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Geophysical Time Series Analysis

Figure 6.2-4: Amplitude spectra of a vertical-component seismogram from
the great 1994 Bolivian earthquake.
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Figure 2.2-4: Harmonic wave, u = A cos (wt - kx).
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Figure 2.4-7: Seismic spectrum for various studies.
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Figure 2.8-4: Example of Love wave group velocity dispersion
through bandpass filtering.
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Figure 3.7-1: Regional effects of attenuation.

Seismograms
from an
earthquake in
Texas
recorded in
Nevada and (Mina, NV)
Missouri.

The MNYV record
has less high
frequencies (short
periods)

MM18
because the
tectonically-active
western U.S. (St Louis, MO)

is more
attenuating than
the stable mid-
continent.

50s

A
v




Figure 3.7-11: Wave amplitude for a damped harmonic oscillator.
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Tall and small stay up; medium fall: Mexico, 1985—10,000 die.

On September 19, 1985, a magnitude 8.1 earthquake occurred off the Pacific coast of Mexico. 350 km from the epicenter damage
was concentrated in a 25 km? area of Mexico City. The underlying geology contributed to this unusual concentration of damage at
a distance from the epicenter. An estimated 10,000 people were killed, and 50,000 were injured. In addition, 250,000 people lost
their homes. The set of slides (link below), shows different types of damaged buildings and the major kinds of structural failure
that occurred in this earthquake including collapse of top, middle and bottom floors and total building failure.

-

Interestingly, the short and tall buildings remained standing.

Medium-height buildings were the most vulnerabl

in the September 19 earthquake. Of the buildings that either

collapsed or incurred serious damage, about 60% were in the

6-15 story range. The freq| 'y of such buildi
ided with the freq y range lified most freq;

in the subsoils.
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Figure 6.2-2: First ten terms of the Fourier series for a ramp function.
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Figure A.3-1: Representation of a a vector in Cartesian coordinates.
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Figure 6.2-3: Amplitude spectra for the body and surface wave segments
from a large earthquake.
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Figure 6.2-3: Amplitude spectra for the body and surface wave segments

from a large earthquake.
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Figure 6.2-4: Amplitude spectra of a vertical-component seismogram from
the great 1994 Bolivian earthquake.
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8330  Colloquium Paper: Muller and MacDonald
Proxy climate data
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FIG. 1. 8'80 for past 800 kyr. (a) Data of site 607 from Ruddiman er al. (15). (b) Specmap stack of Imbric ef al. (16). (¢) Spectral power of
site 607. (d) Spectral power of Specmap. In the Milankovitch theory, the peak near 0.01 (100-kyr period) is attributed to cocentricity, the peak near
0.024 (41-kyr period) to obliquity, and the peak near 0.043 (23-kyr period) to precession.
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Figure 4. Two spectral analyses using the Blackman-Tukey method. A.
180 spectrum of Site 607 shows that 180 variations indicative for
glaciations occur at the primary Milankovitch frequencies. Obliquity,
however, is the dominant frequency (Raymo et al., 1990). B. Gamma-ray
spectrum of Miocene marl/limestone alternations at Site 1003 produces
frequencies at 40, 23, 19, 16, and 11 k.y. The strongest peak occurs at
23 k.y., indicating the dominance of orbital precession on these
sedimentary cycles (Bernet, 2000).

http://www-odp.tamu.edu/publications/166_SR/chap_16/c16_f4.htm
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Figure 11: Frequency-wavenumber sea surface height spectrum computed from a
spherical harmonic fit as described in Wunsch and Stammer, 1995, but from four
years of data. Wavenumbers are actually in terms of spherical harmonic order n,

for which the wavelengths are approximately 40,000 km/n.

Figure 8: Amplitude and phase of the annual cycle of elevation in TOPEX/POSEIDON data o
estimated from 4 years of data. The amplitude is in centimeters, the phase in degrees measured
‘rom January 1. Areas of extreme air/sea exchanges produce large variations in elevation due to 0.03 008
anomalies in heat added or removed by the atmosphere. The structures apparent in the quieter CYCLES / DAY . 0.05
oceanic interior are related to wavelike motions.
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Figure 6.6-14: Relation between displacement, velocity, and acceleration in
the time domain.
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Figure 4.6-8: Sample amplitude spectrum, for the 1995 Chiapas, Mexico,

earthquake.
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Figure 6.2-5: Two definitions of a delta function at t = ¢,.

