Figure 3.3-3: Ray path through multilayered structure.
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Figure 3.3-4: Travel time curves for multiple layer reflections.
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Figure 3.3-5: Travel time curve for reflections off of a dipping layer.
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Figure 3.3-6: Ray path in a medium with smoothly increasing velocities.
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Figure 3.3-6: Ray path in a medium with smoothly increasing velocities.
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Figure 3.3-10: Cartoon g y of a multi seismic ion profile.

Figure 3.3-13: Cartoon of the four different gather types.
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Figure 3.3-16: Cartoon of CMP stacking and velocity analysis.
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Figure 3.3-19: CMP stacking for flat and dipping layers.
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Figure 3.3-8: Relation between tau-p, and travel time curves.
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Figure 3.3-23: lllustration of slant stacking.
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Figure 3.3-24: Example of analysis of a common source point gather of
Vibroseis data.
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Figure 2.5-15: Huygens' generation of circular wave fronts.

Figure 3.3-32: Three idealized seismic reflection experiments.
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Figure 2.5-16: Huygens' principle for the propagation of a straight wave front.
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Figure 3.3-33: Effect of a point source or diffractor.
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Figure 3.3-34: Diffraction hyperbola with true amplitudes.
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Figure 3.3-36: Generation of a "bowtie" structure.
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Figure 3.3-37: Diffraction off the ends of truncated interfaces.
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Figure 3.3-35: Modeling a dipping layer as a line of point diffractors.
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Figure 3.3-38: lllustration of Kirchoff migration.
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FIG. 1.2.5. A deep-marine dataset p(t,z) from Alaska (U8, Geological
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Figure 3.3-40:
reflection data.
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Figure 7.2-4: Map view of Cartesian relation between epicenter and station.
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Figure 7.2-5: Example of a joint epicenter determination relocation study.
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Figure 7.3-1: Geometry of a region being studied using travel time tomography.

Figure 7.3-2: Ray path and block g

experiment.
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Figure 7.3-5: Example of the use of a block model for carrying out a
tomographic inversion.
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Figure 7.3-7: Example of the effects of the reference model on a tomographic
inversion.
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Figure 7.3-8: Example of cross-borehole tomography.
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Figure 7.4-1: Relation between normal mode peak and mode attenuation.
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Figure

7.4-5: Example of the comparison of various attenuation models.
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Figure 7.4-6: Example of inverting Rayleigl
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Figure 1.1-8: Inversion modeling flow chart.
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Figure 5.2-6: Correlation of current and history plate velocities.
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