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1  | INTRODUC TION

The provenance and deformation of the Neoproterozoic Jacobsville 
Sandstone, which outcrops near the north and east shores of Lake 
Superior in the United States (Figure 1), is important for understand-
ing two major tectonic episodes. It post-dates the formation of the 
Midcontinent Rift (MCR), the c. 1,100 Ma major rifting event which 
failed to split Laurentia (the Precambrian core of North America). 
The Jacobsville also contains a detrital record of collisional events 
that affected North America starting with the Grenville orogeny, the 
sequence of events from c. 1.3–0.98 Ga culminating in the assembly 
of the supercontinent Rodinia (Craddock, Craddock, Konstantinou, 
Kylander-Clark, & Malone, 2017; Dalziel, 1991; Rivers, 2012).

The Jacobsville is a succession of feldspathic and quartzose sand-
stones, conglomerates, siltstones and shales deposited in terrestrial 

fluvial and lacustrine environments (Mitchell & Sheldon, 2016). 
Borehole measurements show that the Jacobsville might be up to 
1 km thick (Ojakangas, Morey, & Green, 2001), and geophysical data 
suggest a maximum thickness ≥2 km (Kalliokoski, 1982).

Although the Jacobsville was traditionally considered part of 
the Keweenawan Supergroup, the maximum age from detrital zir-
cons is ~140 million years after extension ended, so the Jacobsville 
is not temporally related to MCR tectonic and magmatic activ-
ity. The Jacobsville unconformably overlies the ~1,100 Ma MCR 
volcanic and older rocks at many sites in the western study area 
(Kalliokoski, 1982). However, in the eastern area, at three bore-
holes and some outcrops, the Jacobsville and the youngest Oronto 
Group (Freda sandstones in Michigan and corresponding Mica Bay 
in Ontario) are in contact, probably unconformably (Ojakangas & 
Dickas, 2002).
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Abstract
The Neoproterozoic Jacobsville Sandstone outcrops along the south and east shores 
of Lake Superior, USA. It records intraplate deformation, some during its deposition 
and some afterwards, after the c. 1,100 Ma Midcontinent Rift (MCR) failed. Here 
we analyse 549 new detrital zircon ages from five sites, combined with prior data. 
Initially, local palaeo-topography controlled the source material, including the MCR-
adjacent Penokean and Archaean rocks. With time the percentage of distal sources 
increased, including the c. 1,300–980 Ma Grenville orogeny and 1,480–1,360 Ma 
Granite-Rhyolite Province. Sites near the Keweenaw fault contain a significant num-
ber of MCR-age zircons, presumably uplifted to the surface, indicating fault motion 
during deposition. Only a relatively small percentage of 1,090–980 Ma Grenville-age 
zircons from collisions to the east are present, suggesting that they were not effi-
ciently transported to the Lake Superior area. This work is innovative in that it is the 
first to use detrital zircon geochronology to understand the internal stratigraphy of 
the Jacobsville Sandstone, whose provenance provides new information about the 
Neoproterozoic tectonic and sedimentary history of Laurentia.
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Early provenance studies of the Jacobsville (Kalliokoski, 1982) 
suggested that the principal source was local Palaeoproterozoic 
basement rocks and a secondary source was the Archaean rocks 
to the north. However, reconnaissance detrital zircon work at one 
site suggested a more complex Jacobsville provenance (Craddock, 
Konstantinou, et al., 2013). Malone et al. (2016, 2018) sampled 10 
sites for the Jacobsville (with a total of 2,048 ages) and determined 
that the oldest possible depositional age is 959 ± 19 Ma, and that the 
19 Geon zircons may have been derived from Baltica. They did not, 
however, examine the details of the spatial and temporal evolution 
of the detrital zircon provenance for the individual sample sites. No 
common internal stratigraphy is designated for the Jacobsville, be-
cause it contains a wide range of lithologies, is poorly exposed and 
it has a variable thickness. Here we report new data for the basal 
Jacobsville that rests unconformably above the Archaean basement 
in Michigan and four localities in Ontario, adding 549 zircon ages to 
our dataset, and analyse the Jacobsville's provenance in space and 
time.

