Spatially aliased seismic reflection data

http://sepwww.stanford.edu/sep/prof/iei/omk/paper_html/node13.html

Figure 6.4-4: Relation between frequency amplitude spectrum and discrete
Fourier transform (DFT).
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Stein & Okal, 2007

Figure 6.2-4: Amplitude spectra of a vertical-component seismogram from
the great 1994 Bolivian earthquake.
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Figure 6.4-5: Example of a time domain convolution.
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Precision vs accuracy

Section 4.1

Precise, accurate

Random: small
Systematic: small

(a)

Imprecise, accurate

Random: large
Systematic: small

(©

Random: small
Systematic: large

(b)

Random: large
Systematic: large

(@

Random and Systematic Errors

Precise, inaccurate

Imprecise, inaccurate

Figure 4.1. Random and systematic errors in target practice. (a) Because all shots arrived close
to one another, we can tell the random errors are small. Because the distribution of shots is cen-
tered on the center of the target, the systematic errors are also small. (b) The random errors are
still small, but the systematic ones are much larger—the shots are “systematically” off-center to-
ward the right. (¢) Here, the random errors are large, but the systematic ones are small—the
shots are widely scattered but not systematically off-center. (d) Here, both random and system-

atic errors are large.

Taylor, 1997 73



Precision vs accuracy

Random: small
Systematic: ?

(@) (b)

Random: large
Systematic: ?

&

(© (d)

Random: large
Systematic: ?

Random: small
Systematic: ?

Figure 4.2. The same experiment as in Figure 4.1 redrawn without showing the position of the
target. This situation corresponds closely to the one in most real experiments, in which we do

not know the true value of the quantity being measured. Here, we can still assess the random er-
rors easily but cannot tell anything about the systematic ones.
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Some of the (generally small)
discrepancies between plate motion rates
found from space geodesy & from
magnetic anomalies result from errors in
the paleomagnetic timescale

200 Tttty
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/
/

-100

Relative rates from SLR/VLBI Solution (mmvyr)

4504
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Relative Rates from NUVEL-1 (mvyr)

Robbins et al., 1993

150 200

USING KNOWN HISTORY OF EARTH'S MAGNETIC FIELD, ANOMALIES
CAN BE COMPUTED AND COMPARED TO THOSE OBSERVED TO
DETERMINE SPREADING RATES

Uyeda, 1978 76
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Figure 4.1. Experimental measurements of the speed of light between 1875 and 1960. Vertical bars

show reported uncertainty as standard error. Horizontal dashed line represents currently accepted

77

value. Less than 50% of the error bars enclose the accepted value, instead of the expected 70%.

From Henrion and Fischoff, 1986.



Gaussian distribution

Figure 6.5-1: Gaussian distribution.

Gaussian distribution

Stein &Wysession,
2003

MISSING CARBON SINK?

Figure 6.5-2: Results of drawing N samples from a Gaussian parent distribution.
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PRECISION OF GEODETIC VELOCITY ESTIMATES

Depend on precision of each position and the time span of measurements
Rate v of motion of a monument that started at position x, and reaches x,
intime T

V= (X=X )T

If position uncertainty is given by standard deviation o

Rate uncertainty is
o,=2"¢g/T

Thus rate precision improves, even if the data do not become more precise

Older geodetic data, for

example that taken shortly %

after the 1906 San =

Francisco earthquake, can N

be of great value even if 8 RATE = SLOPE

their errors are larger than

those of more modern data TIME

Precision of GPS VELOCITY ESTIMATES
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precision of ;

site position &
length of time

Velocity from a
weighted least 807 .

Sq u a reS | i ne fit | | | | Slope:‘ 2.5 +/- II.O mm/ylr‘. WRM?: 74 m‘m; XZ/D?F= 0.67‘

to pOSItIOﬂS 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

PreClSIOn \ \ : hite + Flicker Noise Model
|_ncreases over Vo

tlme Sella et al.,
2002

Horizontal

V\\
\
better y K

Rate Error (mmifyr)

precision is

Time (years)



GPS velocity estimate uncertainty vs measurement
timespan

X -40 CALAIS ET AL.: DEFORMATION OF NORTH AMERICAN PLATE

GPS

o o NS component
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Figure 4. Velocity standard deviation as a function of measurement time span.

