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NORMAL MODES OF A LATERALLY HETEROGENEOUS BODY:
A ONE-DIMENSIONAL EXAMPLE

By RoBERT J. GELLER* AND SETH STEIN

ABSTRACT

Various methods, including first- and second-order perturbation theory and
variational methods have been proposed for caleulating the normal modes of a
laterally heterogeneous earth. In this paper, we test all three of these methods
for a simple one-dimensional example for which the exact solution is available:
an initially homogeneous “string” in which the density and stiffness are increased
in one half and decreased in the other by equal amounts. It is found that first-order
perturbation theory (as commonly applied in seismology) yields only the eigen-
values and eigenfunctions for a string with the average elastic properties; second-
order perturbation theory is worse, because the eigenfunction is assumed to be the
original eigenfunction plus small correction terms, but actually may be almost
completely different.

The variational method (Rayleigh-Ritz), using the unperturbed modes as trial
functions, succeeds in giving correct eigenvalues and eigenfunctions even for
modes of high-order number. For the example problem only the variational solu-
tion correctly yields the fransient solution for excitation by a point force, including
correct amplitudes for waves reflected by and transmitted through the discon-
tinuity. Our result suggests but does not demonstrate, that the variational method
may be the most appropriate method for finding the normai modes of a laterally
heterogeneous earth model, particularly if the transient solution is desired.

InTRODUCTION

The problem of finding the normal modes of a laterally heterogeneous earth model
has been considered by Madariaga (1972), Saito (1971), and Luh (1974) using first-
order degenerate perturbation theory. Luh (1973) considered the effect of quasi-
degeneracy. Usami (1971) used variational methods to find some very low-order tor-
sional modes of a laterally heterogeneous earth model. Luh (1974) suggested that the
variational method might be appropriate for some low-order modes. Johnson and
Smylie (1977) use a variational method with splines as trial functions to directly cal-
culate low-order modes and undertones of a rotating and elliptical earth.

The problem of lateral heterogeneity is extremely important in terms of our knowl-
edge of the earth’s interior, particularly the structural differences between oceans and
continents. Currently, the agreement between observed and theoretical eigenfre-
quencies for spherically symmetric earth models is nominally better than 0.1 per cent
for well-constrained modes. However, on the basis of the dispersion of long-period
surface waves (Dzlewonski, 1970; Kanamori, 1970; Leeds et al., 1974; Okal, 1977),
the difference between continental and oceanic velocity structures is on the order of
5 to 10 per cent. Thus, in view of the fact that the lateral variations are much larger
than the uncertainty in experimental data, and the relatively poor fits between current
models and observed long-period group velocity curves, the calculation of the normal
modes of laterally heterogeneous earth models seems called for. This point was empha-
sized by Madariaga and Aki (1972).

* Currently also at: Department of Geophysies, Stanford University, California 94305.
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The three possible methods for calculation of the normal modes of a laterally het-
erogeneous earth model are first- and second-order perturbation theory and the vari-
ational method. In this paper, we test these methods for a simple one-dimensional
example which includes all the features of the three-dimensional problem except the
degeneracy of the unperturbed problem. This test allows a comparison between an
exact solution and the approximate solutions. Such tests cannot be performed for the
three-dimensional case, because closed form solutions do not exist. As we show below,
the variational method is much more successful than either first- or second-order
perturbation theory.

APPROXIMATION METHODS FOR NORMAL MopE PROBLEMS

The variational method and first- and second-order perturbation theory are well
known methods in mathematical physics, so a brief review will suffice. The equation of
motion for an elastic, nongravitating, body may be written as

HY + pu™¥ = 0 (1)

where H is the (Hermitian) operator for the elastic restoring force, p is the density,
w is the eigenfrequency, and ¥ is the eigenfunction. The boundary conditions are

a‘I’+B%%=0 @)

where « and B are arbitrary constants which may be functions of position along the

boundary.
All three approximation methods assume that we start with the exact (nonde-

generate) eigenvalues and eigenfunctions for the problem
H(o)‘I,(O) + p(O)(w(O))Z\I,(O) — 0. (3)

For simplicity, we assume that for the boundary conditions o = « and 8, = 8 (i.e.,
the boundary conditions are the same for the perturbed and unperturbed problems).
We denote the eigenvalues and eigenfunctions for (3) as w.” and ¥, ¥, respectively.
The ¥, are orthonormalized so that [ (¥,%)*"(¥.®) AV = 8sa.