2  | POTENTIAL JACOBSVILLE SEDIMENT 
SOURCE ARE A S

The Archaean Superior province, which occurs mainly in Ontario, 
Canada, consists of about 15 NE–SW trending terranes that 
were sutured at ~2.75 Ga (Card, 1990; King, Valley, Davis, & 
Edwards, 1998; Percival et al., 2006). Superior province zircons 

also are abundant in the early Palaeozoic arenites in the Laurentian 
midcontinent (Konstantinou et al., 2014), as well as the Baraboo 
interval quartzites (Medaris et al., 2003; Stewart, Stewart, Walker, 
& Zambito, 2018; Van Wyck & Norman, 2004) and Palaeo-
Mesoproterozoic clastic rocks in the Lake Superior area (Craddock, 
Konstantinou, et al., 2013; Craddock, Rainbird, et al., 2013). 
Older Archaean rocks (2.9–3.6 Ga) are present in the Minnesota 
River valley terrane (Schmitz, Bowring, Southwick, Boerboom, & 
Wirth, 2006), the Marshfield terrane (Craddock, Malone, Schmitz, 
& Gifford, 2018) and the Watersmeet, Michigan area (Peterman, 
Zartman, & Sims, 1980).

The Proterozoic tectonic evolution of Laurentia is complicated, 
representing more than 800 million years of southward accretion-
ary growth, crustal formation, deformation and metamorphism 

F I G U R E  1   Tectonic map of the Lake Superior region, USA and 
Canada. The area of Jacobsville sandstone occurrence is indicated 
in red, and the sampling localities are indicated by coloured 
stars. Yellow = Type 1 detrital zircon provenance, Blue = Type 
2, Purple = Type 3, Green = Type 4, Red = Type 5. 1 = Big 
Erick's Bridge, 2 = Little Presque Isle (Craddock, Konstantinou, 
et al., 2013), 3 = L’Anse, 4 = Bruce Crossing, 5 = Sturgeon Falls, 
6 = Traverse Bay, 7 = Jacobsville Quarry, 8 = Hubble, 9 = Gogebic, 
10 = Au Sable Point, 11 = Deer Lake, 12 = Munising, 13 = Echo 
Bay, 14 = Batchawana Bay, 15 = Alona Bay, 16 = Caribou Island. 
The Jacobsville is only present in the subsurface south of our 
sampling localities. The faults indicated are tectonically inverted, 
rift-bounding structures that may have been active through the late 
Palaeozoic (Craddock, Malone, et al., 2017)
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(Whitmeyer & Karlstrom, 2007). Laurentia formed as the result of 
accretion and suturing of Archaean cratons during the ~ 1.8–1.9 Ga 
Trans-Hudson and Penokean orogenies (Craddock et al., 2018; Holm 
et al., 2020; Whitmeyer & Karlstrom, 2007). In the southern Lake 
Superior region, the Penokean orogeny formed by the accretion of 
the Pembine-Wausau terrane, a juvenile island arc, and the Archaean 
Marshfield terrane (Medaris et al., 2007).

The Penokean orogeny was followed the Yavapai orogeny 
from 1,700 to 1,800 Ma and in turn by the Mazatzal orogeny from 
1,600 to 1,700 Ma (Karlstrom & Bowring, 1988). These two belts 
as much as 1000 km wide and are comprised of juvenile crust. 
Yavapai-age granites are present in the Lake Superior area (Craddock 
et al., 2018; Holm et al., 2005), especially in southern Wisconsin. 
Rocks with a Mazatzal crystallization age have not been identified 
in the Lake Superior area but associated metamorphism and defor-
mation is widely reported (Craddock & McKiernan, 2007; Czeck & 
Ormand, 2007; Holm, Schneider, & Coath, 1998).

The Yavapai and Mazatzal events were followed by additional 
crustal accretion from 1,480 to 1,360 Ma, which are collectively in-
cluded in the Midcontinent Granite-Rhyolite province (GRP; Bickford, 
Van Schmus, Karlstrom, Mueller, & Kamenov, 2015; Bickford, Van 
Schmus, & Zietz, 1986; Freiburg, McBride, Malone, & Leetaru, 2020). 
The GRP includes undeformed and mostly unmetamorphosed rhy-
olite and granite formed in an intraplate tectonic setting (Bickford 
et al., 1986). A-type granites were intruded into Penokean crust in 
the southern Lake Superior area, most extensively in the Wolf River 
Batholith (Dewane & Van Schmus, 2007). GRP rocks also occur in 
southeastern Canada (Gower, Schärer, & Heaman, 1992).

