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Abstract: We explore whether less detailed probabilistic hazard maps might 
perform better by assessing how smoothing Japan’s national earthquake hazard 
maps affects their fit to a 510-year record of shaking. As measured by the 
fractional exceedance metric implicit in such probabilistic hazard maps, simple 
smoothing over progressively larger areas improves the maps' performance 
such that in the limit a uniform map performs best. However, using the squared 
misfit between maximum observed shaking and that predicted as a metric, map 
performance improves up to a ~75–150 km smoothing window, and then 
decreases with further smoothing.  This result suggests that the probabilistic 
hazard models and the resulting maps may be over-parameterized, in that 
including too high a level of detail to describe past and future earthquakes may 
lower the maps’ ability to predict future shaking. 
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1 Introduction 

Recent earthquakes that did great damage in areas shown by earthquake hazard maps as 
relatively safe have generated interest in the question of how well these maps forecast 
future shaking (Kerr, 2011; Reyners, 2011; Stein et al., 2011, 2012; Peresan and Panza, 
2012; Stirling, 2012; Gulkan, 2013; Marzocchi and Jordan, 2014; Wang, 2015). These 
discussions have brought home the fact that although the maps are designed to achieve 
certain goals, we know little about how well they actually perform. 

Commonly used probabilistic seismic hazard maps seek to predict the maximum 
shaking that should be exceeded only with a certain probability over a given time 
(Cornell, 1968; Field, 2010). At all points on the map, the probability p that during t years 
of observations shaking will exceed a value that is expected once in a T year return period 
is assumed to be described by an exponential distribution, p = 1 – exp(–t / T). This 
probability is small for t / T small and grows with observation time t [Figure 1(a)]. Hence 
the shaking predicted by a map with a T-year return period should have a 39% chance 
being exceeded in t = T / 2 years, a 63% chance being exceeded in t = T years, and 86% 
in t = 2T years. 

Shaking higher than shown on a probabilistic map often occurs in large earthquakes. 
Such shaking does not invalidate the map, so long as the fraction of sites at which this 
occurs is consistent with the map parameters. An alternative deterministic approach seeks 
to predict maximum values of shaking that will not be exceeded in a specified time 
period. Although the deterministic approach is not used in the maps we assess here, its 
predictions can also be compared to observations. It is worth noting that probabilistic and 
deterministic approaches are not incompatible; each seeks to predict different aspects of 
future shaking. 
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Figure 1(a) Probability of exceedance as a function of observation time divided by return period 
(see online version for colours) 

 

Notes: The observed fraction of exceedances for probabilistic Japanese and Italian hazard 
maps (triangles and circles) are well below the predicted fraction (solid line) 
(Gruppo di Lavoro, 2004; Japanese Seismic Hazard Information Station, 2015). 
Green dashed lines indicate the difference between predicted and observed 
fractions, defined as the M0 metric. 

Figure 1(b) Comparison between predicted and observed exceedances at individual sites for the 
475-year Japanese map (see online version for colours) 

 

Assessing how well maps describe actual shaking, relative to this ideal criterion, is 
challenging. Because the maps forecast the shaking expected over periods of hundreds or 
thousands of years, the short time period since they began to be made makes assessing 
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how well they perform difficult (Beauval et al., 2008, 2010). Hence maps can be assessed 
by comparing the fraction of sites where shaking exceeded the mapped threshold at that 
site to p. This approach, introduced by Ward (1995) and used in many subsequent 
analyses (e.g., Albarello and D’Amico, 2008; Fujiwara et al., 2009b; Stirling and 
Gerstenberger, 2010; Tasan et al., 2014; Nekrasova et al., 2014) considers many sites to 
avoid the difficulty that large motions at any given site are rare. Given this problem, 
various studies examine how well maps describe past shaking (Stirling and Petersen, 
2006; Albarello and D’Amico, 2008; Stirling and Gerstenberger, 2010; Kossobokov and 
Nekrasova, 2012; Nekrasova et al., 2014; Wyss et al., 2012; Mak et al., 2014). Although 
such assessments are not true tests, in that they compare the maps to data that were 
available when the map was made, they give useful insight into the maps’ performance. 

