| Appendix: Mathematical and
‘Computational Background

Ifyou wish to learn about nature, to appreciate nature, it is necessary to understand the langnage she speaks in. She offers ber informa-
tion only in one form; we are not so unhumble as to demand that she change before we pay attention.

A.1 Introduction

The study of seismology follows a pattern characteristic of
many scientific disciplines. We first identify phenomena that
we seek to understand, such as the propagation of seismic
waves through the solid earth. We then consider the physics of
the simplest relevant case, such as the propagation of a wave
of a single frequency through a uniform material, formulate
the problem mathematically, and derive a solution. From this
solution, we build up mathematical solutions to more complex
problems, each of which is ideally a better approximation to
the complexities of the real earth. Although the simpler pro-
blems can be solved analytically, eventually the complexities
require numerical techniques.

We thus rely on a set of mathematical techniques often used
in physical problems. Experience suggests that although many
readers are familiar with most of the mathematics required
in this book, a review is often helpful. This appendix briefly
summarizes a broad range of material. The first sections treat
a variety of mathematical topics. The final section reviews
some concepts relevant to the use of computers for scientific
calculations.

In using these mathematical techniques, it is worth bear-
ing in mind that we are invoking the special power of math-
ematics to deal with physical problems. This power is that if a
physical problem is posed correctly in mathematical terms, then
applying mathematical techniques to this formulation yields
quite different, and often apparently unrelated, statements
that also correctly describe the physical world. For example,
in Section 2.4 we used the equations of elasticity and applied
vector calculus to derive the properties of seismic waves that
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we observe. Similarly, in Section 2.5 we derived an observed
physical relation, Snell’s law, starting from three different phys-
ical formulations. Conversely, we have seen that different phys-
ical phenomena can be described using similar mathematical
approaches and so have some deep similarities. Although in
hindsight such successes may not seem surprising, because
many of the mathematical methods we use were developed to
solve such physical problems, they illustrate the intimate con-
nection between sciences like seismology and mathematics.!

A.2 Complex numbers

In several of our applications, notably in describing propagat-
ing waves and their frequency content, complex numbers are
helpful. We thus briefly review some of their properties.

The complex number z = a + ib, where i = /-1, has a real
part, a, and an imaginary part, b. These relations are sometimes
written 2 = Re (z) and b = Im (z). Complex numbers are typ-
ically plotted in the complex plane with their real parts on the
x; axis and their imaginary parts on the x, axis (Fig. A.2-1).
Alternatively, a complex number can be written in polar coor-
dinate form as

z2=a+ib=re®=r(cos B+isin O). (1)

U Most seismologists are more conservative than Paul Dirac, a leader in the

development of quantum physics, who invented the delta function. Dirac regarded
mathematical beauey as a guiding principle, stating that “it is more important to have
beauty in one’s equations than to have them fit experiment.”
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Fig. A.2-1 A number in the complex plane can be represented in terms of
its real and imaginary parts, z=a +ib, or in polar form z = re’®.

The polar coordinates, the magnitude r and the phase angle 9,
can be expressed in terms of the real and imaginary parts as

r=~a*+ b, O=tan™' (bla). (2)
and, conversely,

a=rcos @, b=rsinH. (3)
To describe complex numbers in all four quadrants of the com-
plex plane, @ranges from 0 to 27. Because the inverse tangent is
periodic with period 7, the signs of the real and imaginary parts
are used to obtain the correct phase.

Complex numbers are equal when they have the same real
and imaginary parts. Two complex numbers in (a +ib) form are
added by adding the real parts and the imaginary parts:
(ay,+ib)) +(a, +iby) = (a, +a,) +i(b +b,). (4)
Complex numbers can be multiplied either in the (2 +ib) form:
(@, +ib,)ay +1iby) = (a4a, — byb,) +ila;b, + bya,), (3)
or in the magnitude and phase form:

01y, pifs — i(61+07)
re'tin e’ =, e, (6)

The conjugate of a complex number z, z*, has the same real
part and an imaginary part of opposite sign. Because

z* =a-ib=rcos O—irsin 0

=7 cos {~B0) +ir sin (~8) = re”™9, (7)
the conjugate has the same magnitude but the opposite phase.
Hence the square of the magnitude of a complex number can be

found by multiplication by the complex conjugate,

|z 2=zz*=(a+ib)a—ib) = (@ + b?) =relfre =2, (8)
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By combining
e®=cos @+isin® and e ®=cos@—isin@ (9)

we obtain the definitions of the sine and cosine functions in
terms of complex exponentials
cos B=(e’?+¢79)/2 and sin 8=(e'—e )24, (10)

These relations yield formulae for the trigonometric functions
of the sum of the angles because

e!01+02) = cos (0, + 6,) +i sin (6, + 6,) (11)
and, by Eqn 6,

/01401 = 1910162 = (cos 6, +i sin 6,)(cos 6, +i sin 6,)
=(cos 6, cos 6, —sin 0, sin 8,)

+i(sin ) cos 8, +cos 6, sin 8;), (12)

so we can equate the real and imaginary parts and find

cos (6, +6,) =cos 8, cos 6, -sin &, sin 6, (13)
and
sin (6; + 8,) =sin 8, cos 8, +cos &, sin 6,. (14)

These expressions are symmetric in 8; and 6, as expected. The
corresponding relations for the trigonometric functions of the
difference of two angles are found by making 6, negative. Set-
ting 6, = 6, gives expressions for cos (26) and sin (26).

The relations for the product of trigonometric functions of
two angles can also be found using complex exponentials

(eiel + e—zel) (eie2 + e~i62)
2 2

cos 8, cos 8, =

[(¢181+62) 4 gmilOr02)) 4 (oi(B1-62) 4 p=i(B1-62))]

SRR N

[cos (8, + 6,) +cos (6, — 6,)] (15)

and, similarly,

(€0 — ™) (i — gmits)

2 2i
== l [(ei(Gl—Gz) +e—i(91~92)> _ (ei(61+92) +e"i(91+92))]
4
1
= E[cos {6, —6,)~cos (6, +6,)]. (16)
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Fig. A.3-1 A vector uis expressed by the Cartesian unit basis vectors and
its components: u =18, +1,&, + #3€;.

A.3 Scalars and vectors

A.3.1 Definitions

In seismology, we deal with several types of physical quan-
tities. The simplest, scalars, are numbers describing a physical
property at a given point that is independent of the coordinate
system used to identify the point. Temperature, pressure, mass,
and density are familiar examples. Mathematically, if a point
is described in one coordinate system by (x4, x,, ;) and in a
second by (x], x5, x3), the value of a scalar function ¢ in the
first coordinate system equals that of the corresponding scalar
function in the second

¢(x1:x27 x3):¢,(xia xia xé) (1)

The distance between two points is a scalar because although
the coordinates of the points depend on the coordinate system,
the distance does not.

Vectors are more complicated entities that have magnitude
and direction. In seismology, the most common vector is
the motion, or displacement, of a piece of material within the
earth due to the passage of a seismic wave. Vectors transform
between different coordinate systems in a specific way. Thus, if
the horizontal ground motion is recorded with seismometers
oriented northeast-southwest and northwest—southeast, the
north-south and east-west components of the displacement
can be found using the properties of vectors. We will see that
although the components depend on the coordinate system, the
magnitude and direction of the vector remain the same.
Consider the familiar Cartesian coordinate system (Fig. A.3-
1) with three mutually perpendicular (orthogonal) coordinate
axes. There are two standard notations for these coordinates
and axes: either the x,, x,, and x,, or the x, y, and z axes. Each
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Fig. A.3-2 A vector u is described in each of two orthogonal coordinate
systems by the Cartesian unit basis vectors of the coordinate system and
the components of the vector in the coordinate system: u=1,&, +#,€, +
1,8, =u @] +u} &) +uje}. Although Fhe components differ between
coordinate systems, the vector remains the same.

notation has advantages. The x;, x,, x; notation is more con-
venient for some derivations, and the x, y, 2 notation is some-
times clearer in physical problems. We use the x;, x,, and x,
notation in this appendix, and use whichever notation seems
more convenient in other discussions.

A point in this coordinate system is described by its x,, x,,
and x, coordinates. Because a vector can be defined by a line
from the origin (0, 0, 0) to the point (#,, #,, #,), the three num-
bers #,, #,, and u; are the components of the vector u. A vector
is denioted either by boldface type or by a set of its components

u= (s, #y, “3):<“x: Uy uz)- (2)

A Cartesian coordinate system is described by three ortho-
gonal unit basis vectors, &, &,, and &;, along the x,, x,, and x;
coordinate axes:
€,=(1,0,0) &,=(0,1,0) &;=(0,0,1). (3)
The caret, or “hat” superscript, indicates a unir vector, whose
length is 1. The vector u is formed from its components and the
basis vectors

w=14,8) + 1,8y + 12385 = (1q, Uy, 113). (4)

Now, consider a second Cartesian coordinate system with
the same origin and different axes x7, x5, and x3, along which
unit basis vectors &, &5, and &} are defined (Fig. A.3-2). In this

coordinate system the components of u are different,

u=ui8] +usd) +uid = (ul, us,us). (5}
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Fig. A.3-3 A vector in two dimensions making an angle 8 with the x| axis.

Thus the same physical vector is represented in a different
coordinate system, described by a different set of basis vectors,
using different components. The essential idea is that the
vector remains the same, or invariant, regardless of the coordin-
ate system, although the numerical values of its components
change. Physical laws, like Newton’s law stating that the force
vector equals the product of the mass and the acceleration
vector (the second derivative with respect to time of the dis-
placement vector), are written in vector form because the phys-
ical phenomenon does not depend on the coordinate system
used to describe it.

The length or magnitude of a vector, | u |, is a scalar, and thus
the same in different coordinate systems. By the Pythagorean
theorem, the length is

|u|=(d+u3+ud)V2= (P +u +ud)V2 (6)

The zero vector, 0, all of whose components are zero in any
coordinate system, has zero magnitude.

A vector is specified in either Cartesian coordinates by its
components or in polar coordinates by its magnitude and direc-
tion. For example, in a two-dimensional (x,, x,) coordinate
system (Fig. A.3-3), the vector v can be written in terms of its
components

V= (U19 Vz) (7)
or its magnitude
|v|=(vi+v3)"? (8)

and direction, given by the angle 6 that v makes with the x,
direction

6=tan™! (v,/v,). (9)

Justas | v]and 6 are given by the components, so the compon-
ents are given by | v|and 6

vy=|v|cos 8 and wv,=]|v]|sin6. (10)

By analogy, a vector in three dimensions is specified by either
its three components or its magnitude and the angles it forms
with two of the coordinate axes. It is worth noting that the
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mathematical convention of defining angles counterclockwige
from x, differg from the geographical convention of defining
angles clockwise from North (x,), so conversions are often
needed.

A.3.2  Elementary vector operations

The simplest vector operation is multiplication of a vector bya
scalar '

o= {0y, Oy, Otts). (11
For example, in two dimensions,

ov=(av,, av,) (12)
yields a vector with magnitude

((0wy)? + {owy 22 = || (03 +02) Y2 = || ¥ (13)
whose direction is given by

tan 0= ov,/ow, =v,/v,. (14)

Multiplication by a positive scalar thus changes the magnitude
of a vector but preserves its direction. Similarly, multiplication
by a negative scalar changes the magnitude of a vector and re-
verses its direction. @i, a unit vector in the direction of u is
formed by dividing u by its magnitude

t=u/|ul. (15)

The sum of two vectors is another vector whose components
are the sums of the corresponding components, so if

a=a€; +a,€,+as8; and b=5b& +b,8,+b,é,,

at+b=(a;+b)&+(a,+b,)&,+(a;+b;)é;=b+a. (16)
Addition can be done graphically (Fig. A.3-4) by shifting one
vector, while preserving its orientation, so that its “tail” is at
the “head” of the other, and forming the vector sum. For ex-
ample, the total force vector acting on an object is the vector
sum of the individual force vectors. Equation 16 and Fig. A.3-4
show that vector addition is commutative; it does not matter in
which order the vectors are added. :

A.3.3  Scalar products

There are two methods of multiplying vectors. The first, the
scalar product (also called the dot product or inner product),
yields a scalar:

a-b=a,b,+a,b,+a;b;=|a||b]cos 6, (17)

where 6 is the angle between two vectors. To see that the two
definitions of the scalar product are equivalent, consider a two-
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Fig. A.3-4 Addition of vectors aand b. The addition can be done
analytically, by adding components, or graphically. Vector addition is
commutative, as the order of addition is irrelevant.
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Fig. A.3-5 Derivation of alternative definitions of the scalar producta - b
in two dimensions.

dimensional case (Fig. A.3-5) with a=(a;, a,) and b=(by, b,). If
aand b make angles 6, and 6, with the &, axis, then

a<b=|a||b|cos 8=|a||b|cos(6,- ). (18)
Using a trigonometric identity (Eqn A.2.13) we expand

cos 8=cos (6, — 8;) =cos 6, cos 8, +sin 6, sin 6. (19)
Because

cos ,=a,/(d5+a3)"? and sin 0,=a,/(af+ad)'", (20)

and similar definitions hold for 6, and b, substitutions for the
anglesin Eqn 18 show that

|a||blla;by +ayb))
(a3 + a3V (b2 + b2

|a|]b|cos 8= =a,b, + a,b,. (21)
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Equation 17 shows several features of the scalar product:
o The scalar product commutes:a-b=b - a.
e The scalar product of two perpendicular vectors is zero,
because cos 90°=0.
e The scalar product of a vector with itself is its magnitude
squared:

a-a=a,a,+aya; tasd;=|aln (22)

The definition of the scalar product is generalized for vectors
with complex components. To see why, note that for a vector
a=(i,1,0), wherei= \/:i, Eqn 22 would give a squared mag-
nitude of zero. Because we would like only the zero vector, all
of whose elements are zero, to have zero magnitude, Eqn 17 is
generalized to

a-b=aib, +aib,+asb, (23)

where * indicates the complex conjugate. Thus the definition of
the squared magnitude (Eqn 22) becomes

a-a=ata, +aja,+ata;=|al’. (24)

For example, the squared magnitude of | (i, 1, 0) |2 = (i)(~i) +
(1)(1) = 2. These complex definitions reduce to the familiar
cases, (Eqns 17 and 22), for vectors with real components.