Figure 6.2-6: Amplitude and phase spectra of the Fourier transform of a
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Figure 1.1-1: Schematic geometry of a seismic experiment.
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Figure 6.3-1: Definition of a linear system.
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Figure 6.6-11: Use of filtering to enhance different frequency bands of a
single seismogram.
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Figure 4.3-10: Effect of sou time fi i on body ms.
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Figure 4.3-11: Example of the determination of a complex rupture for the
1976 Guatemala earthquake.
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Figure 1.2-3: Estimated earthquake hazards: 2% probability over 50 years.

Figure 1.2-5: Predicted strong ground motion in eastern and western U.S.
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Figure 3.3-29: Seismic section before and after deconvolution.
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air-gun is the source of shock waves - compressed
air Is more environmentally friendly than explosives

hydrophon
hydrophon:

Figure 3.3-25: lllustration of an air gun and its source wavelets.
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Oceans Are Getting
Louder, Posing Potential NY Times 1/22/2019
Threats to Marine Life

Increasing ship traffic, sonar and seismic air gun blasts now
planned for offshore energy exploration may be disrupting
migration, reproduction and even the chatter of the seas’ creatures.

Slow-moving, hulking ships crisscross miles of ocean in a lawn mower
pattern, wielding an array of 12 to 48 air guns blasting pressurized air
repeatedly into the depths of the ocean.

The sound waves hit the sea floor, penetrating miles into it, and bounce
back to the surface, where they are picked up by hydrophones. The
acoustic patterns form a three-dimensional map of where oil and gas
most likely lie.

The seismic air guns probably produce the loudest noise that humans
use regularly underwater, and it is about to become far louder in the
Atlantic. As part of the Trump administration’s plans to allow offshore
drilling for gas and oil exploration, five companies are in the process of
seeking permits to carry out seismic mapping with the air guns all
along the Eastern Seaboard, from Central Florida to the Northeast, for
the first time in three decades. The surveys haven’t started yet in the
Atlantic, but now that the ban on offshore drilling has been lifted,
companies can be granted access to explore regions along the Gulf of
Mexico and the Pacific.

7

Figure 6.3-7: Diagram of the receiver function approach.
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S. Stein et al.

Fig. 12. Crustal thickening beneath the MCR's west arm is shown by surface wave tomography (Shen et al., 2013) (A) and receiver functions (B; Moidaki et al., 2013
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Figure 6.3-9: Effects of windowing time signals on the amplitude spectra.
Data length and frequency resolution

Figure 6.3-8: A boxcar function in the time and frequency domains. - - -
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2.5-18: Single-slit diffraction.
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Destructive interference when (for D >> d):  A/2 =d sin 6 = dxy/D

Actual diffraction pattern is: % where ¢ =2xdx/AD

Diffraction is described by Huygens’ principle, but not geometric ray theory.

-3 \/—n T \/ E74
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https://sites.google.com/site/anrosphysics/ib-physics/wave-phenomena/4-single-slit-diffraction 56



i

https://www.quora.com/In-single-slit-diffraction-what-is-the-effect-of-increasing-

wavelength-and-the-slit-width
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Figure 3.7-11: Wave for a damped
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Figure 2.9-2: Amplitude spectrum shown mode peaks for a 35-hour record.

>
5 ! >
129
T .: ol1s
o3 .S
I|
2 2S5
0212 2T2
S
S5 S3 014
114 T 25
T oln2
of10 S S
1S 0211 592
257 ol
591 ! 117
T 452 | 0513
0'8 0S10 | ) -
O-|S—7 155 451 OTH 'I ::
0=/ 254 0% g 1Ts . i
1'|'1 1-|—3 5 : ]
d

0.36 0.56 0.76 0.96 1.16 1.36 1.56 1.76 1.96 2.16
Frequency (mHz) 59

Figure 6.3-10: Effects of tapering a boxcar function on the amplitude spectrum.

Time series Amplitude spectrum
T T
Boxcar B -
function
|32 s| aoandnannNIU | Nanhanan
-2 0 2
Frequency (Hz)
T T
Tapered - =
boxcar
function i )
| 32 Sl | 1 1
-2 0 2
Frequency (Hz)

60



Kermadec — March 30, 1972 (to Mid-East) — Pdiff
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Figure 3.3-26: Geometry of a Vibroseis survey showing sample signals.
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Figure 3.3-31: Analysis of a Vibroseis record.
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Figure 6.3-12: The auto-correlation is maximum at zero lag and is an even
function of the lag.
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Figure 6.4-1: Use of a Dirac comb in sampling a time signal.

Figure 6.4-2: Effect of sampling a time signal on the frequency amplitude
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