Grenville-age basement occurs throughout northeastern 
Laurentia; these rocks also occur as inliers in the Appalachian 

orogenic belt and in central Texas (Whitmeyer & Karlstrom, 2007). 
In northeastern Laurentia, the Grenville Orogeny occurred in sev-
eral phases, including the (a) Elzevirian from ~1,300 to 1,220 Ma, 
(b) Shawinigan from 1,200 to 1,140 Ma, (c) Ottawan from ~1,090 
to 1,030 Ma, and (d) Rigolet from ~1,010 to 980 Ma (Hynes & 
Rivers, 2010; Rivers, 2012). MCR volcanism occurred between the 
Shawninigan and Ottawan phases so the distinction between MCR 
and Grenville zircons is difficult.

The Midcontinent Rift (MCR) is a 3,000-km-long rift filled 
with dominantly mafic volcanic and sedimentary rocks outcrop-
ping near Lake Superior (Figure 1; Allen, Hinze, & Dickas, 1997; 
Cannon et al., 1989; Hinze et al., 1992; Stein, Kley, Stein, Hindle, & 
Keller, 2015; Stein et al., 2014, 2018; Swanson-Hysell, Ramezani, 
Fairchild, & Rose, 2019). The Keweenawan Supergroup (Figure 2), 
defined as rocks associated with the MCR, are exposed around 
Lake Superior and dip and thicken toward the rift's centre (Green 
et al., 1989). Regional magmatic activity started at c. 1,150 Ma 
(Heaman et al., 2007). Extension forming the MCR occurred c. 
1,120–1,096 Ma (Stein et al., 2015), with most volcanism between 
c. 1,107 and 1,083 Ma (Fairchild, Swanson-Hysell, Ramezani, Sprain, 
& Bowring, 2017; Paces & Miller, 1993; Vervoort, Wirth, Kennedy, 
Sandland, & Harpp, 2007).

3  | METHODOLOGY

Jacobsville samples were collected from 15 localities in Michigan, 
USA and Ontario, Canada (Table 1; Figure 1). The details of the ana-
lytical methodologies at the Arizona Laserchron Center are provided 
in Data S1 and data tables.

TA B L E  1   Summary of sample locations, type signatures and zircon ages

Sample Location Type n Oldest Youngest Age peaks

Caribou Island 47.351963°, −85.823202° Type 5 78 2,894 1,013 1,459

Alona Bay 47.177901°, −84.699796° Type 5 114 2,312 1,059 1,165, 1,326, 1,471, 1,658

Batchawana Bay 46.907673°, −84.596561° Type 5 148 2,767 1,109 1,456, 1,214, 1,678

Echo Bay 46.421508°, −84.191315° Type 5 102 2,516 1,060 1,181, 1,456

Munising 46.438354°, −86.815226° Type 5 302 2,940 1,026 1,461

Deer Lake 46.480834°, −86.957008° Type 5 213 2,746 1,064 1,440, 1,262

Au Sable Point 46.665616°, −86.167460° Type 5 308 1,707 954 1,456

Gogebic 46.587633°, −89.598991° Type 4 183 3,283 998 1,108

Hubble 47.202926°, −88.429873° Type 4 210 2,747 961 1,104, 1,332, 1,448

Jacobsville Quarry 46.979887°, −88.412679° Type 4 107 2,516 1,021 1,392, 1,100,

Traverse Bay 47.149965°, −88.232764° Type 3 302 3,397 1,038 1,101, 1,883, 2,682, 1,355

Sturgeon Falls 46.642669°, −88.694305° Type 3 107 2,974 1,076 1,886, 2,660

Bruce Crossing 46.535077°, −89.178380° Type 3 212 3,005 967 1,882

L'Anse 46.749131°, −88.476523° Type 2 104 2,656 976 1,194

Little Presque Isle 46.584420°, −87.385236° Type 2 105 2,701 933 1,086, 1,176

Big Erick's Bridge 46.864944°, −88.082820° Type 1 107 3,339 1,183 2,692
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F I G U R E  3   Combined Jacobsville 
frequency plot for all sites and all analysis 
(s = 16, n = 2,702) indicating modal age 
peaks
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F I G U R E  4   Stacked probability plots 
(area beneath each curve is the same) 
of Jacobsville detrital zircon age spectra 
for the various sampling localities. Dark 
vertical line within the Grenville interval 
indicates age of MCR volcanism, GRP, 
Granite-Rhyolite province; P = Penokean 
Terrane; YP, Yavapai-Mazatzal terranes
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4  | RESULTS