Calais et al, 2006
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New Madrid:

» Residual velocities < 0.2 mm/yr

« Strain rate < 1.3x10° yr*

b + uncertainties and residual

,/ """"" e ’ SF velocities have decreased by at
least a factor of 2 at all sites as
time series lengthens

» Sites with the worse quality

position time series such as RLAP
also have the largest residuals

36"

Ay
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el -89 (more details in Calais and Stein, Science, 2009)
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As New Madrid GPS data improve, primarily due to
longer span of measurements, maximum possible
motion keeps decreasing
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Figure 6.5-3: Example of stacking seismograms to enhance precursors to SS.
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Figure 1. Ray paths of SS and the underside pre-
cursors S410S and S660S at source-receiver ranges of
120°, 140°, and 160°.
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Figure 6.5-6: S

global
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NORMAL MODES OF
SPHERICAL EARTH

Displacement (traveling
seismic waves)
represented by 3-D sum in
spherical coordinates of

normal modes
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Figure 6.5-5: Example of stacking seismograms to enhance specific
normal modes.

Initial stack

Figure 2.9-4: Examples of spherical harmonics.

3518

3519

Y9 Re(Y3) Re(Y?)

3520

3521

0.0040 0.0045 %%)50
Frequency (Hz)

MAJO -- Matsushiro, Japan

Mo=9x10% Q=431]

In amplitude
(digital units)

™

In amplitude
(digital units)

I | Mo=12x10% O:dSGT\\

89
Okal & Stein, 2009



Figure 6.6-3: Demonstration of seismic noise on a broadband seismogram.
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Figure 6.6.2: Amplitude response and phase delay for a pendulum seismometer.
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Wiechert horizontal seismometer,
an entirely mechanical,
seismometer, made in Gottingen
(Germany) in 1904, and was in use
in the Strasbourg seismic
observatory between 1904 and
1968.

It is essentially an inverted
pendulum, which records both
components of horizontal motion on
rolls of smoked paper. It weighs
1000 kg, and has a natural period
of 8 seconds. Damping is provided
by two air-pistons on the top of the
instrument. The pendulum is
centered by placing a series of
small weights on top of the main
mass.

http://sismordia.blogspot.com/2007/07/historical-seismometers-1-wiechert.html 91



Response of Spectral reson'flnce.p.eaks: . |
damped Add a harmonic driving force to see how a damped harmonic oscillator responds:
harmonic d’u , 4
oscillator to dr? dt
harmonic wave
peaked around
natural frequency |

This gives:  A(w) = 2
(-7 + orF]

+ du = e
Choose a solution of the form:  u(f) = A(w) €% &’

1| —re
2 _ 2
0y — @

¢ =tan"

Peak width

Figure 3.7-13: Amplitude/phase of a forced, damped harmonic oscillator.
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Figure 6.6-10: Diag of the ing and feedback ics of an IDA Figure 6.6-8: Instrument responses for several types of seismometers.
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Figure 6.6-14: Relation between displacement, velocity, and acceleration in
the time domain.
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Figure 6.6-13: Example of a FIR filter and its effects on a seismogram.
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Spectrum of
analog signal

Oversample

Analog filter

Digital filter

http://www.mstarlabs.com/dsp/antialiasing/antial.html

Figure 3.2-1: Ray paths for a layer over a halfspace.
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Figure 3.2-2: Travel time curve for rays in a layer over a halfspace.
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Figure 3.3-15: Diagram of the normal moveout correction.
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Figure 3.3-1: Hyperbolic travel time curve for an interface reflection.
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Figure 3.3-2: Cartoon demonstration of ray parameter.
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. . Figure 3.3-3: Ray path through multilayered structure.
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