The relations between the unit basis vectors for a Cartesian
coordinate system, &, &,, and &;, are easily stated using their
scalar products. Because each is perpendicular to the other two,
the scalar product of any two different ones is zero,

~ ~ ~

& - &,=¢ -&;=¢, &=0, (25)

and the scalar product of each with itself is its squared
magnitude

&8 =8,-8=8, &=1. (26)

The unit basis set of vectors is orthonormal; each is ortho-
gonal (perpendicular) to the others and normalized to unit
magnitude.

The projection, or component of a vector in a direction given
by a unit vector, is the scalar product of a vector with the unit
vector. Using this idea, a component of a vector can be found
from its projection on the unit basis vector along the corres-
ponding axis. Thus the x; component of u is

w- 8 = (08 Fuyéy +usly) & =uy, (27)

with the other components defined similarly.

A.3.4 Vector products

A second form of multiplication, the vector or cross product,
forms a third vector from two vectors by
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Fig. A.3-6 Illustration of the right-hand rule giving the orientation of the
vector producta xb.

axb=(a,by~a;b,)& +(a3b; —a,b;)8,
+(ayb, —ayb,)é, (28)

which can be written as the determinant

& & &
axb=la, a a,. (29)
bl bl b3

The vector product of two vectors is perpendicular to both
vectors. For example, if a and b are in the x;—%, plane, a; = b,
= 0, and by Eqn 28, the vector product has only an €; com-
ponent. This can be shown in general by evaluating a - (axb) =
b - (axb)=0. Geometrically, the direction of the vector prod-
uct is found by a “right-hand rule” (Fig. A.3-6): if the fingers
of a right hand rotate from a to b, the thumb points in the
direction a x b. The magnitude of the cross product is

laxb|=|a]|[b|sin 6, (30)

where 0is the angle between the two vectors. The cross product
is zero for parallel vectors because sin 0° = 0, so the cross prod-
uct of a vector with itself is zero.

The vector product often appears in connection with rota-
tions, such as those used to describe the motion of lithospheric
plates (Section 5.2). For example, if an object located at a
position r undergoes a rotation, its linear velocity v is given by

V=@ Xr, (31)

where @ is the rotation vector, which is oriented along the axis
of rotation, with a magnitude | o | that is the angular velocity
(Fig. A.3-7). Similarly, the vector product is used to define the
torque, which gives the rate of change of angular momentum.
Aforce F, acting at a point r, gives a torque

T=rxF. (32)

<

Fig. A.3-7 The vector product v = @x r describes a rotation.
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Fig. A.3-8 The x; component of the vector product 7=r x F gives the
torque, 7, F, — 7, Fy about the x; axis. In this case 7, F, is greater than r,F,,
so counterclockwise rotation about the x5 axis occurs.

For example, the torque about the x; axis is 7, = (r,F, — 7,F;);
so each component of the force contributes a counterclockwise
torque equal to the component times its lever arm, the perpen-
dicular distance of the point from that axis (Fig. A.3-8).

Some useful identities, whose proofs are left as problems, are

a-(b+c)=a-b+a-c
ax(b+cl=axb+axc
a-(bxc)=b-(cxa)=c-(axb)
ax(bxc)=bl(a-c)—c(a-b). (33)

A.3.5 Index notation

Vector equations, such as the definition of the cross product;
can be cumbersome when written in terms of the components.
Simplification can be obtained using index notation, whereby



4n index assuming all possible values replaces the subscripts
dicating coordinate axes. For example, the vector u = (#, 4,

is written u,, where i can be 1, 2, or 3. In this notation, the
alar product is

3
b=ab,+a,b,+aby= Zaib,-. (34)
i=1

Because the sum over all coordinates appears frequently, the
iistein sumpmation convention is often used, whereby an
dex repeated twice implies a summation over that index, and
summation sign is not explicitly written. Hence the scalar
oduct of two real vectors is written

;bzaibi’ (35}

ing implied summation over the repeated index i. Similarly,
e square of the magnitude of a real vector is

[P=uu,. (36)

repeated index is called a “dummy” index, like a dummy
riable of integration, because it is used only within the sum-
ation. The form of the expression indicates that u;u, is a
alar; because the repeated index is summed, no index remains
ree.” By contrast, u, is a vector, because there is a free index.
Index notation is further simplified by introducing two sym-
bols, &, and g;;,. The Kronecker delta, 6, is defined

=0 ifi#],

1 ifi=j. (37)

So, for example, §;; = 1, but &, = 0. Using the Kronecker
delta symbol, the relations between the Cartesian basis vectors
(Eqns 25, 26) can be written compactly as

The Kronecker delta, a function of two discrete variables 7 and
/,1s analogous to the Dirac delta function which is a function of
2 continuous variable (Section 6.2.5).

The permutation symbol, €, is defined as

e, =0 ifany of the indices are the same,

= if i, j, k are in order, i.e., (1, 2, 3), (2, 3, 1),
or{3,1,2)

=—1 ifi,j, kareoutof order,
ie,(2,1,3),(3,2,1),(1,3,2). (39)

Cases where the indices are in order are known as even, or
¢yclic, permutations of the indices; those in which the indices
¢ out of order are known as odd permutations. Because of the
symmetries in the definition, g, = Epi = Egi A useful relation,
whose proof is left for the probfems, is

En€isr= 0,01~ 5jz6ks' (40)

— W
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Using index notation, the definition of the vector product
(Eqn 28) becomes

3 3
(axb), =3 > epabr=eaby, (41)

j=1 k=1

where the last form uses the summation convention. The nota-
tion shows that the cross product yields a vector because only
one index, i, remains free after the repeated indices j and k are
summed. To see that the index notation gives the correct defini-
tion, we expand the i =2 component as

(axb)y= €511, by +€y158,by + £5130, b5+ €551a,b, + €38,b7
+85)30, b3+ £,31a3h1 + €y3,030, + €330305
= (ashy —ayby), (42)

because the only nonzero g;;, terms are €3 = —-land g,5;=1.

Index notation points out an interesting feature of the vec-
tor product. Because a b, = b,a;, the scalar product commutes.
By contrast, the properties of the permutation symbol show
that

axb=¢ aibkz—sil-kb,-akz—bxa, (43)

ifk
so the order matters for the vector product.

Although index notation seems unnatural at first, it does
more than simply shorten expressions. The notation explicitly
indicates what operations must be performed, and thus makes
them easier to evaluate. For example, suppose we seek to show
that the cross product of a vector with itself is zero. In contrast
to (a X a), the notation &p; 0 shows how the cross product
should be evaluated. Because a;a;, is symmetric in the indices
j and k, the permutation symbol makes the terms involving
any pair of j and k sum to zero. We will see that index notation
makes the complicated expressions that we encounter in study-
ing stress and strain easier to evaluate.

A.3.6 Vectorspaces

These concepts for vectors can be generalized in several ways.
In three dimensions any vector is a weighted combination of
three basis vectors. The usual choice of basis vectors along
coordinate axes is for simplicity. We could choose any three
mutually orthogonal vectors, which need not be of unit length,
to be the basis vectors. To see this, remember that a physical
vector does not depend on the coordinate system.

Moreover, the idea of vectors in two- or three-dimensional
space can be generalized to spaces with a larger number of
dimensions. For example, given unit vectors

€,=(1,0,0,0,0),
é4: (0: O: Oa 1: 0)9

62=(03170509 0)) é3=(09 071309 O)s
&,=(0,0,0,0, 1), (44)
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a vector u can be formed from the basis vectors and components
U= 2498y + 258, + U383 + 148y + 11585 = (1, Uy, tg, 1y, Us). (45)

This vector is defined in a five-dimensional space, with five axes
each orthogonal to the others, because their scalar products are
zero. Although this is difficult to visualize (or draw), the math-
ematics carries through directly from the three-dimensional
case. N mutually orthogonal vectors thus provide a basis for an
N-dimensional space.

These ideas are formalized in terms of vectors in a general
linear vector space. For our purposes, a vector space is a collec-
tion of vectors x, y, z, satisfying several criteria:

* The sum of any two vectors in the space is also in the
space.

¢ Vector addition commutes: x +y=y +x.

® Vector addition is associative: (X+y)+z=x+(y +z).

* There exists a unique vector 0 such that for all x, x =x +0.

* There exists a unique vector —x such that for all x, x + (x)
=(.

e Scalar multiplication is associative: & fx) = (af)x.

* Scalar multiplication is distributive: o(x +y) = ax + ay
and (a+ fB)x={ax + Bx).

A point worth considering is the number of independent
vectors in a vector space. Given N vectors x!, x2, ..., xNina
linear vector space, a weighted sum Y ax’ is called a linear
combination. The N vectors are linearly independent if

N
Y, o;x=0 only when all ;= 0, (46)
=1

so that no vector can be expressed as a combination of the
others. Otherwise, the vectors are linearly dependent, and one
can be expressed as a linear combination of the others.

This idea corresponds to that of basis vectors. If N basis
vectors are mutually orthogonal, they are linearly independent.
Because any vector in an N-dimensional space is a linear com-
bination of N linearly independent basis vectors, the basis
vectors span the space. Thus the dimension of a vector space
is the number of linearly independent vectors within it. For
example, we cannot find four linearly independent vectors in
three dimensions.

Though vector spaces sound abstract, they are useful in
seismology. For example, in Chapter 2 we represent travelling
waves by normal modes, which are orthogonal basis vectors in
a vector space, so any wave is a weighted sum of them. The
modes of a string (Section 2.2.5) form a Fourier series (Chap-
ter 6}, in which a function is expanded into sine and cosine
functions that are the basis vectors of a vector space. A sim-
ilar approach is also used for the modes of the spherical earth
(Section 2.9). Vector space ideas are also used in inverting
seismological observations to study earth structure (Chapter
7).

A.4 Matrix algebra

A.4.1 Definitions

Matrix algebra is a powerful tool often used to study systems
equations. As a result, it appears in seismological applications
including stresses and strains, locating earthquakes, and seismi¢
tomography. We thus review some basic ideas, often stating
results without proof and leaving proofs for the problems. Fyy.
ther discussion of these topics can be found in linear algebra texts.

Given a matrix A with » rows and 7 columns, called 15
m X 7 matrix,

41 4 - Ay
Gy1 dpn Ay

A= {
aml amZ am »n

and a second matrix B, also with # rows and 7 columns,
matrix addition is defined by

ay + by oy + by ar, + by,

ay; + by ay +by, ay, + by,
A+B=

aml + bml "mz + me cee amn + bmn

The usual convention is to indicate matrices with capital letters
and their elements with lower-case ones.

Matrix multiplication is defined such that for a matrix A that
is m x n and a matrix B that is # x 7, the 7™ element of the m x 1
product matrix C= AB is defined by ‘

n
€= 2 L bk,‘ =dy, bk/-
k=1

The ij*h element of C is the scalar product of the i® row of A
and the j* column of B. As a result, for matrix multiplication
the two matrices need not have the same number of rows
and columns, but must have the number of columns in the first
matrix equal to the number of rows in the second. Often the
numbers of rows and columns in the two matrices allow multi-.
plication in only one order. Thus, in the example above, 4
“premultiplies” B, or B “postmultiplies” A. A convenient wa
to remember this is that the number of columns in the firs
matrix must equal the number of rows in the second, but this.
dimension does not appear in the product. In the case of AB:
C, written schematically, we have [ x un][n x r] = [m ><,:f’~]
Hence, in the final form in Eqn 3, the summation conventio
shows that & is summed out, leaving 7 and j as free indices, $0 ¢
is a matrix element. Furthermore, even if both AB and BA ar
allowed, the two products are generally not equal, so matti
multiplication is not commutative. 4




he identity matrix, I, is a square matrix (one with the same
umber of rows and columns) whose diagonal elements are
equal to 1 while all other elements are 0:

‘1 0 0 0
10 1 00
(4)
00 10
00 01

=JA=A. (5)

i

The transpose of a matrix A, A”, is derived by placing the
yws of A into the columns of AT, so for C=AT,

” (6
he transpose has the properties that for matrices A and B,
(A+B)T=AT+BT and (AB)T=BTAT. (7)

With these definitions, vector operations can be expressed
sing matrix algebra, by treating vectors as matrices with one
lumn, For example, premultiplication of a vector by a matrix
elds another vector, y = Ax, such that

zaﬁx]- or Y, =a;%;, (8)
i

here the second form uses the summation convention. Each
component y, is the scalar product of the i row of A with x.
imilarly, the scalar product of two vectors is given by the
atrix product

a-b=a’b=Y a,b=ab,. (9)

Thus the scalar product of two vectors yields a scalar, because a
1-x m matrix times an »2 X 1 matrix is a 1 x 1 matrix, or single
alue. The squared magnitude of a real vector can be written as
lul=u-u=v"u=Y wu=uu,. (10)
For vectors with complex components, the scalar product
qn A.3.23)is

a-b=a*Tb= ) aib=ajb, (11)

i

This brings us to a minor point of notation. In linear algebra,
in the last few equations, it is common to treat vectors as

VAV VPR
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column vectors represented by # x 1 matrices with # rows and
one column

Uy

24
u=l (12)

whose transposes are row vectors {one row, # columns) like
ul= (tqy y5 o o 1). (13)
Nonetheless, to save space, we sometimes write

U= {1y, ty, . . . U,), (14)

while treating u as a column vector when required. Strictly
speaking, we should call the row vector u”.
We often encounter matrices that are symmetric, or equal

their transposes,

A=AT, a=a, {15)

For a matrix A with complex elements, the conjugate matrix
A* is formed by taking the conjugate of each element, and the
transpose is generalized to the adjoint matrix A* = A*T, which
is the complex conjugate of AT. Note that if the elements of A
arereal, A*= AT, A matrix A is Hermitian if it equals its adjoint
A=A* a.,=a}. (16}

if ji

If A is real, “Hermitian” and “symmetric” are equivalent.