The cumulative histogram and frequency plot of all Jacobsville 
Sandstone detrital zircon ages are shown in Figure 3. Figure 4 shows 
the detrital zircon age frequency plots for each sample. The Type 1 sig-
nature, which is present only at Big Erick, MI is characterized by the 
nearly exclusive abundance of Superior province zircons (~2.7 Ga). The 
Type 2 signature consists of dominantly Grenville-age zircons, with 
all other age groups comprising less than 20% of the population and 
occur in Basal Jacobsville samples from L’Anse and Little Presque Isle 
(Craddock, Rainbird, et al., 2013). The Type 3 signature shows the high-
est proportion of Penokean-age grains, and is evident at Bruce Crossing, 
Sturgeon Falls, and Traverse Bay. Both Traverse Bay and Sturgon Falls 
have a smaller Superior Province age peak, and Traverse Bay also in-
cludes MGR and Grenville-age peaks, which are more evident in 
the Type 5 signature. The Type 4 signature is present in the Hubble, 
Jacobsville Quarry and Gogebic samples. These are the westernmost 
Jacobsville samples and occur near the top of the section in footwall of 
the Keweenaw thrust. This signature includes a dominant ~1,100 Ma 
(Keweenaw) age peak. Hubble and Quarry also include Grenville and 
MGR age peaks, and Quarry includes a small Mazatzal peak. The 
Type 5 signature is defined by a prominent early MGR (~1.45 Ma) age 
peak, and a paucity of Archaean zircons and moderate proportions of 
Grenville and Mazatzal zircons. This signature is evident at Au Sable, 
Deer Lake (which also has a small Penokean Peak), Munising, Echo Bay, 
Batchawana Bay, Alona Bay and Caribou Island samples. These are the 
easternmost and uppermost of the sample localities.

5  | DISCUSSION

The five type signatures indicate an evolution of provenance during 
Jacobsville deposition succession in space and time (Figures 5 and 
6). Here we examine the distribution of zircon ages with sources and 
how the Jacobsville's provenance compares to that of other sedi-
mentary rocks in the region. Then we consider whether the zircons 
came directly from their crystalline rocks or were recycled. Lastly, 
we consider why renewed sedimentation occurred.

Early Jacobsville sedimentation (Type 1) was derived from local 
basement rocks. Type 1 is confined to the lowest metre of the 
Jacobsville, where the Jacobsville occurs as joint infillings above the 
unconformity with local Animikie and Archaean basement rocks.

Type 2 rocks represent sources as much as 1,000 km away, with 
most zircons older than the MCR but younger than 1,300 Ma coming 
from Grenville-age rocks, with a lesser amount from the GRP. Some 
zircons between about 1,109 and 1,083 Ma probably come from 
MCR igneous rocks (as suggested by the peak for site #2), and others 
for these ages and younger probably come from the Grenville event.

Type 3, defined by a prominent Penokean peak, generally occur 
in the southernmost samples, which are among the stratigraphically 
lowest samples in this suite. This peak indicates sediment transport 
from ~100 to 200 km to the south if these zircons were derived di-
rectly from Penokean plutonic rocks.

Type 4 reflects a provenance dominated by ~1,100 Ma zircons 
eroded from MCR volcanic rocks, perhaps deposited in alluvial fans 
at the mouths of high energy streams that dissected the Keweenaw 
reverse fault's hangingwall (Craddock, Malone, et al., 2017). The pro-
portion of these zircons increases with proximity to the fault and 
higher in the stratigraphic succession (Figures 5 and 6) indicating ac-
tive faulting contemporary with deposition. Faulting also occurred 
after deposition because the Jacobsville is deformed (Craddock, 
Malone, et al., 2017). Further from the fault, the proportion of east-
erly derived Grenville and GRP zircons increases.

Type 5, defined by the prominent ~1,450 Ma peak from GRP and 
more Yavapai-Mazatzal age zircons, occurs in the eastern sites of the 
upper Jacobsville. It may represent a second influx of distally derived 
sand from the Grenville orogen, but in lower volumes.

5.1 | Directly from the primary location or recycled?

