis by anyone (Schorlemmer and Gerstenberger 2007,
Lee et al 2011). While not definitive, the test demonstrated that
locations of moderate earthquakes can be determined to some
degree in advance of occurrence. The conclusion generally
showed that larger earthquakes are most likely to occur at loca-
tions where the most small earthquakes occur. Fundamentally,
this result follows from the GR magnitude–frequency relation
(Scholz 2019), that large earthquakes tend to be accompa-
nied by a given number of small earthquakes specified by the
b-value scaling exponent.

In the future, ML will play an increasingly important role in
the development of earthquake forecasting models. ML meth-
ods have numerous advantages over previous approaches, in
that they can utilize a diversity of data types, they are less
subject to perceived human biases, and they can be evaluated
objectively. The key to these methods is the feature engineer-
ing step, wherein the data are arranged in feature vectors, and
appropriate labels are chosen. Some methods, such as deci-
sion trees, random forests, and CNNs, may have advantages
over other methods. Disadvantages may appear in the form of
long computing times, or difficulty of code construction, but
the existence of standard open access libraries such as Scikit-
Learn, Tensorflow and Keras have considerably simplified this
step.

We therefore expect that the development of earthquake
forecasting methods utilizing ML represents the future of this
field, given the increasing rate of accumulation of high-quality
data, and the steadily increasing compute power available.
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