A.4.2 Determinant

A useful entity is the determinant of a matrix, written det A, or
| A|. Foran n x n matrix,

n n n
det A= Do D s(isfan e« 1)y, day, « « (17)
i=17=1 7=t

This complicated sum over » indices, j;, /5 - - . /,,, Uses a genera-
lized form of the permutation symbol

dgd=sgn II G, =7, (18)

1Sp<gsn

s(i]:jz: e

The sgn function is one times the sign of its argument, so that it
equals 1 if its argument is positive, —1 if its argument is negat-
ive,and 0 if its argument is zero. For n =3,

5(71;72a /3) =sgn [(]2—71)(73 ”/1)(f3 _72)], (19)

so that, for example,
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s(1,2,3)=1, s(2,1,3)=-1, s(1,1,3)=0. (20)
Because s(f,,7,,7;) suppresses terms with two equal indices, and
assigns others a sign depending on the order of the indices, it is
the same as the permutation symbol, £ i, (Eqn A.3.39).
The definition of the determinant gives the familiar result for

n=2

22
a a -
[A]= det( 1 12] = Z Z 5(/1>/z)“1/142/‘z

1 8n) 11
=s(1, V)aya,; +5(1, 2)ay a5, +5(2, Daay, +s(2, 2)a a5,

=11y~ dypdyy,s (21)
because s(1, 1) = 5(2, 2) = 0, s(1,2)=1, and s(2, 1) = 1. For
a matrix with only one element, the determinant equals the
matrix element.
Among the properties of determinants that we will find
useful in solving systems of equations are:
® The determinant of a matrix equals that of its transpose,
| A]=| AT
® If two rows or columns of a matrix are interchanged, the
determinant has the same absolute value but changes
sign.
e If one row (or column) is multiplied by a constant, the
determinant is multiplied by that constant.
e If a multiple of one row (or column) is added to another
row (or column), the determinant is unchanged.
* If two rows or columns of a matrix are the same, the
determinant is zero.
Proving these properties is left for the problems.

A4.3 TInverse

For an n x # square matrix A, the inverse matrix A~ is defined
such that multiplication by the inverse gives the identity matrix
ATTA=AAT =], (22)

A~! can be written in terms of the cofactor matrix, C, whose
elements

cy=(=1)") A,

Y g

(23)

are formed from the determinants of Aj,an (n—1)X (n—1)
square matrix formed by deleting the i* row and ;% column
from A.If| A | is not zero,
AT=CT| AL (24)
For the familiar 7 =2 case, see problem 7.

A matrix whose determinant is zero does not have an inverse,

and is called singular. Because the determinant of a matrix with
two equal rows or columns is zero, such a matrix is singular,

More generally, a matrix is singular if a row or column s 4
linear combination of the others.

The inverse of the matrix product AB, if AB is nonsingular,
obeys

(AB)y'=B14-1, (25)
A matrix A whose transpose equals its inverse,
ATl = AT, (26)

is called orthogonal. By extension, a matrix A with complex
elements is unitary if its adjoint and inverse are equal

ATl= A+, (27)

A4.4  Systems of linear equations

A vector-matrix representation is often used for systems of
linear equations. In this formulation, a system of m equations
for # unknown variables x;,

ap Xy tapx, oo tag,x,=b,

anXytaynx, ... +a,,x, =b,
D1 X Ty Xy oo +a,, x,=b (28)
is written in the form

n
Z a;x;=b; or Ax=b, (29)

=1

by defining the matrix of coefficients and column vectors for
the unknowns and right-hand side,

41 dp Ay x b,
1 b
Gy1 4y Dy x 2
2
A= X = b= (30)
. . X .
42
aml amz Tt amn bm

The coefficient matrix A is 7 X #, because there is one row for
each equation, and one column for each unknown.

The Ax =b form illustrates that whether a system of equa-
tions can be solved depends on the matrix A. A system of equa-
tions is called homogeneous in the special case that b =0, and
inhomogeneous for all other cases in which b # 0. We consider
here only systems where the number of unknowns and equations
are equal, so the coefficient matrix A is square. If A possesses an
inverse, both sides can be premultiplied by A1, and

ATAx=A"p=Ix=x




ields a unique solution vector x. For inhomogeneous systems,
computing A~! provides a straightforward manner of solving
ot the unknown variables x;. For homogeneous systems of
_equations, the equation shows that x = 0 if A~ exists. Thus,
“for a homogeneous system to have a nonzero or nontrivial
olution, A must be singular. This occurs if the determinant of
A s zero, implying that some of the rows (or columns) of A are
not linearly independent. If a nontrivial solution of the homo-
_geneous system exists, any constant times that solution is also
_asolution.

If the coefficient matrix is singular, the corresponding
_inhomogeneous system of equations does not have unique
solutions, and may have none. The existence of A™ and the
solvability of the equations thus depend on whether the rows
and columns of A are linearly independent. For example, if the
rows are linearly dependent, there are fewer independent equa-
‘tions than unknowns and difficulties result, as discussed in the
context of inverse problems (Chapter 7).

A.4.5 Solving systems of equations on a computer

Standard methods exist to solve linear equations on a com-
puter. Consider the basic problem

Ax=b (32)
a4 A3 ®: by
ay ay dxy || % |=|b
Az d3p daz X3 b,

in which we solve for x, given A and b. If A were a triangular
matrix T, with zeroes below the diagonal, it would be easy to
solve the system

Tx=d (33)

d,
0t t||%|=|%
d

[

by starting with the simplest (bottom) equation, solving for x3,
and solving the other equations in succession to find x, and
then x,. In other words, the solution

x3=d,/t5; (34)
can be substituted into the middle equation to find

Xy = (dy = ty3%3)/ty;. (35)

Then, by substituting x; and x, into the first equation,

Xy = (dy — ty3%3— 1,/ E. (36)
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The importance of this idea is that an arbitrary matrix can
be triangularized. Consider that the solution of the system of
equations is not changed by any of the following elermentary
row operations:

(i)  Rearranging the equations, which corresponds to inter-
changing rows in the b vector and matrix, i.¢.,

a4y A 43 |1x by
d3; d3p A3z f| X |7 by (37)
dyp Ay 3]\ X3 b,

The solution is unchanged because the order of the
equations is arbitrary.

(i) Multiplying an equation by a constant ¢, which corre-
sponds to multiplying a row of A and the correspond-
ing element of b by a constant, i.e.,

cayy cdpy Ay || % ch
Gy, dy dp || % |=| b |- (38)
as; 43 d33 )\ %3 by

(iii) Adding two equations, which corresponds to adding a
multiple of one row to another, i.e.,

cayy +dyy iy +dyy Capy Ty || X cby + b,
a1 %) a3 X 1= b,
a3 a3 433 X3 by
(39)

Thus if the system Ax = b is transformed into Tx = d using
elementary row operations, the two systems of equations have
the same solutions x. This provides a fast method of solving the
system: combine A and b into a single augmented matrix

ay 4 a3 b
(Ab)=1ay ay ay b (40)
ay ayp 43 by

and triangularize the augmented matrix to obtain

ty tp hy dy
(T, d)=| 0 ), t3 dy|,s (41)
0 0 ty d

which represents a set of equations easily solved for x by the
method in Eqns 34-6.
The matrix is triangularized using the following method
column by column:
e Find the element of maximum absolute value in the
column on or below the diagonal.
o Tf this “pivot” element is below the diagonal, interchange
rows to get it on the diagonal.



454  Appendix

e N A

» Subtract multiples of the pivot row from rows below it to
get zeroes below the diagonal.
The pivoting, though not absolutely necessary, avoids possible
numerical difficulties. Note that once a column is zeroed below
the diagonal, we do not have to think about it any more.
For an illustration of this method, called Gaussian elimi-
nation with partial pivoting, consider solving the system of
equations

Xy +x,=35,
dx, +x,+x3=4,
200+ 2%, +2x, =3, (42)

This can be expressed in matrix form as

11 0|[x 5
4 1 1||x|=4], (43)
202 2| x, 3

and solved by triangularizing the augmented matrix

110 5
4 1 1 44. (44)
2223

To get zeroes below the diagonal in the first column, we first
move 4, the element with the largest absolute value in the first
column, to the diagonal by interchanging rows

4 1 1 4
11 0 §/. (45)
2 2 23

We then subtract 1/4 times the first row from second, and 1/2
times the first row from third, leaving

4 1 1 4
0 0.75 -0.25 4. (46)
0 1.5 1.5 1

Next, to zero the elements below the diagonal in the second col-
umn, we interchange rows to get the pivot for this column, 1.5,
on the diagonal:

4 1 1 4
0 15 1.5 1 (47)
0 075 -025 4

and subtract 0.75/1.5 = 0.5 times the second row from the third

4 1 1 4
0 15 15 1 (48)
0 0 -1 35

to complete the triangularization. We then solve the equations
for x, beginning with the bottom one, as in Eqns 34-6.

A similar procedure can be used to invert a matrix. This
method uses the idea that two vector—matrix equations
Ax=b and Ay=c (49)
can be combined into one by forming an augmented matrix
from each pair of vectors,

X=(x,y), B=(b,c), (50)

and writing the matrix equation
AX=B. (51)

Because x, the solution to Ax =b, is not changed by elementary
row operations on the augmented matrix (A, b), the corres-
ponding solution to AX = B is unaffected by elementary row
operations on the augmented matrix (A, B).

To apply this to matrix inversion, consider a special case

AX =1, (52)

whose solution X = A~ is the inverse of the # x # matrix A. X
is unaffected by elementary row operations that convert thc
augmented matrix

to one whose left side is the identity

1..0 b, .. b,
0 ..16b, ..60, :

so the corresponding equation

IX=B (59)

shows that the right side of the matrix gives B =X =A™, the in-
verse of A. The sequence of operations used to dlagonahze the
left (A) side of the augmented matrix (A, I) are similar to those ,
that triangularize a matrix.

A.5 Vector transformations

In seismology, we often apply two types of transformations
to vectors. In the first, the same vector is expressed in two
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Fig. A.5-1 The relation between two orthogonal coordinate systems with
the same origin is described by the angles a;; between the two sets of axes.

different coordinate systems. In the second, some operation
Converts a vector to another vector expressed in the same co-
ordinate system. In this section we summarize these transforma-
tions and their differences.

A.5.1 Coordinate transformations

We have seen that vectors remain the same regardless of the co-
‘ordinate system in which they are defined, although their com-
ponents differ between coordinate systems. Thus vectors can
be defined in one coordinate system (for example, one oriented
along an earthquake fault plane) and reexpressed in another
(such as a geographic coordinate system). This property is very
useful for solving problems and gives valuable insight into the
mature of vectors.

To define the relation between vector components and co-
‘ordinate systems, consider two orthogonal Cartesian coordinate
systems {Fig. A.5-1). Because the origins are the same, one co-
ordinate systemn can be obtained by rotating the other through
hree angles. The relation between the two sets of unit basis
_vectors, &, &,, &, and &, &), &}, is given by their scalar products,
called direction cosines,

At
€+ €;=cos o =ay, (1)

- where the angles ¢ are the angles between the two sets of axes.
A vector can be expressed in terms of its components in the
_two coordinate systems

U= @) F g€y Fus€y=u ) +ul 8l +ulel. {(2)
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Given the components #; in the unprimed system, the com-
ponents #} in the primed system are found by taking the scalar
products of the vector with the basis vectors of the primed
system:
=8 u= (8] & )u;+ (87 - &lu, +(€7] - &3)uy

=gty t Aty tagi,

s _ar, _
Uy=2¢€y U—CZZ]M1+6122M2+6123M3,

=
N

Il
>
W~

CU= Ayt + Azt +as3Us. (3)

These can be written as a matrix equation

Hy Ay Ay dyz || Uy

w=Au, or |uji=|a, ay dylit, |, (4)
’
U3 31 g3 433 )\ H3

where A is the matrix that transforms a vector from the
unprimed to the primed system. Note that this is not a relation
between two different vectors u and u’ — it is a relationship
between the components of the same vector in two coordinate
systems. It turns out that the matrix A uniquely describes the
transformation between these coordinate systems.

For example, a unit basis vector for the unprimed system

& =18,+08,+0&,=(1,0,0) ()

has components in the primed system given by

ayy ayp ap a3 || 1
ay |=|dy dn || 0| (6)
431 ay ay a0

and so is written
Al A2 Al
418 +a54&5 + a3, €5=(ayy, ayy, d3q) (7)

in the primed system. The last expression is just the first column
of A. Similarly, the components of &, and &, in the primed
system are the second and third columns of A, respectively.
Thus the columns of the transformation matrix A are the basis
vectors of the unprimed system written in terms of their com-
ponents in the primed system.