2 Prior results 

We have previously found (Brooks et al., 2016) that some hazard maps behave quite 
differently from the ideal. Figure 1(b) compares the largest known shaking at points 
within Japan in 510 years to that predicted by the Japanese National Hazard (JNH) map 
with a 475-year return period. We characterise the results by showing for each site the 
level of shaking (which we refer to as the predicted shaking) that has probability p of 
being exceeded during the return period. Although p = 66% of the sites are expected to 
have shaking higher than that predicted by the map with 475-year return period, only  
f = 27% of the sites plot above the 45° line that shows a 1:1 observed: predicted ratio. 
Similar discrepancies arise for the Japanese maps with other return periods, as shown by 
the triangles in Figure 1(a), all of which are below the expected exceedance curve. 
Similar but larger discrepancies arise in a similar analysis of 2200 years of data for Italy 
(Stein et al., 2015a). These discrepancies could reflect problems with the data, the maps, 
or both. 

We use two metrics to quantify map performance (Stein et al., 2015a). The fractional 
exceedance metric. 

0( , ) | |,M f p f p= −  

measures the magnitude of the difference between p, the expected number of sites at 
which the observed shaking should exceed that predicted by the map, and f, the actual 
number of such sites. Because this metric does not consider the magnitude of the 
difference between the predicted and actual shaking, we also assess maps with a squared 
misfit metric. 

( )2

1
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which compares xi and si, the maximum observed and predicted shaking at each of the N 
sites. The two metrics characterise different aspects of map performance. In our previous 
paper, we found that M0 is sensitive to how well the map predicts average shaking levels, 
in that uniformly decreasing the predictions or increasing the observed shaking levels (to 
adjust for possible map or data biases) reduces the values of M0. M1 is more sensitive to 
how well a map predicts the spatial variations in shaking. Visually comparing maps of 
predicted and observed shaking amounts to using M1. 
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The M0 values show the maps’ non-ideal behaviour. For the Japanese data and maps 
(Figure 1) p > f, so fewer sites than expected have shaking above that predicted. 
Moreover, although we might expect the map with return period of 475 years to best 
match the 510 years of observation (i.e., be closest to the curve), maps with longer return 
periods actually do better (f closer to p, hence lower M0). As discussed in Stein et al. 
(2015a) and this paper’s Appendix, the effect of random error on M0 appears to be far too 
small to produce the large differences between p and f. 

Given that some maps are behaving quite differently from how they should ideally 
(even after allowing for random error), we are exploring map behaviour to learn more 
about how they actually perform. We take an empirical approach of asking what maps 
actually do, rather than what they should ideally do. We similarly explore possible 
changes in the maps that could make their behaviour better match that expected. 

Our earlier paper (Brooks et al., 2016) considered Geller’s (2011) proposal that “all 
of Japan is at risk from earthquakes, and the present state of seismological science does 
not allow us to reliably differentiate the risk level in particular geographic areas”, in 
which case maps less detailed than present ones would be preferable. We examined how 
well a 510-year-long record of earthquake shaking in Japan is described by the current 
JNH maps compared to uniform and randomised versions of these maps. We found that, 
as measured by the M0 metric, both uniform and randomised maps do better than the 
actual maps. However, using the squared misfit (M1) metric, the JNH maps do better than 
uniform or randomised maps. Similarly, by this metric, the 475-year map works better 
with 510 years of data than maps with longer return periods. Although M1 (unlike M0) 
does not explicitly depend on return period, M1 might be expected to be smallest 
(showing better fit) for maps with return period close to the data length. 

A uniform map is one smoothed (averaged) over the entire country, with all spatial 
details removed. Hence these results lead to the question of what the effect of smoothing 
over a smaller area may be. Is there some level of smoothing that preserves an 
intermediate level of detail that better describes the shaking?. 

3 Smoothed map performance 

As in our previous paper, we compared a catalog (Miyazawa and Mori, 2009), giving the 
largest known shaking on the Japan Meteorological Agency (JMA) instrumental intensity 
scale at each grid point in 510 years (1498–2007) to four JNH maps for different return 
periods (J-SHIS, 2015) (Figure 2). The effect of site conditions is included in the maps so 
their predictions should be comparable to observations. 