Archaean zircons are abundant in early Palaeozoic arenites 
in the Laurentian midcontinent (Konstantinou et al., 2014), 
Mesoproterozoic Baraboo interval quartzites in Wisconsin (Medaris 
et al., 2003; Stewart et al., 2018; Van Wyck & Norman, 2004) and 
Palaeo-Mesoproterozoic clastic rocks in the Lake Superior area such 
as the Huron (c. 2,400–2,200 Ma) and Animikie (slates and metag-
raywackes; c. 2,200–1,800 Ma) sedimentary basins, and the Oronto 
Group (Craddock, Konstantinou, et al., 2013; Craddock, Rainbird, 
et al., 2013). Thus, Archaean zircons, especially for Types 3 and 5, 
may come from erosion of sedimentary rocks, rather than directly 
from the older crystalline rocks.

We find that the Jacobsville's zircon age distribution differs from 
that observed elsewhere for sedimentary rocks in North America's 

F I G U R E  5   Source areas for the Jacobsville sandstone and 
reconstruction of interpreted palaeodrainage patterns for the Lake 
Superior region. The locations of the source terranes are indicated. 
A, Animikie basin; B, Baraboo interval quartzites; H, Huron basin; 
MT, Marshfield Terrane; P, Penokean Belt; W, Wolf River Batholith. 
Type 2 river systems are in blue, Type 3 river systems are in purple, 
Type 4 river systems are in green and Type 5 river systems are in 
red
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interior derived from the Grenville orogeny, such as Middle Run 
and equivalent sandstones in Ohio and Kentucky (Baranoski, Dean, 
Wicks, & Brown, 2009; Santos et al., 2002), in the Amundsen and 
Mackenzie basins of northwest Canada (Rainbird et al., 2017), 
and in the Hazel Formation of Texas (Spencer, Prave, Cawood, & 
Roberts, 2014). The Jacobsville has a relatively small percentage 
of zircons from the Ottawa (1,090–1,030 Ma) phase, but a larger 
percentage of Shawinigan (1,200–1,140 Ma), like rocks from south-
western Laurentia (Mulder et al., 2017) and Kentucky (Moecher, 
Bowersox, & Hickman, 2018), and perhaps the Middle Run. In con-
trast, there is a large Ottawa peak and a smaller Shawinigan peak 
for rocks in the Amundsen and Mackenzie basins of northwest 
Canada.

Presently we cannot determine if the Grenville-age zircons in 
the Jacobsville came directly from the orogen, were recycled from 
Grenville foreland basin strata and then transported to the Lake 
Superior area, or from older Keweenawan Oronto Group sedimen-
tary rocks. Similarly, it is unclear why the last ~ 100 million years of 
the Grenville orogeny is not as well represented in the zircon record 
compared to earlier phases of the orogeny. Explanations include 
timing of erosion, river transport largely bypassing the mid-U.S. 
(Moecher et al., 2018) or the Ottawa phase for southern part of the 
orogeny had a significantly lower zircon fertility and was different 
from Grenville source areas to the north.

5.2 | Renewed sedimentation?

Why were Jacobsville sediments deposited? Although it is tempting 
to consider the Jacobsville as filling the last space of the thermally 
subsiding MCR basin, the Jacobsville is at least 140 million years 
younger than the end of the rift's extension and likely post-dates 
thermal subsidence. Thus, it is more likely that events outside the 
MCR region facilitated Neoproterozoic deposition. For example, dy-
namic topography can change elevations and river drainage patterns 
(Wang, Gurnis, & Skogseid, 2019). Locally, faulting could have pro-
vided topographic lows for deposition.

6  | CONCLUSIONS

The detrital zircon provenance of the Neoproterozoic Jacobsville 
sandstone initially reflected internal drainage into the failed 
Midcontinental Rift (MCR) basin from regional sources, with the 
earliest deposition largely eroded from local basement rocks. The 

next influx of Jacobsville sediment was mainly derived from distal 
Grenville orogeny sources. The Grenville influx was followed by 
sediment from nearby areas to the south including Penokean vol-
canic and plutonic rocks and overlying Palaeo- and Mesoproterozoic 
quartzites. Reverse motion on the Keweenaw fault exposed MCR 
basalts that shed sediment into alluvial fans in the fault's footwall. 
The final Jacobsville sediment flux is dominated by zircons from dis-
tal Granite and Rhyolite Provence to the east. Only a relatively small 
percentage of c. 1,090–980 Ma Grenville-age zircons from colli-
sions to the east is present, suggesting that they were not efficiently 
transported towards the Lake Superior area.
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