For example, consider rotating a Cartesian coordinate sys-
tem by 6 counterclockwise about the &, axis, so that the only
rotation occurs in the & -8, plane. The &; axis is also the & axis
(Fig. A.5-2). The elements of the transformation matrix are
found by evaluating the scalar products of the basis vectors
a;=€;-&,s0

_ar s PV o e
a,,=8;-8&=cos 8, a,,=8& & =cos(90°—0)=sin 4,

_a’.a — A’ .a — o i
a,,=8, & =cos B, a, =8, 8 =cos(90°+0)=-sinb,

— At A - —_ —_— — —
a33=83-&=1, ay3=ay3=a3=a3=0, (8)
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Fig. A.5-2 The relation between the axes of two orthogonal coordinate
systems differing by a rotation €in the x—x, plane.

and the components of a vector in the two systems are related

by

iy cos@ sin® O ||«
uj |=|~sin@ cos@® 0]|lu,]|. (9)
7 0 0 1 )| #;

Thus the €, and é’l, and the &, and &, components differ,
whereas the &, and &} components are the same. To check this,
consider the case where 8= 90°. As expected, (1, 0, 0) in the
unprimed system becomes (0, —1, 0} in the primed system, and
{0, 1, 0) in the unprimed system becomes (1, 0, 0} in the primed
system, while (0, 0, 1) in the unprimed system remains (0, 0, 1)
in the primed system.

Seismologists often use such a geometry. Because the ground
motion is a vector, seismometers are generally oriented to
record its components in the east-west, north—south, and
up—down directions. This decomposition is less useful than
decomposing ground motion into its radial and transverse
components, those along and perpendicular to the great circle
connecting the earthquake and seismometer. The vertical com-
ponent is useful as is, so a rotation about the vertical by the angle
between East and the great circle connecting the earthquake
and seismometer converts the E~W and N-S components into
the new representation. The relevant angle, the back azimuth
to the source from the receiver, is discussed in Section A.7.2.

We can also reverse the transformation. By analogy to Eqn 3,
the components in the unprimed system can be found from
those in the primed system as

N

=8 u'=(& - &)uy+(& - &))uy+ (& - &5)u

- ’ 7 7
=ay Uy tay iy gy,

— A .1 — ’ ’ ’
Uy =8 - W =dpply +dyyiy+dgis,

— D1 = ’ ’ ’
Uy =Cq W =qdq3Uy Tdy3ity 355, (10)

Combining these to express the reverse transformation in
vector—matrix form,

L1 dyy dyp dzy )y
— 7

Uy |=1ayp Ay dxp | #y |, (11)
7
(! g3 da3 dsz)\ U3

shows that the reverse transformation matrix is just the trans-
pose of the transformation matrix A

=ATv. (12)
Hence a unit basis vector in the primed system
&) =18} + 08’ + 08/ (13)
becomes, by the matrix transformation,
a118; +ag58, +ay38 (14)

in the unprimed system. This is the first row of A, so the rows of
A are the primed basis vectors expressed in the unprimed coot-
dinates. This is natural because the transformations are related
by the matrix transpose.

Alternatively, the reverse transformation can be found
directly by starting with 0’ = Au and multiplying both sides by
the inverse matrix

ly=AlAu=Iu=u. (15)

Comparison with Eqn 12 shows that the inverse of the trans-
formation matrix equals its transpose, so the transformation
matrix is an orthogonal matrix. This seems reasonable because
the columns of A, which represent orthogonal basis vectors,
are orthogonal. Similarly, the rows of A are orthogonal. As a
result, such coordinate transformations are called orthogonal
transformations. An important feature of orthogonal trans-
formations, whose proof is left as a homework problem, is that
they preserve the length of vectors.

The transformation relations, Eqns 4 and 12, provide a
mathematical definition of a vector, Any vector must transform
between coordinate systems in this way. A set of three entities
defined at points in space (for example, temperature, pressutes
and density) that does not obey the transformation equations s
not a vector. :

A.5.2  Eigenvalues and eigenvectors

The product of an arbitrary # x # matrix A and an arbitrary
7-component vector x
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y=Ax (16)

is also a vector in # dimensions. This is not the same as co-
ordinate transformation; the vector x is transformed into
another distinct vector, with both vectors expressed in the same
coordinate system.

i A physically important class of transformations convert a
vector into one parallel to the original vector, so that

Ax:lx, (17)

where A is a matrix, and A is a scalar. The only effect of the
transformation is that the length of x changes by a factor of A.
For a given A, it is useful to know which vectors x and scalars A
satisfy this equation.

- In three dimensions, the case most commonly encountered,
Eqn 17 can be written

(A-ADx=0

ay — A ap dq3 Xy 0
a9y Ayy — A sy %, |=10]. (18)
a31 ap  ayp =A% 0

This is a homogeneous system of linear equations, so nontrivial
solutions exist only if the matrix (A — Al) is singular. We thus
seek values of A such that the determinant

ay —A ap a3
HA-ADl=det| a,, ayp-—-4 ay |=0. (19)
a3 ay, dz -4

Evaluating the determinant gives the characteristic polynomial
P-LA+LA-1,=0, (20)

which depends on three constants called the invariants of A:

=dyqtdy, tass,

a4, a Aoy a4 a,, da
_ det( 11 12] rder]| %22 %23 |4 ger|H1 P13
41 42 A3 dsz3 31 433

= det A. (21)

I, the first invariant, or trace, of A, is the sum of the diagonal
elements of A. The invariants of a matrix have significance for
stresses, strains, and earthquake moment tensors, because they
-are not changed by orthogonal transformations.

The characteristic polynomial is a cubic equation in A
:with three roots, or eigenvalues, 4, for which the determinant
[A—AI|is zero. For each eigenvalue there is an associated non-
trivial eigenvector, x', satisfying

iAx(’”) =2, x", {22)

A.S Vector transformations 457

The components of the eigenvector, x, x, x4 are found
p & » X7 2 30

by solving

{m)
ayy = Ay dyp 413 X1 0
ay dyy — A, dys x5 =1 0. (23)
{m)
a3 a3 Ay = Ay (X5 0

Each eigenvalue and its associated eigenvector form a pair
satisfying Eqn 22. In general, an eigenvalue and the eigen-
vector associated with a different eigenvalue will not satisfy the
equation.

For example, the eigenvalues of

3 -1 0
A=|-1 2 -1 (24)
0 -1 3

are found by solving the characteristic polynomial
A -812+194-12=0, (25)

whose roots are 4, =4, 4,=3, 1;=1. Next, the equations

3-4, -1 0 J[«f™] [0
-1 2-4, -1 |[«5]|=|0 (26)
0 -1 3-2,)(x%] [0

are solved for each eigenvalue to yield the associated eigen-
vector. Thus for A; =1,

(27)

All three unknowns cannot be found uniquely, because these
are homogeneous equations. We thus set x’ equal to 1 and
find the other two unknowns, x5 = 2, x%) = 1. Similarly, the
other eigenvectors are found by substituting A, and A; in
Eqn26,s0

X(3)=(15291)3 X(2>:(1703"1)3 X(l):(1:_131)‘ (28)

Because the eigenvectors are solutions to a set of homo-
geneous equations, any multiple of an eigenvector is also an
eigenvector. The eigenvectors thus determine a direction in
space, but the magnitude of the vector is arbitrary. Often the
eigenvectors are normalized to unit magnitude. The set we have
found can be written as

xW = (1743, -1/43,11/3), x2=(1/{2,0,-1/,2),

X3 =(17,6,21/6,1/,/6). (29)
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Sometimes complications arise, as for the matrix

(30)

=
It
O O =
OO O
O O

with eigenvalues 1, 1, and 0. Using the method given above to
find the eigenvector for A, =0 by setting ! = 1 yields no solu-
tion. Setting x4 = 1, however, yields a correct solution for the
eigenvector, (0, 1, 0). Because this has no &, component, we
could not have set x4 = 1 and found the other components.

This example illustrates a complication that arises for a de-
generate, or repeated, eigenvalue: e.g., 1, = 4, = 1. In this case,
the eigenvalue corresponds not to an eigenvector but to an
entire plane, and any vector contained within it is an eigenvector.
Two eigenvectors spanning this plane can be found by finding
the eigenvector of the nondegenerate eigenvalue, and then
choosing two independent vectors orthogonal to it. Because the
eigenvector for the nondegenerate eigenvalue is (0, 1, 0), two
possible orthogonal eigenvectors for the degenerate eigenvalue
are (1,0, 0) and (0, 0, 1).

A.5.3 Symmeiric matrix eigenvalues, eigenvectors,
diagonalization, and decomposition

The eigenvalues and eigenvectors of a symmetric matrix have
interesting properties. An 7 x » matrix H has a characteristic
polynomial of degree 7, each of whose # roots is an eigenvalue.
Consider two eigenvalues and their associated eigenvectors

Hxl = 4,x0,  Hx0=2,x0. (31)

Multiplication of the first equation by x!/'T (the transpose of
x{1)) and the second equation by x¥'T yields

KT Hix 1 = A, x0T (0, x I THx () = 2 x0T, (32)

Transposing both sides of the second part of Eqn 32 and sub-
tracting it from the first gives

xUITHxtH - T HTli) = (2, - A, Jx T, (33)

Because H is symmetric, it equals its transpose, H = H, so the
left-hand side is zero

0=(A,—4,)x!MTx), (34)
i

Thus, if 7 # j and the two eigenvalues are different, their asso-
ciated eigenvectors must be orthogonal so that their scalar
product x'/'"Tx(?} is zero. Thus, for a symmetric matrix, eigen-
vectors associated with distinct eigenvalues are orthogonal.

This result lets us diagonalize a symmetric matrix. To illus-
trate this for a 3 x 3 case, consider a matrix U whose columns
are the eigenvectors of the symmetric matrix H

X x@ XD
1 2 3

U=[x0 8 22|, (35)
m x(32) x(33)

If the eigenvalues of H are distinct, the eigenvectors of H, and
hence the columns of the eigenvector matrix, are orthogonal,
so U s an orthogonal matrix satisfying U~1= U7,

The entire set of eigenvalue—eigenvector pairs, each of which
satisfy Hx!")= 1,x"), can be written as the matrix equation

where A is the diagonal matrix with eigenvalues on the diagonal

L 000
A, 0
0 A

A,
A=]0 (37)
0

Premultiplying both sides of Eqn 36 by the inverse of the
eigenvector matrix yields V

U-'HU=UTHU=A, (38)

which shows how the eigenvector matrix can be used to
diagonalize a symmetric matrix. This result can also be stated
as

H=UAUT, (39)

which illustrates how a symmetric matrix can be decomposed
into a diagonal eigenvalue matrix and the orthogonal eigen-
vector matrix. Similar results apply for complex Hermitian
matrices.

We will see that if a matrix contains the components of
vectors expressed in a coordinate system, the physical problem
under discussion can be simplified by diagonalizing the matrix.
This corresponds to rewriting the problem in its “natural” co-
ordinate system, whose basis set is the eigenvectors, an idea
used in discussing stresses in the earth (Section 2.3.4) and the
seismic moment tensor (Section 4.4.5). :

A.6 Vector calculus

A.6.1  Scalar and vector fields

Many phenomena in seismology depend on how physical
quantities vary in space. Some, like density or temperaturé,
are scalar fields, scalar valued functions of the position vector
denoted by expressions like ¢(x) or ¢(x;, %, x3)- Similarly,
a vector that varies in space is described by a vector field. For
example, seismic waves are described by the variation in the
displacement vector o
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u(x) = u(x'p Xa, x3)

=y (%X, X35 X308 +Huy(xy, Xy, X4)8, +u5(20y, %y, x5)84 (1)

as a function of position, and result in turn from forces derived
from spatial derivatives of the stress tensor.

Spatial variations of scalar, vector, or tensor fields are de-
scribed using the vector differential operator “del”, V,

V= éli,ézi’ési , 2)
9%, 0%, 0x;

This operator has the form of a vector, but has meaning only
when applied to a scalar, vector, or tensor field. We first review
uses of the V operator in Cartesian coordinates, and in the
next section discuss the more complicated forms for spherical
coordinates.

A.6.2 Gradient

The simplest application of the V operator is the gradient,
a. vector field formed from the spatial derivatives of a scalar
field. If ¢(x) is a scalar function of position, the gradient is

_defined by

orad oix) = Vox) = DX ¢ 900, 900, 3)
9%, 9%, 05

where d@(x)/dx, is the partial derivative of ¢(x,, x,, x;) with
respect to x,, for x, and x5 held constant. The gradient is a
vector field whose components equal the partial derivative with
respect to the corresponding coordinate.

Expressions like Eqns 1 and 3 can be written more compactly
if the dependences on position are not written explicitly, i.e.,

4)

In this notation, it is implicit that ¢, its derivatives, and hence
the gradient, vary with position.

- For example, the elevation ¢(x;, x,) is a scalar field de-
scribing the topography as a function of position in a two-
‘dimensional region. This is often plotted using topographic
contours (Fig. A.6-1), curves along which ¢ is constant. At any
point, d¢/dx, is the slope in the x, direction, and d¢/ 0x, is the
slope in the x, direction.

The gradient can be used to find the slope in any direction.
The projection of a vector in a given direction is the scalar
-product of the vector and the unit normal vector in that direc-
tion, fi = (1, #,). Thus the scalar product of the gradient with
-the normal vector,

) (5)
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@lxy, x3)

Fig. A.6-1 A scalar field demonstrating the concept of a gradient.
If ¢(x, x,) gives the elevation, the gradient can be used to find the slope
in the fi direction at a point {x,, X,).

gives the directional derivative in the fi direction. Because both
fi and V¢ are functions of position, the directional derivative
varies in space. At any point, the maximum value of the scalar
product occurs for fi parallel to the gradient, so the gradient
points in the direction of the steepest slope along which ¢
changes most rapidly. The scalar product is zero when # is
perpendicular to the gradient, so the gradient is perpendicular
to curves of constant ¢. These concepts are also used in three
dimensions.
In index notation, the gradient is written as

(V¢)i=—=¢,~, (6)
X

where the last form uses a common (if sometimes confusing)
notation in which differentiation is indicated by a comma. The
notation, with one free index, shows that the gradient is a vec-
tor. By contrast, the directional derivative, written as

ﬁ'Vf#’:”,“ajj“:”i(b,i: “)
X,

H

has an implied sum over i and is a scalar.