The JNH maps were smoothed by placing a square composed of cells over each point 
on the map, averaging the predictions within the square, and assigning that value to the 
central cell. Iterating over all points on the map using progressively larger squares 
yielded maps smoothed to greater degrees. For regions close to the coast we used only 
values on land in Japan, disregarding values from the surrounding ocean. This procedure 
preserves the number of points in each map, so successive iterations can be compared to 
the observed history of shaking via the two metrics. The smallest smoothing square was  
3 × 3, and each individual cell was ~1.5 km on a side. Our smoothing procedure is quite 
simple, and improved variants that used shapes other than squares or rectangles might do 
even better. 
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Figure 2 (a–d) Probabilistic seismic hazard maps for Japan, generated for different return periods 
in 2008, (e) Largest known shaking on the JMA intensity scale in 510 years (see online 
version for colours) 

 

Source: The Japanese hazard maps are from http://www.j-
shis.bosai.go.jp/map/?lang=en (last accessed February 2015). The 
catalog of historic intensity data  from Miyazawa and Mori (2009) 
was provided by M. Miyazawa 
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Smoothing over a small area preserves many details of the hazard maps, suppressing only 
the sharpest high and low hazard features. Progressively larger smoothing areas suppress 
more of the details (Figure 3). Figure 4 shows plots of the change in map performance as 
a function of smoothing area, for each of the four maps using both metrics. 

The fractional exceedance metric (M0) generally improves as the smoothing area 
increases. Fluctuations are present for smaller smoothing areas, but performance 
increases steadily for smoothing areas above 200 cells (300 km on a side) across. This 
reinforces our earlier result, in that smoothing over all of Japan produces uniform maps, 
which we found perform better than the JNH maps as measured by M0. 

In contrast, as measured by the squared misfit metric (M1), map performance 
improves somewhat up to a 50–100 cell (75–150 km) smoothing window, and then 
decreases with further smoothing. This reinforces our earlier result that by this metric 
uniform maps perform worse than the unsmoothed map. As discussed in the Appendix, 
the effect of random error on M1 is quite small, so the improved fit is significant. 

Figure 3 Effects of smoothing the JNH map with 475-year return period (a) over progressively 
larger areas (b–d) (see online version for colours) 
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Figure 4 Improvement in map performance described by the change in fractional exceedance  
(a) squared misfit (b) metrics compared to the original map, for different amounts of 
smoothing (see online version for colours) 

 

Note: Each cell of the grid is roughly 1.5 km on a side. 

We repeated these comparisons for an updated map that incorporated shaking from the 
2011 Tohoku event. Brooks et al. (2016) noted that adding these high shaking values 
improved the JNH maps’ performance as measured by both metrics, but their 
performance relative to uniform and randomised maps remained the same. Similarly, we 
found that the effects of smoothing on performance remained essentially the same. 

4 Implications 

These results suggest that including too high a level of detail to describe past or future 
earthquakes may lower hazard maps’ ability to predict future shaking. Such an effect 
seems plausible given the variability in space and time of earthquake recurrence, so 
previous earthquakes do not completely show what will happen in the future. Longer 
records including paleoseismic data, complemented with inferences from geological and 
geodetic data about faults, are naturally better. However, even a very long record is 
unlikely to fully capture the natural variability and uncertainty. 

We would not expect a hazard map to perform perfectly. Aspects of future earthquake 
behaviour will differ from those of past earthquakes, the details of which are only partly 
known. Some of the assumed details of future earthquake behaviour will differ from what 
actually occurs. Hazard maps require a wide range of assumptions about earthquake 
source locations, recurrence, and magnitudes, along with models of the resulting ground 
motion. 

The classic resolution-stability tradeoff (Parker, 1977) tells us that more detailed a 
model is, the more sensitive it is to uncertainty, and thus the more likely it is to perform 
worse when assumptions fail. For example, prescribing a detailed rupture scenario will 
make a map’s prediction for the future better if the earth does what is expected, but can 
make it worse than a simpler model if the earth fails to do what was expected – as in the 
Tohoku earthquake. Similarly a time-dependent rupture forecast will make a map better 
than a simple time-independent model if the earth does what is expected, but can make it 
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worse otherwise. Hence the challenge is to seek an optimal level of detail that 
incorporates and reflects uncertainties in the model and possible outcomes. 

An analogous phenomenon is recognised in other applications and termed 
‘overfitting’or ‘overparameterisation’. For example, given a set of observations at k 
distinct points in time, one can perfectly fit them with a curve based on k parameters, 
such as a polynomial of degree k – 1. However, a perfect fit to past data need not yield a 
good fit to future data. A variety of methods are available to trade off closeness of fit to 
observed data against the complexity of the model, including cross-validation and the 
Akaike information criterion (AIC) among others (Hastie et al., 2009). Figure 5 shows an 
example of using a model derived from past data to predict the future evolution of a 
function. A linear model fits the past data and predicts the future reasonably well, and a 
quadratic does both even better. However, an eight order polynomial that fits the past 
data perfectly does a poor job of predicting the future. The more detailed model seems 
better because it matches the past so well, but imposing that level of detail makes the 
model predict the future worse. 