We now consider the details of each approximation method.

First-order perturbation theory: We write the perturbed operator and density in (1) as

H = H(O) + H(l) (4:)
and p=p"+p% (5)

where H” and p™ represent the difference between the perturbed and unperturbed
problems. We then define matrix elements

HD = [(2.0)HY @,%) av

and o = [y @) av. 6)
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(Note that HY) = (H2)™ and pia = (poa)™.)

In first order perturbation theory, as commonly applied in seismology, we assume
that the eigenfunction for a given mode remains the same, and calculate the “first-
order” correction to the eigenvalue, (o) = (0™)* + (@)%

(@) = — (") — HE (7)

Second-order perturbation theory: We proceed in the same way as Merzbacher (1970),
except for the extra terms due to the density perturbation. We assume that we make a
small perturbation to the eigenfunction, which we find to first order

\I’n = ‘I/n.(o} + Z Cnm\llm(m (8)

m=n

and a small second-order correction to the eigenvalue

o = (@) + (W) + (@) (9)

When we introduce (8) and (7) into (1) we obtain, after discarding terms which
are not of first order

Y + (0)0)

Oon = Car®F = (o)

(10)

When we substitute (7), (8), (9), and (10) into (1) we find the second-order cor-
rection to the eigenfrequency

@\ N |HS + (0,950 ° Wy2 )
(wn ) = 1;71 (wm(o))g — (wn(o)) - ( Wn ) . (11)

Finally, it is necessary to renormalize the new eigenfunction. Although the summations
in (8) and (11) are in principle over all modes, in practice we use some finite subset of
the modes for which (11) will converge. The normalization factor is then

= ; Z C:kcnm[l)l(nln) '+' 5Lm] (12)

and the normalized eigenfunction is

\/P (v, + Z Com Tn'™). (13)

Dahlen (personal communication) has pointed out the existence of a boundary
perturbation term associated with the jump condition. Since our goal was to conduct
a one-dimensional test of the way first-order perturbation theory is applied to the
earth, and such a term is not included in the three-dimensional calculation, we have
omitted this boundary term in our one-dimensional caleulations.

Variational method: It should be emphasized that the variational method is based
on Hamilton’s principle, and thus can be justified physically (¢f. Morse and, Feshbach,
1953). Hamilton’s principle states that for any small change in a system, the La-
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grangian, L, is stationary,
(LY =8(T — V) =0, (14)

where T is the kinetic energy and V is the potential energy. We will use the eigen-
functions for (3), the unperturbed solution, as trial functions and write the eigen-
function as

v = > 0.5, (15)

If we insert (15) into (14) and set the partial derivatives of L with respect to Cs to
zero, we obtain a matrix eigenvalue problem

det (&'T — V) =0 (16)

where the elements of 7 and V are

Ti; = f (w2 *ow, 0 aV = pif + 8
(17)
Vij= — f WY HYO AV = —HG + 80

The eigenfrequencies are given by the eigenvalues of (16) and the eigenfunctions by
(15), where the coefficients C, are from the eigenvectors of (16).

Because the eigenfunctions for (3) are a complete set, if we used all of the unper-
turbed modes in our trial function, (15), we would obtain the exact eigenfrequencies
and eigenvalues for the perturbed problem. In practice we must limit ourselves to a
finite set and verify “experimentally”’ that our set is large enough. Note that, as is
well known, first-order perturbation theory is essentially equivalent to the vari-
ational method with only one trial function in (15).