Often, the gradients of quantities are important physically
because an effect depends on spatial variations of a field. For
example, the flow of heat depends on the gradient of the tem-
perature field (Sections 5.3.2, 5.4.1), and the gradient of the
pressure field in the atmosphere is important for the weather.

A.6.3 Divergence

A related operation that describes the spatial variation of a vec-
tor field is the divergence. The divergence of a vector field u(x)
is given by the scalar product of the V operator with u{x) as

diVu:V~u_—_%+_a_u_2_+_a_ﬁ, (8)
axl axz ax3
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Uy + U,/ ox,
U3+ du3/ax; /

- > - U + 3L,/ X,

Uy
X3
Uy

Uz

X2

Xy

Fig. A.6-2 The divergence, formed from the differences between the flow
into one face of a volume and the flow out of the opposite face, gives the
net flow through a unit volume.

which yields a scalar field because the vector components and
their derivatives are functions of position.

The divergence frequently arises in conservation equations.
For example, if u(x) is the velocity as a function of position in a
fluid, V - u(x) gives the net outflow of material per unit time
from a unit volume at position x (Fig. A.6-2). To see this, note
that, to first order, the net flow in the x, direction is the differ-
ence between the flow out the far side, u, + 0u,/0x,, and that
into the near side, u,, given as

Uy +—= — 1, = —=, 9)

Adding similar terms for the net flow in the x; and x, directions
gives the divergence (Eqn 8). If the divergence is positive, there
isa net outward flow, whereas a negative divergence indicates a
net inflow.

This idea can be applied to any vector field u(x). Consider the
problem of finding the net outflow from a region with volume
V and surface S. If fi(x) is the unit normal vector pointing
outward at a point x on the surface (Fig. A.6-3), the scalar
product fi(x) - u(x) gives the outward flux per unit area at that
point. Integrating the flux over the surface then gives the total
flux. Another way to compute the total flux is to integrate the
divergence over the volume. These two methods give the same
flux, so

g udS= | V-udV. (10)

§ \4

This relation, Gauss’s theorem, or the divergence theorem,
says that what accumulates inside a volume is determined by
the integral over its surface of what goes out. If we think of the
volume as many adjacent cells, the flow out of one cell is the

Vector field

Fig. A.6-3 Geometry for the divergence theorem: fi(x) is a unit vector
pointing outward at the point x from an element dS of the surface S that
encloses a volume dV.

flow into an adjacent cell, which cancels to zero. Only flow in
or out of the volume’s surface is not canceled out in this way.
Written in full, [V is a triple integral over the volume, and [dS
is a double integral over the surface, :

In index notation, using the summation convention, the
divergence is written

Vous—t=u (11)

which is a scalar because no free index remains. Gauss’s theo:
rem is written

Ju

ox;

umdS= | ZLiqv, (12)
N %

or, using the comma notation for derivatives,

un,dS= | u, dV. (13)

1,i

As before, it is implicit in the notation that the field u, its derivat-
ives, and the normal vector fi vary with position. ~

A.6.4 Curl

vector field, yields another vector field

ou du Ju Ju au? az’ll
—a 3 2 a 1 3 a ——
Vxu | —t—-——=

R 3

é
dx, Ox, 2 dx;  9dx, dx; 0% )
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- Fig. A.6-4 Geometry for Stokes’ theorem: fi(x) is a unit vector pointing
outward at the point x from an element dS of the surface S. dCisan
lement of the curve C bounding S, with tangent §(x}.

This can be written as a determinant
& & &

V xu=det -*a“ j_ i s (15)
ox; ox, OJxy

Uy oy U
r, using index notation, in a compact form as

duy,
quzgi/kgzsi/k”k,j' (16)
j
Some physical insight into the curl comes from Stokes’
heorem, which relates the integral of the curl of a vector field
over a surface S to the line integral around a curve C bounding
(Fig. A.6-4) as

lu-tdC= | (Vxu)-#ds. (17)

Here dS is an element of surface area with normal fi(x), and dC
s an element of the curve with tangent £(x). Analogous to the
ase of Gauss’s theorem applied to a volume, we can think of
he surface as composed of infinitesimal tiles, each with a line
ntegral of u - t around it. The border of each tile is shared with
nother tile, but, because the line integral, or circulation, is
omputed in a counterclockwise manner, the integrals along
his border are the same but of opposite sign for the two tiles,

—~~ W\M\j\/\w

A.6 Vector calculus 461

and therefore cancel. The segments of the line integrals cancel
between all the tiles except those on the outer border that have
no adjacent circulation to cancel them.

If the line integral is nonzero, the vector field has a net rota-
tion along the curve, so the integral of its curl over the surface is
nonzero. The curl of a vector field shows where rotations arise.
A common application is describing the velocity field of a mov-
ing fluid. The upper portion of Fig. A.6-5 shows streamlines,
lines parallel to the velocity vector at any point, for a viscous
fluid flowing past a circular object. The velocity is zero at the
object, and increases with distance away from it. The flow is
symmetric on the bottom of the object. The lower portion of
the figure shows contours of the curl of the velocity field with
larger values, indicating greater rotations, close to the object.

Two useful identities, whose proofs are left for the problems,
are that the curl of a gradient and the divergence of a curl are
Z€T0:

V. (Vxu)=0 (18)
Vx(Vo)=0. (19)

Equation 19 can be used with Stokes’ theorem to show that for
a vector field written as the gradient of a scalar, the curl, and
hence circulation around an arbitrary curve, are zero. This idea
is used in mechanics to prove that a conservative force (one that
can be written as the gradient of a potential) has a line integral
that is independent of path, because its circulation around any
path is zero. These relations give insight into seismic waves,
because P waves have no curl and S waves have no divergence
(Section 2.4.1).

A.6.5 Laplacian

The Laplacian operator is formed by taking the divergence of
the gradient of a scalar field, which yields a scalar field

N B (20)

V=V Vo= =0

' 2 2 2

dxi  dx3 03

where the last form uses index notation and the summation

convention. By analogy, the Laplacian of a vector field is a vec-

tor field whose components in Cartesian coordinates are the
Laplacians of the original vector components,

V2iu=(V2u,,V2u,, Vu,). (21)

For example, the &, component of VZu is

2 2 2
8u1+8u1+8u1

. (22)
ox?  Ox3  Ox3

In Cartesian coordinates, the Laplacian of a vector satisfies
Viu=V(V u)-Vx(Vxu), (23)
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0.4

an obscure-looking relation that is useful in deriving the exist-
ence of P and § waves.

A.7 Spherical coordinates

The vector operations discussed so far were performed in
Cartesian coordinates, in which the unit basis vectors (€, é,, &;)
point in the same direction everywhere. There are, however,
situations in which non-Cartesian coordinate systems without
these nice properties are useful. In particular, spherical coordin-
ates often simplify the solution of problems with a high degree
of symmetry about a point.

A.7.1 The spherical coordinate system

In a spherical coordinate system, a point defined by a position
vector x is described by its radial distance from the origin, » =
| x|, and two angles. 81s the colatitude, or angle between x and
the x; axis, and ¢, the longitude, is measured in the x,—x, plane.
Often the latitude, 90° — 0, is used instead of the colatitude.
Spherical coordinates are often used in seismology because
the earth is approximately spherically symmetric, varying with
depth much more than laterally. Thus properties like velocity
and density are often approximated as functions only of r, inde-
pendent of Band ¢.

Figure A.7-1 shows the relations between rectangular and
spherical coordinates. If the vector x is written as

x=x,8; +x,8, +x3€;, (1)

then its components in rectangular coordinates (x, x,, x;) are
described by spherical coordinates as

1.0
0.8

0.6

0.4

0.2

Fig. A.6-5 Top: streamlines showing

the velocity of fluid flow around an

object. Numbers on streamlines show the
magnitude of the velocity. Bottom: contours
of the curl for this velocity field. The curlis
greatest near the sphere, where the fluid flow
lines are the most curved. (After Batchelor,
1967. Reprinted with the permission of
Cambridge University Press.)

North pole
X3
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2R
. | (0°, 90°)
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e . _E \ X
¢ |
1l
(0, 0%) Equator

X

Fig. A.7-1 Relations between spherical (r, 6, ¢) and Cartesian coordinates;
(x5 %5, X5). (After Marion, 1970. From Classical Dynamics of Particles
and Systems, 2nd edn, copyright 1970 by Academic Press, reproduced by
permission of the publisher.) o

x4 7sin @ cos ¢
X=|x,|=|rsmBsing|. (2)
X4 7 cos 6

Conversely, the spherical coordinates 7, 6, and ¢ can be written
as E

r=(x}+x+x3)12, O=cos! (x3/7), @=tan”! (x,/xy): (3}

In the equatorial (x;-x,) plane, 8= 90°, cos 8= 0, sin 6= LS? "
Xy =708 §,x,=rsin ¢, and x; = 0. This is the same as the polar
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Fig. A.7-2 Geometry of the latitude and longitude system used to locate
points on the earth’s surface. A point P at S0°N, 60°W (8=40°, ¢ =—60°)
is shown. (After Strahler, 1969.)

coordinate system described in Section A.3.1. Along the x, axis
~we have 0=0°, 50 x, = x, = 0, and x; = 7. Any of these expres-
sions written in terms of colatitude 8 can be converted to
latitude A =90° — 6, using cos 8=sin Aand sin 8= cos L.
This coordinate system is the familiar one (Fig. A.7-2) used
to locate points within the earth or on its surface, = 4. For this
_purpose, the origin is placed at the center of the earth, and the
x5 axis is defined by a line from the center of the earth through
the north pole. The intersections of planes containing the x;
axis with the earth’s surface define meridians, lines of constant
longitude. The x, axis intersects the equator at the prime
meridian, on which ¢ is defined as zero, which has been chosen
_to run through Greenwich, England. The intersection of planes
-perpendicular to the x; axis with the earth’s surface define
parallels, lines of constant colatitude or latitude. Meridians are
aspecial case of greai circles, lines on the surface defined by the
Intersection of a plane through the origin with the surface of
he spherical earth. Parallels are a special case of small circles,
which are lines on the surface defined by the intersection of the
urface of the spherical earth with a plane normal to a radius
vector.
- These conventions allow the colatitude 8 (0° < 8 < 180°)
‘and longitude ¢ (0° < ¢ < 360°) to define a unique point on the
‘carth’s surface. Often locations are described in terms of
latitudes north and south of the equator, and longitudes east
nd west of Greenwich. North and south latitudes corres-
ond, respectively, to colatitudes less than or greater than 90°,
ecause ¢ measures longitude east of the prime meridian, west

. NV\A——«M\_/\W

A.7 Spherical coordinates 463

longitudes correspond to values of ¢ less than 0° or greater than
180°. Thus a point at (10°S, 110°W) has 8=90° + 10° = 100°,
and =-110°=360°-110°=250".

At any point, unit spherical basis vectors (2, &, €y) can be
defined in the direction of increasing 7, 6, and ¢. &, points away
from the origin, and gives the upward vertical direction. &,
points south, and €, points east. These two are sometimes writ-
ten in terms of north- and east-pointing unit vectors, éyg =—&,
and gy = é¢.

An important feature of the unit spherical basis vectors is
that at different points they are oriented differently with re-
spect to the Cartesian axes. The Cartesian unit basis vectors
(&1, &,, &;) point in the same direction everywhere. By contrast,
for example, & points in the é, direction at the north pole, and
in the ~&, direction at the south pole. This effect is described by
the Cartesian (€,, &, &) components of the unit spherical basis
vectors, at a point with colatitude #and longitude ¢:

—sin ¢ cos 0 cos ¢ sin 6 cos ¢
€& =| cos¢|, € =|cosBsing |, € =|[sin@sing . (4)
0 —sin & cos 8

The dependence on the colatitude and longitude describes how
the orientation with respect to the Cartesian axes changes.

At any point, the spherical basis vectors (&,, &, &,) form an
orthonormal set. For problems whose spatial extent is small
enough that the curvature of the earth can be ignored, these
basis vectors provide a useful local coordinate system.

A.7.2  Distance and azimuth

Spherical coordinates are especially useful in describing the
geographic relation between two points on the earth’s surface.
A common application is to find the distance between points
and the direction of the great circle arc joining them. A great
circle arc is the shortest path between points on a sphere, so if
seismic velocity varies only with depth, the fastest path along
the surface is the great circle arc, and the fastest paths through
the interior are in the plane of the great circle and the center
of the earth. Because velocities vary laterally by only a few
percent throughout most of the earth (and imperceptibly in
the liquid outer core), this is a good approximation for most
seismic applications. The source-to-receiver distance is often
given in terms of the angle Asubtended at the center of the earth
by the great circle arc between the two points (Fig. A.7-3). If
A is expressed in radians, then the length s (in km) of the arc
along the earth’s surface is RA, where R is the earth’s radius
(= 6371 km). If A is expressed in degrees, s = RA7/180, so one
degree of arc equals 111.2 km.

Consider the great circle arc connecting an earthquake
whose epicenter is at (6, ¢;) and a seismic station at (6, ¢).
Seismic waves that traveled along the great circle arc (or in the
plane of this arc and the center of the earth) left the earthquake
in a direction given by the azimuth angle { measured clockwise
from the local direction of north at the epicenter to the great
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circle arc. These waves arrive at the seismometer from a direc-
tion described by the back azimuih angle {’ measured clock-
wise from the local direction of north at the seismometer to the
great circle arc. To find these quantities, the Cartesian compon-
ents of the position vectors for the earthquake and the station
are written, using Eqn 2:

R sin 85 cos ¢g
Rsin 6 sin ¢ |- (5)
R cos 8

R sin 8 cos ¢y
Xg=|R sin GE sin d)E Xg =
R cos ¢y

The distance A, the angle between x¢ and xg, is given by the
scalar product

X+ Xg = R? cos A, (6)
SO
A=cos™ [cos B cos B+ sin Oy sin G cos (dg— dy;) ] (7)

This formula defines A uniquely between 0 and 180°. This
shorter portion of the great circle is called the minor arc con-
necting the two points; the longer portion, known as the major
arc, is (360° — A) degrees long.