This situation is common in both geophysical and other forecasting applications. 
Hence to forecast the future, the goal should be not to build the most detailed model, but 
instead one that is robust or stable in the sense that small changes in the uncertain model 
parameters do not dramatically change the model’s forecasts (Parker, 1977; Box, 1979). 

Figure 5 Example of the effect of overparameterisation on forecasting (see online version  
for colours) 

 

Notes: A high order polynomial fits past data better than linear or quadratic models, but 
this more detailed model predicts the future worse than the simpler models. 

Our results showing an improved fit resulting from smoothing do, however, have other 
possible interpretations. First, the fact that the smoother models fit better could result 
from some features of the historical shaking dataset used. Second, our approach involves 
comparing a time-dependent hazard model to past data (hindcasting) rather than the more 
desirable comparison with future data (forecasting). As discussed in our earlier paper 
comparing these maps and data, we do not believe either problem is large enough to 
invalidate our approach. Most crucially, the maps were made by using other data and 
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models to try to predict future earthquake shaking, rather than by fitting past shaking 
data. In particular, the earthquake magnitudes assumed in the maps were inferred from 
the fault lengths (Fujiwara et al., 2009a), rather than from past intensity data. Because the 
hazard map parameters were not chosen to specifically match the past intensity data, 
comparing the map and data is a useful comparison. 

These results are for a particular area, much of which has a high earthquake hazard, 
and a particular set of maps and data. However, these results, combined with the fact that 
in many applications overfitting past data leads to poorer future predictions, suggest that 
similar effects could arise for earthquake hazard maps elsewhere. Our approach involved 
smoothing maps resulting from a probabilistic hazard model. Hence it has similarities to 
the way certain hazard map input parameters are smoothed, which uses less detailed 
models to produce maps that should be more stable. For example, seismicity catalogs are 
often smoothed to compute seismicity rates (e.g., Cao et al., 1996; Montilla et al., 2003). 
Essentially our approach smooths the net effect of all inputs. Whether for inputs or 
outputs, it appears that smoothing may be valuable. It worthwhile exploring to find an 
appropriate level of model complexity to forecast future hazard (Field, 2015) in a way 
that is robust or stable in the sense that the forecast is not unduly affected when the earth 
does not behave exactly as expected. Whether to change a map after an earthquake 
yielding shaking larger than anticipated depends on whether one regards the high shaking 
as a low-probability event consistent with the map, or – as is often done – as indicating 
deficiencies in the map (Stein et al., 2015b). 
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Appendix 

Effects of correlation and random error on M0 and M1 metrics 

Both the predicted and observed shaking are spatially correlated. High shaking levels 
from large earthquakes are strongly correlated between nearby sites, as are low shaking 
levels at nearby sites where no close strong earthquakes took place during the study 
period). The difference f – p between observed and forecasted exceedance equals the sum 
of a chance component, f – Ef, and a systematic or bias component, Ef – p. The expected 
square of the chance component equals the variance of f, say V(f) The variance can be 
large when spatial correlation is high and the number of sites is moderate or small [Stein 
et al., (2015a), pp.2170–2172]. Spatial correlations do not affect the expected values of p 
and f, and thus the M0 metric. However, they affect the variance V(f). If the variance is 
known, then an estimator of the squared bias is provided by the larger of (f – p)2 – V(f) 
and zero. 

The effect of random error on the metrics M0 and M1 depends on the stochastic 
model assumed to describe the deviations xi – si. If the predictions are taken to be fixed 
and not to depend on the observed shaking values, then the variance of the empirical 
fraction of exceedances f may be estimated by f(1 – f) / n, with n denoting the equivalent 
number of statistically independent sites after allowance for spatial correlations (Stein  
et al., 2015a). This model is overly simple, however, because at least some of the same 
observations that are used to develop the earthquake hazard maps are also used to 
compute the deviations. How to model spatial correlations and set a realistic value of n is 
an interesting and challenging problem that is beyond the scope of this paper. 