To compute the azimuth from the earthquake to the station,
consider b, a unit vector normal to the great circle in the local
horizontal plane at x, which is written using the vector prod-
uct of the position vectors

xSxXE:‘f)R2 sin A. (8)

Evaluation of the vector product gives

Great
N circle path
4
90° - ¢
Earthquake 4 > S
b
¥
&

Fig. A.7-3 Geometry of the great circle path
between an earthquake epicenter and seismic
station (left}, showing the convention for
defining the azimuth, {(right).

1S 8 cos O sin ¢ — sin Gy cos O sin ¢y

sin

b= cos 6 sin G cos ¢y — cos G sin G cos ¢ | (9)

sin B sin 6 sin (¢ — )

The azimuth angle ¢, measured clockwise from north, is then
given (Fig. A.7-3) by

cos C=B - €4=———(cos B sin O —sin 65 cos O cos (9 —0g))
sin A
(10)
and
. A 1 . .
sin {=b - &;= ——sin 6 sin (¢ — ¢ ). (11)
sinA ’

Use of both sin ¢ and cos { makes the angle { unambiguous
(0°< ¢<360°). The azimuth from an earthquake to a receiver is
useful, because earthquakes radiate more energy in some direc-
tions than in others (Chapter 4), so measurements at different
azimuths yield information about the source.

The back azimuth ¢’, obtained by reversing the indices E and
S in Eqns 10 and 11, shows the direction from which seismic
energy arrives at a seismometer. Seismometers typically record
the north-south and east-west components of horizontal
ground motion. Using the back azimuth, these observations
can be converted into radial (along the great circle path) and
transverse (perpendicular to the great circle path) components
by a vector transformation (Eqn A.5.9). This distinction 15
made because waves appearing on these components propag:
ated differently (Section 2.4). The azimuth and back azimuth
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Fig. A.7-4 Geometry of the great circle path for an earthquake in the Peru
trench recorded at station VAL (Valentia, Ireland). The azimuth, , and
back azimuth, {’, are not simply related, due to the sphericity of the earth.

angles are measured clockwise from north, a geographic
convention which contrasts with the mathematical one of
measuring angles counterclockwise from the x; direction.
Figure A.7-4 illustrates this geometry for an earthquake in
the Peru trench (8; = 102°, ¢ =—78°) recorded at station VAL
(Valentia, Ireland; 65 = 38°, ¢ = —10.25°). The resulting dis-
tances and azimuths are A=86°, {=135°, {’=245°"

This analysis assumes that the earth is perfectly spherical. In
fact, the earth is flattened by its rotation into a shape close to an
oblate ellipsoid, so the radius varies with colatitude approxim-
ately as

1) =R,(1—fcos 0), (12)

where R, is the equatorial radius, 6378 km. The flattening
factor f is approximately 3.35 x 1073, or abour 1/298, so the
polar radius R, is 6357 km. An average radius can be defined
as the radius of a sphere with the same volume as the earth, if
it were a perfect ellipsoid. Because the volume of an ellipsoidal
earth would be (4/3)7ER§RP, and a sphere of radius R has
volume (4/3)7R3, the average radius is 6371 km. For certain
applications the ellipticity is included in precise distance
calculations.

1 These distance-azimuth equations also have nonseismological applications

because ships and aircraft follow the shortest (great circle) paths between two points
when possible.
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A.7.3 Choice of axes

Spherical coordinates are also used with axes different from
the geographic ones. Because the physics of a problem does not
depend on the choice of coordinates, a set of coordinates that
simplifies the relevant expressions is used. For example, in
earthquake source studies, the x; axis can be chosen to go from
the center of the earth to the location of the earthquake. The
prime meridian, and hence x;, axis can be selected so that
the fault is oriented in the direction ¢ = 0. These axes simplify
the description of the seismic waves radiated by an earthquake,
because the distance A from the source is now the colatitude.
Moreover, the radiation pattern generally has a high degree of
symmetry about the fault, so simple functions of ¢ appear. By
contrast, the radiation pattern need have no symmetry about
the North pole and Greenwich meridian, so a description in
those coordinates would usually be more complicated.

Fortunately, a coordinate system referred to the earthquake
location does not make describing the propagation of waves
from the source any more difficult. Because earth structure
varies primarily with depth, the spherical symmetry about
the center of the earth is independent of the axis orientation
chosen. The geographical convention in which the earth rotates
about the x; axis is helpful for navigation. In most seismolo-
gical applications, however, the north direction has no particular
significance because the propagation of seismic waves is essen-
tially unaffected by the earth’s rotation. The choice of a prime
meridian is arbitrary; in the early nineteenth century some
American maps had it through Washington DC, and some
French maps had it through Paris.

A.7.4  Vector operators in spherical coordinates

Because at a point on the sphere the unit spherical basis vectors
are oriented up, south, and east, the basis vectors at different
locations are generally not parallel. This makes the vector
differential operators more complicated, because these oper-
ators involve taking spatial derivatives of vectors. In Cartesian
coordinates the unit basis vectors are not affected by this
differentiation because they do not change orientation, so only
derivatives of the components need be taken. In spherical
coordinates, because a vector u is

u=u7é7+u0é9+u¢é¢, (13)

differential operators acting on u must incorporate the derivat-
ives of the basis vectors. Thus, in spherical coordinates, for a
scalar field wand a vector field u:

Ldy 1oy . 1 dy
rad y =€ —— +¢&,— — + ¢ — 14
grac v " or 700 rsing o0 (14
ou
divu:l—a—(rluH 1 i(sineue)JrJ——i (15)
r or rsin@ 00 rsin8 0o
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curl u =8¢ — —g—(smguq))__affﬂ
rsin@ { 96 do
o 1 it ~sin@ —a—(ru‘b)
rsin@ | d¢ or
1{ d ou
+ &= | —(ruy) — — 16
emr ar(rue) 30 (16)
vy L 9|l L9 g,V
r2 or r ) r%sin@ 90 20
2
! s (17)

2 sin?6 992

These expressions are used when we discuss spherical waves in
Section 2.4 and the earth’s normal modes in Section 2.9.

A final point worth noting is that the elements of volume
and surface used in integrals are different in spherical coor-
dinates from rectangular coordinates. In spherical coordinates
(Fig. A.7-5) there are several scale factors, so an element of
surface area is

dS=r?sin 6d40d¢, (18)
and an element of volume is

dV =r? sin 0dr d8dg. (19)

Spherical coordinates:

dV=r2sing dr de d¢
rsing
de d
\ dS=r2sin@ de d¢
de , rsing de
9 rde
o
dg

Fig. A.7-5 Definition of the element of volume in spherical coordinates.
Unlike the case of Cartesian coordinates, the volume element in spherical
coordinates in not a cube. (Marion, 1970. From Classical Dynawmics of
Particles and Systems, 2nd edn, copyright 1970 by Academic Press,
reproduced by permission of the publisher.)
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A.8 Scientific programming

Most seismological applications require computers, and these
requirements, especially in exploration applications with very
large data volumes, have spurred the development of computer
software and hardware. Some remarks about the use of com-
puters in seismology thus seem appropriate.

Computer usage in seismology includes several broad and
overlapping categories:

e Computers are often used in data acquisition and record-
ing systems.

° Data are initially displayed and manipulated using
computers.

e Subsequent analysis is frequently done using computers.
For example, seismograms can be filtered to enhance
certain frequencies or combined to better resolve certain
features.

e Theoretical, or synthetic, seismograms are often com-
puted for a range of the parameters under study and com-
pared to data to find the best fit.

e Computers are used to invert seismological data to deter-
mine the parameters of a model which best matches the
data.

» Computer modeling is often used to draw geological in-
ferences from seismological observations. For example,
seismic velocity data are compared to the predictions of
models for the velocity of rock as a function of composi-
tion, temperature, and pressure.

These applications often require scientific programming, a
programming style used for essentially mathematical applica-
tions. Some problems in this book also require scientific pro-
gramming. Although programming is a matter of personal
style, this section discusses several points that may be helpful.
The suggested reading provides some starting points for read-
ers interested in pursuing these topics further.

A.8.1 Example: synthetic seismogram calculation

Consider a program to compute a synthetic seismogram for
waves in a one-dimensional constant-velocity medium, a math-
ematically idealized string that illustrates features of wave
behavior. The program is based on u{x, £), the displacement as
a function of position x and time z. The displacement is zero at
the fixed ends of the string, x = 0 and x = L, between which
waves travel at speed v. As in Section 2.2.5, the displacement
can be written as the sum of the normal modes of the string,
each of which is a standing wave with # half wavelengths along
the string,

u,(x, ) =sin (nmx/L) cos (@, 1), (1)
and vibrates at a characteristic frequency, or eigenfrequency,

o, =nav/L. (2)
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Fig. A.8-1 Top: Synthetic seismogram for a string showing the direct wave
arrival (1) and reflections (2, 3} from both ends. Bottom: Geometry
showing source and receiver positions, and the times of the direct and
reflected arrivals.

If a source at position x, generates a pulse at time zero with
duration 1, the propagating waves are described by a weighted
sum of the modes

ulx, t)= i sin (nmx/L) sin (nmx /L) cos (@,t) exp [—(O)nf)z/4]‘
n=1
(3)

Given the displacement u{x, #) for any position and time,
a seismogram (“stringogram”) giving the displacement ver-
sus time at a receiver position x, is u(x,, t). Alternatively, a
“snapshot” of the displacement everywhere on the string at
time £, 1s u(x, £).

Consider a program to evaluate a synthetic seismogram
using this sum. For simplicity, we use a string of length 1 m!
with a wave speed 1 m/s, a source at x,=0.2 mand a receiver at
%,=0.7 m. To approximate the infinite sum, the program adds
up 200 modes. The seismogram (Fig. A.8-1, top) is calculared
at SO time steps, covering 1.25 s. This program is written in

It is easy to use arbitrary values on a computer; we could also use 1km or 1
furlong. Finding a physical 1 km string is another matter . . .
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Fortran, a language that is especially suitable for scientific pro-
gramming and is therefore commonly used in seismology (and
thus in this book). The program could be also written in other
languages, but the general points would still apply.
¢ SYNTHETIC SETSMOGRAM FOR HOMOGENEOUS STRING
€ DISPLACEMENT U AS FUNCTION OF TIME T
C CALCULATED BY NORMAL MODE SUMMATION
DIMENSION U(200)
PT = 3.1415927

PARAMETERS (NORMALLY WOULD COME FROM INPUT)
STRING LENGTH (M)

ALNGTH = 1.0
VELOCITY (M/S)

C=1.0
C NUMBER OF MODES

NMODE = 200

C SOURCE POSITION (M)

00

@]

XSRC = 0.2
C RECEIVER POSITION (M)
XRCVR = 0.7

C SEISMOGRAM TIME DURATION (S)
TDURAT = 1.25
C NUMBER TIME STEPS
NTSTEP = 50
C TIME STEP (8)
DT = TDURAT/NTSTEP
C SOURCE SHAPE TERM
TAU = .02

(@]

LIST PARAMETERS
WRITE (6,3000)
3000 FORMAT (‘SYNTHETIC SEISMOGRAM FOR STRING’)
WRITE (6,3001) NMCDE
3001 FORMAT (‘NUMBER OF MODES’, I6)
WRITE (6,3002) ALNGTH, C
3002 FORMAT ('LENGTH (M)’ F7.3, ‘VELOCITY,
X (M/8)’, F7.3)
WRITE (6,3003) X5RC, XRCVR
3003 FORMAT ('POSITION (M): SOURCE’, I7.3,
X 'RECEIVER’, F7.3)
WRITE (6,3004) TDURAT, NTSTEP
3004 FORMAT ('SEISMOGRAM DURATION (S)’', F7.3,
¥ I&, 'TIME STEPS')
WRITE (6,3005) TAU
3005 FORMAT ('SOURCE SHAPE TERM’', F7.3)
C
C INITIALIZE DISPLACEMENT
DO 5 I =1, NTSTEP
U(I)=10.0
5 CONTINUE
C
C OUTER LOOP OVER MODES
DC 10 N =1, NMODE
ANPIAL = N*PI/ALNGTH
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C 5PACE TERMS: SOURCE AND RECEIVER
SXS = SIN(ANPIAL*XSRC)
SXR = SIN(ANPIAL*XRCVR)
C MODE FREQUENCY
WN = N*PI*C/ALNGTH
C TIME INDEPENDENT TERMS
DMP = (TAU*WN) **2
SCALE = EXP(-DMP/4.)
SPACE = SXS*SXR*SCALE

C INNER LOOP OVER TIME STEPS
DO 15 J = 1, NTSTEP
T =DT*(J - 1)
CWT = COS (WN*T)
C COMPUTE DISPLACEMENT
U(J} = U(J) + CWT*SPACE
15 CONTINUE
10 CONTINUE
C
C OUTPUT SEISMOGRAM FOR LATER PLOTTING
WRITE (6, 3101) (U(J}, J= 1, NTSTEP)
3101 FORMAT (7¥10.4)
STOP
END
This example brings out several points:

o [s the answer correct? Two different types of etror occur
in scientific programs. First, the program may be wrong. In
this case, the mathematical formulation correctly describes the
physical problem, but the program incorrectly implements
this formulation. This is the usual situation, in which “bugs”
are identified and corrected. Second, the formulation may be
wrong, so the program correctly implements an incorrect
mathematical model. This could occur because of a mathemat-
ical error, like an attempt to sum a divergent series, or a physical
error, such as an equation that does not correctly describe
waves on a string. An incorrect formulation is particularly dis-
turbing because it cannot be detected by checking the program.
For example, Fig. A.8-2 shows two computer simulations for
waves bending as they pass from one medium into another with
higher velocities. Figure A.8-2 (fop) uses the correct formula-
tion of Snell’s law (Section 2.5), whereas Fig. A.8-2 (bottom)
looks equally convincing but is wrong because the equation
which the program illustrates is incorrect.