For large enough values of n (depending on how far the expected value of f is from 0 
or 1), f will have an approximately Gaussian distribution. If the distribution of f were 
exactly Gaussian, the expected value of M0 would be 

( 0) [1 2 ( / )] 2 ( / ),E M μ μ σ σφ μ σ= − Φ − + −  



   

 

   

   
 

   

   

 

   

    Investigating the effects of smoothing on the performance of earthquake 133    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

with 2 1/2 2( ), ( ) , ( ) ( ) , and ( ) (2 ) exp( / 2).
s

μ E f p V f p σ s φ x dx φ x π x−
−∞

= − − = Φ = = −∫  If 

the bias µ is large relative to the standard deviation σ then E(M0) ≈ | µ |. On the other 
hand, if E(f) = p, so that µ = 0, then E(M0) = 2σφ(0) ≈ 0.8σ, which tends to zero as n 
increases. 

Example 1. Variance of M0: For the 475-year return period, the observed value of f was 
0.27 compared to the specified probability of exceedance p of 0.66. For illustrative 
purposes, suppose the equivalent number of independent sites is 500. Then the estimated 
variance of the observed exceedance is (0.27)(.73) / 500 or 0.0004, and the estimated 
standard error is the square root of that, or 0.02. This is quite small relative to the value of 
M0 of 0.39. In addition, the bias in M0 is negligible, since we estimate Φ(–µ / σ) ≈ 1 and 
φ(–µ / σ) ≈ 0. 

The variance of M1 is given by: 

( )

[ ]

2 4

3

4

1 1 3( 1)
1

1 ,

n υ n nV M
n n n

υ
n

− − −⎡ ⎤= −⎢ ⎥−⎣ ⎦

≈ −

β

β
 

with υ2 the variance and β the kurtosis of the deviations xi – si. 

Example 2. Variance of M1: Consider the 475-year return period. Denote the deviations 
by di = xi – si The average deviation across the sites is 0.2722.d = −  The average of 

2( )id d−  is 0.2695 and the average of 4( )id d−  is 0.4557. For illustrative purposes, 
suppose the equivalent number of independent sites is 500. Then υ2 is estimated by 
0.2695 and β is estimated by 0.4557 / 0.26952 or 6.274. We estimate V(M1) by 0.000764 
and we estimate the standard error of the M1 statistic by 0.028. The estimate of M1 was 
0.34 (Brooks et al., 2016), and so the coefficient of variation or relative standard error 
was 8.1%. 

Example 3. Variance of change in M1 due to smoothing: Consider the apparent 
improvement in M1 due to smoothing, again for the 475-year return period. Denote the 
unsmoothed predictions by xi and the smoothed predictions by .ix′  Denote the 
corresponding deviations by di = xi – si and .i i id x s′ ′= −  The corresponding values of M1 
will be denoted by M1unsmoothed and M1smoothed The variance of the change in M1 due to 
smoothing, or V(M1unsmoothed –M1smoothed), equals V(M1unsmoothed) + V(M1smoothed) 

unsmoothed smoothed2 ( 1 ) ( 1 ),ρ V M V M−  with ρ denoting the correlation between 
M1unsmoothed and M1smoothed. To estimate this, we use sample moments as in Example 2. 
The average deviation for the smoothed predictions across the sites is 0.2687.d ′ =  
Define and .i i i iδ d d δ d d′ ′ ′= − = −  The average of 2

iδ  and the average of 4
iδ  are as in 

Example 2. The average of 2
iδ′  is 0.2653 and the average of 4

iδ′  is 0.4837. The same 
kind of calculations as carried out in Example 2 now yield the estimate of 0.000827 for 

V(M1smoothed). To estimate the correlation, ρ we use 
2 2

4 4 .
i ii

i ii i

δ δ

δ δ

′

′
∑

∑ ∑
The 
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average of 2 2 2 2( ) ( )i ii iδ δ d d d d′ ′ ′− −  is 0.4537, which leads to an estimated correlation of 
0.9664. The variance of the change in M1 is thus estimated by 0.00006 = 0.000764 + 

0.9664) 0.000760.000 4 0.0082 07 2( 827.−  The estimated standard error of the change 
in M1 is 0.0074, which is relatively small. It is important to note that this variance 
calculation is subject to the various limitations identified above. In addition, the variance 
as calculated does not take into account the randomness due to searching for the optimal 
smoothing. One way to carry out more realistic variance calculations would be to first 
model the spatial correlation structure and then to use an appropriate bootstrap procedure 
(Efron and Tibshirani, 1993). 