Programmers check for both types of errors by choosing
cases for which the results can be predicted analytically and
comparing the results to those of the program. Several tests
are easily done for the string. The wave following the shortest
(direct) path appears at the expected time, 0.5 s (Fig. A.8-1,
bottom), because the source and the receiver are 0.5 m apart.
The next two arrivals, reflections from the ends of the string,
also occur at the expected times, Moreover, these arrivals have
polarities opposite that of the initial pulse, as should occur
(Section 2.2.3) upon reflection at the string’s fixed ends. The
program can also be checked for different string lengths,
speeds, and source and receiver positions. Similarly, in addi-

Right

Fig. A.8-2 Demonstration of the danger that a program accurately
computes an incorrect mathematical formulation. Top: A correct
simulation of wave refraction using Snell’s law, sin #;/v; = sin 1,/v,.
Bottom: The same simulation using a wrong formula for Snell’s law,
/vy =ilv,.

tion to synthetic seismograms, displacements along the string
at fixed times could be computed. Such tests are important,
because if the mathematical model is not appropriate for the
physical situation, then time spent debugging, documenting,
and optimizing the program is wasted.

e The program is reasonably comprebensible. Several fea-
tures help clarify the program. The program’s purpose and
method are stated. Variable names somewhat resemble those in
the equation: “SXS” is sin x_, and so on. Comments identify the
functions of portions of the program.

e The program uses loops and arrays. The seismogram is
described by the array U(]), and its values at successive times
are calculated by looping. Using an array, rather than discrete
variables UT1, UT2, etc., makes the program clearer, closer
to the mathematical formulation, and simplifies output. The
loop structure also makes the program clearer and allows
the number of time steps to be changed simply by changing the
parameter NTSTEP. Similarly, the number of modes is easily
changed.

o The output is labeled. The seismogram was placed in an
output file for later plotting. The parameters used to compute
the seismogram are included, so examination of the output
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C OQUTER LOCP OVER MODES
DO 10 N = 1, NMODE

terms for each mode
that do not depend on time

C INNER LOCP OQVER TIME STEPS
DO 15 J = 1, NTSTEP

terms that depend on time
C COMPUTE DISPLACEMENT

i5 CONTINUE
0 CONTINUE

Fig. A.8-3 Structure of the loops for the string synthetic seismogram
calculation.

shows how it was computed. This helps avoid the common
situation where, given a large collection of computer output,
cases are rerun because it is unclear what parameters were
used. Moreover, subsequent “improved™ versions of the pro-
gram can be checked to see whether they give the same results.

o The program is somewhat efficient. Some thought is gener-
ally put into optimizing scientific programs to make them run
rapidly. The program could find the displacement by looping
over time and summing all the modes at each time step. How-
ever, consideration of the equation shows that three terms,
sin (nmx/l), sin (n7x /1), and exp [~(,,7)*/4] are evaluated only
once for each mode, whereas only cos (@,2) is evaluated for
each time step. It is thus more efficient to loop over the modes
and evaluate each at all times (Fig. A.8-3). Because the outer
(mode) loop is executed 200 times, whereas the inner (time)
loop is executed 200 x 50 = 10,000 times, the inner loop should
be as efficient as possible. The program would run more slowly
if the loops were reversed. The difference, though not signific-
ant for this calculation, might be significant for much larger
numbers of time steps and modes.

Further improvements could be made to fully optimize the
program. Optimization is not an end in itself, because the
programmer’s time and the intelligibility of the program are
also important. Programmers typically try to write reason-
ably optimized programs without making them impossible to
understand and debug. Once fully tested, a program that will
be used heavily may be worth further optimization if the com-
puter time savings justify the effort required. There is no point
in “getting the wrong answer as fast as possible.”” Certain
computers, such as those using parallel processors, may require
specialized optimization.

A.8.2 Programming style

The style in which programs are written can make them casier
to develop, debug and use. A few suggestions, though not abso-
lute rules, may be useful.

2 Kernighan and Plauger (1978).
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o Document the program. Computer programs can be almost
useless without adequate documentation. Stonehenge has been
described as “the world’s largest undocumented computer
system.”3 Failure to document is often justified by the assump-
tion that the program will not be used again. This rationaliza-
tion is self-fulfilling, because even the author may find an
undocumented program difficult to reuse once the details are
forgotten.

Documentation should state the program’s goals and
method. The input and output variables, their units, and how
they are defined should be listed. Implicit assumptions and
restrictions are worth noting. Comments should identify major
portions of the program and describe their functions.

Documentation is best written when writing a program
because it can aid in debugging. Moreover, once a program is
fully written, it is harder to remember how it works. Documen-
tation included in the program is less prone to be lost than that
written separately.

Finally, documentation helps scientists exchange programs
and work in collaboration. This can be useful, except in the
apocryphal cases of programmers writing gigantic undocu-
mented programs to maximize their job security.

o Use modular programming. Large programs can generally
be divided into smaller subroutines or functions, which can
be used like the functions (e.g., sine, square root) supplied by
many computer languages. Each subroutine can be tested sep-
arately and then used in various programs. Subroutines can
handle applications that frequently recur, such as reading or
plotting data or carrying out a mathematical operation. This
approach saves the time needed to write and debug portions of
a program similar to one already available. Moreover, the
overall structure of a program containing a set of calls to sub-
routines is generally easier to understand, because many com-
plexities are isolated into subroutines.

o Make programs comprebensible. It is helpful to be able to
understand programs once written. Clear documentation and
modular programming help. In addition, it should be easy to
tell what portions will be executed under which circumstances.
For this purpose, portions of a program should be executed
sequentially, rather than jumping backwards and forwards
within a program.

Similarly, the statements themselves can be written clearly.
The use of mnemonic variable names and natural groupings of
variables can help. For example, it is somewhat unclear that

X=0.23873=A/(Y+Y*Y)

gives the average density X of a planet with mass A and radius
Y, whereas

RHO = AMASS/((4.0/3.0) = PI = (RADIUS**3))

3 Brooks (1975).
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is clearer. For clarity, the latter expression is more verbose
than required, has 7 previously defined, and is slightly less
efficient.

e Dow’t be clever. Sometimes the shortest, “cleverest” way
of programming something can be the worst. In addition to
giving rise to lack of clarity, some shortcuts make it difficult
to transfer programs between computers. This is especially true
of programs that exploit specific properties of an individual
computer or compiler, such as local variants of a standard
programming language.

o  Keep a perspective on precision. The program calculates
and manipulates numbers that, at least in theory, correspond to
physical entities. It is worth keeping track of the precision asso-
ciated with the data and other quantities, and of that required
to compute the desired results.

o Oprganize programs and data. Related programs and the
associated files can be grouped into directories which include
files listing and explaining the directory’s contents. Data files
can be organized similarly. Often seismograms, for example,
go through multiple processing stages carried out by different
programs. A common practice is to use specific types of file
names to indicate various intermediate stages. In addition, the
data files begin with headers, information identifying the data
and recording the operations applied to it. The headers and file
names should be updated by the programs themselves, rather
than “by hand” at each stage. The output, whether text or
graphic, should contain the parameters required to replicate
the result. This can be especially important for interactive data
processing because input files are not kept.

A.8.3 Representation of numbers

Several simple concepts about numerical calculations on a
computer are worth bearing in mind. One is the consequences
of the way in which numbers are represented and manipulated.
Because computers use binary (base 2) arithmetic, numbers
are written as sets of bits, single binary digits, grouped into
words. Some general ideas about these representations can be
illustrated without going into the schemes used by various
computers.

Integers are represented by their binary equivalent. Thus 46
(decimal) is 101110, because

46=1x25+0x2%+1x23+1x22+1x21+0x20,

Many computers represent integers by 16- or 32-bit words.
The word length governs the range of possible integers. For ex-
ample, using 16 bits, one of which indicates the sign, the largest
positive integer that can be represented is

11111111111 1111 (binary) =21 - 1=32,767.

Exponent t Mantissa
L | 1 1 i L 1 i 1 i 1 1 | I O o | i L L 1 1] i 1 1 I L I

Fig. A.8-4 Representation of a floating point number using 32 bits.

Because a greater range is needed for scientific computation,
floating point numbers are used:

number = (mantissa ) x 26¥ponent,

Floating point numbers can accommodate fractions, with digits
to the right of the binary point representing negative powers
of two, just as digits to the left of the point represent positive
powers of two. For example,

46.625 (decimal) =1x 25+ 0x 2%+ 1x 23+ 1 x 22+ 1 x 21
+O0x2041 %271+ 0% 22+ 1 %273

=101,110.101 (binary)=0.101110101 x 26,

To represent binary floating point numbers on a computer, a
certain number of bits are assigned to the mantissa and the
exponent. Figure A.8-4 shows one way in which a single pre-
cision floating point number might be represented by a 32-bit
word. One bit is reserved for the sign of the mantissa, 8 bits
are used for the exponent including its sign, and the remaining
23 bits contain the mantissa. The number of bits available for
the exponent determines the range of the floating point num-
bers. Because 2% = 256, the exponent can represent numbers
between approximately 2127 and 27128 or approximately 10%
to 1073%. The number of bits in the mantissa determines the pre-
cision or number of significant digits. Because 2723 is approxim-
ately 1077, the maximum number of significant decimal digits is
about seven. Further precision can be obtained using double
precision numbers with additional bits for the mantissa. The
precise values of the range and the precision depend on details
of the implementation. N

The range and precision in use are worth bearing in
mind because computers do not always issue “overflow” or
“underflow” warnings. The computer may assign a value, such
as the largest floating point number, and proceed. It can be
frustrating to find that the peculiar answers produced by 2
program result from numbers outside the computer’s range.

A related malady is round-off error, the loss of computa-
tional precision due to the limited number of significant digi‘ts}
To illustrate the concept, suppose that a computer used six bits
for the mantissa. The decimal addition .

0.65625+0.96875=1.625

would, in binary, be
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0.10101+0.11111=1.10100,

which, because no precision was lost, equals the exact answer.
Now, consider the decimal addition

5.25+0.96875=6.21875,
which, in binary, becomes
0.101010%23+0.111110x 29,

To carry out the binary addition, because the numbers have
different exponents, the mantissa of the smaller number is
shifted to produce a common exponent. If some of the bits rep-
resenting the smaller number are lost, inaccuracy may result.
For example, in this case,

0.101010x23+0.000111 % 23=0.110001 x 23
=6.125 (decimal).

The precision available on a computer is generally adequate
to avoid significant round-off error. Nonetheless, it is a poten-
tial problem to keep in mind, especially in long calculations or
in those such as a series sum where the answer is the difference
between large numbers.

A.8.4 Afew pitfalls

Difficulties often can be avoided by considering how various
statements in the program will be executed. This is especially
the case when using compilers that provide little error checking
and few helpful warning and error messages. The computer,
following its explicit rules, may yield results differing from
those expected. The foibles here are for Fortran, but similar
ones often appear in other computer languages.

s Statement execution. Problems often stem from the distinc-
tion between integers and floating point numbers. For example,
ifTand J are integer variables,

J= 5
I=1]

- yields zero, because integer division yields an integer. This
problem is not cured by setting the result equal to a floating
point variable, or performing a floating point operation on the
~integer result:

yield zero, because division is done as an integer operation, and
the result (0) is converted to floating point (0.0). On the other
‘hand, most compilers give 0.2 as the result of
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X=1.0/],

although a conservative policy is to explicitly convert the integer
to floating point

X = 1.0/FLOAT(J).

A second class of problems can result from the order in
which operations are performed. For example, it may be
unclear whether

-1.0%%2

should be interpreted as (-1.0)2 = 1.0 or —(1.0)? = —1.0.
Although the computer language rules are explicit, it may be
wise to use parentheses, e.g.,

(-1.0)**2

to ensure that operations are carried out as desired. The
additional parentheses can also make the program more
comprehensible.

s Subroutines. Subroutines are heavily used in writing scient-
ific programs. As a result, problems can result while using
computer languages like Fortran in which what appear to be
arguments passed to a subroutine are actually the locations in
memory of these arguments.
A common error is exemplified by the following program
CALL SUB(1.0)
=1.0

WRITE (6,*%) ‘X ="', X

STOP

END

SUBROUTINE SUE(Y)

Y =5.0

RETURN

END
which, when executed, yields “X = 5.0.” Because Y, a para-
meter in the subroutine definition, was set equal to 5.0, the
value of the corresponding parameter in the subroutine call,
“1.0” has been redefined as 5.0. This situation, which some-
times underlies inexplicable behavior by programs, can be
avoided by not passing numerical values of an argument expli-
citly to a subroutine if the argument will be redefined. For
example, had the first statements been

Z=1.0

CALL SUB(Z)
the variable Z would equal 5.0, but “1.0” would not be
affected.

Other errors occur when either the type or number of argu-
ments in a call to a subroutine do not match those in its defini-
tion. For example, calling a subroutine with an integer variable
may yield unexpected results if the definition is in terms of a
real variable.
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e Arrays. Scientific computing often involves dealing with
arrays, groups of data addressed by their indices. For example,
a seismogram giving a single component (e.g., vertical) of
ground motion can be written as an array (U(1), U(2) ...) of
displacement versus time. Similarly, a seismogram giving all
three (vertical, north-south, east-west) ground motion com-
ponents can be written as a two-dimensional array

u({l, 1), U1, 2), UL, 3), U1, 4) ...

U2, 1), U2, 2), U2, 3), U2, 4) ...

U3, 1), U3, 2), U3, 3), U3, 4) ...
whose first index gives the component, and second index indic-
ates the time.

Arrays are defined initially by statements giving their dimen-

sions, 1.e.,

DIMENSTON A (N, M)
or

REAL A(N, M).
Typically, the computer selects a memory location for the first
element in A and reserves N x M successive locations. Sim-
ilarly, N x M x R locations are reserved for a three-dimensional
array dimensioned (N, M, R). In Fortran, regardless of the
number of dimensions, an array is stored as one-dimensional
with the first index varying the most rapidly, then the second,
and so on. In other words, if A is dimensioned (2, 3), the stor-
age order is

A(1,1), A(2,1), A(1,2), A(2,2), A(L,3), A(2,3).
For two-dimensional arrays, this can be thought of as storing
the array by columns. An individual array element is found by
calculating its location relative to that of the first element.
Thus, for an array dimensioned (N, M)}, with element (1, 1) at
location 1, element (I, J) is found at location

1+ {I~-1)+ (J—1) XN

Several computational difficulties can arise in dealing with

arrays. A common set of errors involve being “off by one,”
either by starting or ending on the wrong element. This is
especially easy because some computer languages (e.g., For-
tran) start with the first element in an array being “1,” whereas
others (e.g., “C”) start with the first array element as “0.” Thus
one needs to make sure that the array elements correspond
to the expected variable values, such as seismic record times.
Often, when an array index is computed by the program, an
error yields an index outside the bounds dimensioned for the
array. Because many compilers do not check for such errors
unless specifically requested, a statement like

A(9) = 4.0
will usually be executed even for an array dimensioned

DIMENSION A(5) .
Typically, the computer places 4.0 in whatever is 8 locations in
memory beyond A(1). This location may contain some other
variable, or a portion of the program itself. Often the program
continues until it requires the contents of the overwritten loca-
tion, at which point several things may occur. At best, the pro-
gram “crashes”; at worst, it continues the calculation with
erroneous values that propagate. Array element out-of-bounds
problems are among the most common and most frustrating

difficulties in scientific programming. When a compiler pro-
vides array bounds checking, it is worth using.

The nature of array storage can also lead to inefficient pro-
grams. On many computers, data which are actually on disk
can be treated as resident in memory, and are automatically
“swapped” into physical memory when needed. For efficiency,
large adjacent regions of the disk are often swapped into phys-
ical memory together. Efficient programs minimize swappmg
by making the most possible use of data that reside in phys-
ical memory. By contrast, inefficient programs can produce
“thrashing,” a situation in which much of the computer’s time
is spent swapping rather than computing.

For example, consider®

DIMENSION A (1000, 1000)

DO 10 I = 1,1000

DO 10 J = 1,1000

10A(T, J) =T +J
Because the elements of A are stored in column order, A(1, 1)
and A(1, 2) are a thousand locations apart. It would be more
efficient to reverse the loops

10A(T, T)=T+J
so that adjacent locations (A(1, 1), A2, 1)..
successively.

.) were used

e Uninitialized variables. Problems frequently result from
uninitialized variables: those used in calculation without their
values being set. A common example, summing an array

DO10I =1, N

10 SUM = SUM + A(T)
can give strange results unless the compiler initializes SUM
as zero. Because this is not always the case, it is thus wise to
explicitly mitialize, e.g.,

= 0.0

before executing the loop. Proper initialization also helps to
ensure that programs do not give different results on different
computers.

o The computer may be wrong. Althongh most problems
result from programming errors, a very small fraction of the
time the error may be the computer’s. Compilers have been
known to contain “bugs” in common routines such as square
root, tangent, or complex arithmetic. This tempting explana-
tion for the failure of a long and intricate program can gener-
ally be rejected unless a test program that carries out only the
suspect operation yields the wrong answer.

A.8.5 Some philosophical points

To close our discussion, a few general thoughts are worth
considering. Historically, computers were considered a scarce
and valuable resource. Currently, as computer power 1ncreases
and costs fall, it is increasingly practical to carry out investi-

4 Hatton (1983c).
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gations numerically. One example is the change, both in ex-
ploration and in global seismology, from earth models whose
properties vary only with depth, to three-dimensional models
that are evaluated numerically.

The role of analytic solutions is also changing. In addition
to the traditional goal of providing exact solutions to simplified
problems, analytic solutions provide test cases for numerical
solutions of more complex problems. Analytic solutions can
also yield the insight needed to evaluate numerical results.

Along with the increase in the complexity of problems that
can be solved computationally comes an increase in the volume
of output. Fortunately, a parallel development has been the
increasing role of graphic output, often in color. The proverb
“A picture is worth a thousand words” may be unduly con-
servative in this context. A thousand words on a computer
might be 32,000 bits; graphic cutput often makes it possible to
visualize data with millions of bits.

Finally, software such as spreadsheets or programs with
sophisticated general mathematical capabilities often eliminates
the need to write programs for a specific application. In this
book, we do not assume that such software will be used for the
problems, although many could be done this way. We think
that programming without using such software gives a deeper
understanding of the underlying principles. Hence, in educa-
tional applications, we strongly favor programming, even if in

— Problems e

1. Find the angle between the vectors (1,4, 2) and (2, 3, 1).
2. Show, using index notation, that for the three-dimensional vectors
a,b,c
(a) axbisperpendicular to bothaandb.
(b) |axb]=]a| b|sin 6, where 6is the angle between the two
Vectors.
(c) a-(b+c)=a-b+a-c
(d) ax(b+c)=axb+axc.
(e) a-(bxc)=b-(cxa)=c-(axb).
(f) ax(bxc)=bf{a-c)—c(a-b).
3. Show that for arbitrary matrices A, B, and C:
(a) (AB)T=BTAT.
(b) (ABC)T=CTBTAT.
4. Prove the following properties of determinants for the case of a
2 x 2 matrix:
(a) The determinant of a matrix equals the determinant of its
transpose.
(b) If two rows or columns of a matrix are interchanged, the de-
terminant has the same absolute value, but its sign changes.
(¢} If a multiple of one row (or column) of a matrix is added to
another row {or column), the determinant is unchanged.
(d) If two rows or columns of a matrix are the same, the
determinant is zero.
5. Express the determinant of a 3 x 3 matrix using the definition in
EqnA.4.17.
6. Prove that if A has an inverse, the two solutions x and y satisfying
Ax=band Ay=Db are equal.

e N A
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non-educational applications ease of use may favor sophistic-
ated software.

Further reading

Many texts cover portions of the mathematical material summarized here.
Feynman (1982) discusses general issues of the relations between math-
ematics and science. Butkov (1968) and Menke and Abbott (1990) provide
introductions to many of these topics. Fung (1969}, Hay (1953), Jeffreys
and Jeffreys (1950}, and Marion (1970) treat vectors, vector transforma-
tions, and vector differential operators. Applied linear algebra texts such
as Franklin (1968) and Noble (1969) deal with the range of the subject
including numerical methods.

Articles by Hatton (1983a-d, 1984a,b, 1985) provide a broad and witty
introduction to computer science for geophysicists. Eckhouse and Morris
(1979) and Sloan (1980) cover topics in computer software, including the
representation of numbers and arithmetic operations. Kernighan and
Plauger (1976, 1978) discuss topics in programming style. Brooks (1975)
treats issues in the development and organization of computer software.
Numerical analysis texts like Froberg (1969) cover round-off and other
sources of error in numerical computations. Harkrider (1988) gives an enter-
taining anecdotal account of early (¢.1960) computer usage in seismology.

The application of spherical geometry to the paths between an earth-
quake and a receiver, including the effects of the earth’s ellipticity are dis-
cussed by Ben-Menahem and Singh (1981) and Bullen and Bolt (1985).
The theory of the earth’s shape is treated by Cook (1973) and Jeffreys
(1976).

7. Find the inverse of the matrix

&

both by the cofactor method and by row operations. Check that
the solution is in fact the inverse.
8. Show that the inverse of a 2 X 2 matrix A is given by

Al= L[ an _au)
[Al\~a,, a4y
9. Show that A, the transformation matrix for a rotation about the
&, axis (Eqn A.5.9) satisfies ATA =] and is thus orthogonal.
10. Prove that the magnitude of a vector is preserved by an orthogonal
transformation.
11. Expand the determinant that give the eigenvalues of a 3 x 3 matrix
(Eqn A.5.19) and verify that the invariants (Eqn A.5.21) are the
coefficients of the characteristic polynomial.
12. Prove the following vector identities using index notation:
(a) Forany vector field u(x), V- (Vxu)=0.
(b) For any scalar function ¢(x), V. x Vo= 0.

13. For the vecror field u(x, v, z) = (3x%y? + z, 2x3y + 2y, x), find:
(a) V-u

b) Vxu.

¢) Viu,

d) Ascalar field ¢(x, v, z) such thatu=Vae.

{
{
{
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14. Use index notation toshow that the Laplacian in Cartesian coordin-
ates of any vector field u(x) satisfies

Vig=V(V-u}-VxVxu

15. Show that at any point in a spherical coordinate system, the spher-
ical basis vectors (€, &, &,) form an orthonormal set.

16. Use Eqn A.7.6 to derive the angular distance A between the loca-
tions of an earthquake and a seismic station as given in Eqn A.7.7.

Computer problems

The solutions may be useful for other problems in this and other

chapters.

C-1. Find the largest integer your computer allows by starting with
%27 “2 % 2" “2x 2 x2,” and doing successive multiplication by
2. What happens when you exceed this number? Do the same for
floating point numbers using “10.0” instead of “2” in both single
and double precision. Does double precision allow larger floating
point numbers?

C-2. Find when your computer starts to show round-off error by start-
ing with “10.0” and doing successive multiplications by 10.0. At
each step, add 1.0 to the result and subtract the two numbers.
When does the difference become zero? Do the same in double
precision.

C-3. Write subroutines to do the following operations on an input
vector in three dimensions:

(a) Find the magnitude of a vector.

(b) Find the sum of two vectors.

(c) Find the scalar product of two vectors.

(d) Find the vector product of two vectors.
Your subroutines should include comment lines explaining the
purpose of the routine and the various inputs and outputs.

C-4. Write a subroutine using the necessary subroutines from problem
C-3 to find the angle between two vectors.

C-5. Use the solutions to problems C-3 and C-4 to find the magnitude,
sum, scalar product, and vector product of the vectors (1, 4, 2}
and (2, 3, 1), and the angle between the two vectors.

C-6. (a) Write a subroutine to multiply an # x m matrix by an m-

element vector.

(b) Write a subroutine to multiply an # x 72 matrix by an m x r
matrix.

{¢) Write a subroutine to find the determinant of a 3 X 3 matrix.

C-7. (a) Write a subroutine that uses Gaussian elimination with

partial pivating to solve the system of equations Ax=b. The
routine should take an arbitrary 3 x 3 matrix A and 3-element
vector b as inputs. The program should test the solution by
multiplying Ax and subtracting b from the result. The sub-
routines from C-6 may be helpful.

(b) Use the subroutine to solve
10 =7 0 (%) (7
-3 2 6 {|x;|=14
5 -1 5 ||x) |6

C-8. (a) Write functions that return the values of the 51»/- and g, sym-
bols given the indices as arguments. Test the functions and
show that they give the correct values.

Write a program that uses these two functions to prove the
identity

(b

—

Eirlis ™ 5;551& - ‘szaks

by testing all possible combinations of indices.

C-9. (a) Write a subroutine to invert a 3 x 3 matrix using elementary
row operations. The subroutine should first check to see if
the matrix is singular. It should test the result by multiplying
by the original matrix.

{(b) Use this routine to invert

1 -1 -1
3 -1 2
2 2 3

C-10. (a) Write a program to solve a 3 x 3 system of equations Ax=b
using the matrix inversion routine from the previous prob-
lem. The program should test the solution by multiplying Ax
and subtracting b from the result. The subroutines from C-6
may be helpful.

(b} Use the program to solve the system of equations in C-7.

C-11. (a) Write a subroutine to find the roots of a general cubic equa-
tion using the method given below.

A cubic equation ¥? + py? + gy + =0 may be converted to

P tax+b=0

by defining

y=x—pl3, a=(3q~pM3, b=(2p> g +27r)27.

Ifp, g, and r are real, the quantity

c=b*4+a’127

characterizes the roots: if ¢ > 0, there is one real root and two
conjugate imaginary roots; if ¢ =0, there are three real roots,
of which two are equal; and if ¢ < 0, there are three real and
unequal roots. Using

A= (_b/z + 61/2)1/3, B= (mb/z _ C1/2)1/3’

the values of x given by

x=A+B, [~{A+B)+(A-B)-3)2,
~[(A+B)+(A-B)4-312

are the roots.

The subroutine requires complex arithmetic and should
test the roots by substituting back into the equation.
Use the result to solve

Cx

¥ —8y2+19y~12=0.

C-12. (a) Write a subroutine to find the eigenvalues and eigenvectors
of a real, symmetric 3 x 3 matrix, using the results of C-11.
The program should check that the eigenvectors and eigen-
values satisfy their definition. Be careful to avoid dividing by
zero.
(b) Use this subroutine to find the eigenvalues and eigenvectors of

[V B S
nods O
N W

L Beyer (1984).
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C-13. (a) Write a program that accepts the latitude and longitude of
two points on the earth’s surface and finds the angular dis-
tance and distance along the earth’s surface between them,
and the azimuth and back azimuth.

(b) Use your program to find the distances and azimuths
between:
(i) Cairo, Hlinois (37°N, 89°W) and Cairo, Egypt (30°N,
32°E).
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(ii) Berlin, New Hampshire (44.5°N, 71.5°W) and Berlin,
Germany (52.5°N, 13.5°E).

(iii) Montevideo, Minnesota (45°N, 95.5°W) and Monte-
video, Uruguay (35°S, 56°W).

(iv) Mexico, Maine (44.5°N, 70.5°W) and Mezxico City,
Mexico (19°N, 39°W).