ONE-DmveNsIONAL EXAMPLE

For our comparison of the three approximation methods with the exact solution, we
consider a one-dimensional “string”, with variable “stiffness”, k, and ‘“‘density”, p.
The Fourier transformed equation for the string is

2 (k2 ) 4 @t w2)= 0 (18)
with boundary condition
¥(0) =¥() = 0. (19)

If & = ko and p = pp are constants, then the eigenfrequencies are given by w,® =

nwee/l, where ¢o = \/ko/po, and the eigenfunctions by T, = 7/2/lp, sin (0" /o).
We introduce a perturbation by increasing the density and stiffness in the right
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part of the string and decreasing it by the same amount in the left part. We set

oy YKo — (8k) =k 0<z<a
and
_Jpo— (8p) = p O<z<a
p(x)_{po*%(ép)fpz a<z<1 2D

Ezact solution: This is an extremely straightforward problem which is almost
identical to the common problem of a ‘“string” with variable density only (¢f. Lap-
wood, 1975; Anderssen and Cleary, 1974). The solution is

Ssinfof 0<z<a
¥(z) = * " (22)
Asin%—%»—Bcos—c— a <<l

where o is picked so that ¥(I) = 0 and ¢1 = A/ki/p; while o = /ks/p- A and B

are found by requiring continuity of displacement and traction across z = a.

. W . wa wa wa C
A= <sm ——) (sm —~> -+ <cos ——> <cos ——>~El—1
C1 Ca %) Ca p2Ca
wa . wa 0@ . wa c

B = <cos ——> (sm ——) — (cos ——) <sm ——>-p—1—1.
C2 C1 C1 C2/ paC2

For the numerical examples in this paper we will consider a string which is asym-
metric about the middle; that is, we set @ = /2. For this case the secular equation
simplifies to

(23)

. wl ol | ma ol ,  wl
¥(l) = sin 5, €os 5, + pwa cOS 5 sin s = 0 (24)

which may be written in a slight generalization of Lapwood’s (1975) result as

ErmEEeD)--E-DulE-0)
e C 2\c; e &1 G 2\ o

Equation (25) demonstrates the existence of a solotone effect (Lapwood, 1975;
McNabb et al., 1976); that is, no matter how large w becomes the eigenvalues will
oscillate around an asymptote rather than converging on it. This asymptote is given
by w = 2nw/l(1/¢; + 1/c2). Thus the asymptote is nr/l divided by the average slow-
ness. The solotone effect is closely related to the generation of reflected phases when-
ever a wave crosses the boundary at z = /2 (¢f. Wang et al., 1977 ; Anderssen, 1977).

The normalization of (22) for a = 1/2 is given by

! l . wl l .
Q= .£ oV d = pl[— — —Clsm%} + pg[; (A* + BY)
Co 2 9 . le . . wl
-+ i (B® — 47) <<sm —C—2—-> <sm a))
N Co 2wl i wl ’
5 AB <<cos E) <cos a)):] (26)



108 ROBERT J. GELLER AND SETH STEIN

and the normalized eigenfunctions are

S(sin %%)/\/@ 0<z<l/2

¥(z) = Wz wz -
l(A sin;——{—Bcos—c-e—)/\/Q /2 <z < L

(27)

First-order perturbation theory: We find that the diagonal matrix elements defined
in (6), o and H) are zero. Thus, to first order, there is no change in the average
velocity along the string. (For the three-dimensional case, Jordan (1977) has shown
that the eigenvalues obtained from first-order perturbation theory for a laterally
homogeneous earth correspond to the average phase velocity along a particular great
circle path; the same result can be shown for the initially homogeneous string.) Thus
the first-order correction to the eigenvalue is zero

HY = o =0. (28)

Second-order perturbation theory: For the perturbations (20) and (21) we obtain
off-diagonal matrix elements

o 2(p) | sin (m + n)w sin (m — n)w

Pmn = - 2 _ 2
pa m -+ n m - n
(29)
. (m4n - (m— n
@ _ 2(8k)mnx | sin (m+m)r g )m
Hmn = TS 2 2
po m-+n m—n

(m = n). We then use the matrix elements in (10) and (11) to find the eigenfunc-
tions and eigenvalues, respectively.

Variational method: We use the off-diagonal matrix elements from (29) and diagonal
elements from (28) to obtain the elements of the variational matrices, (17). We then
must solve the matrix eigenvalue problem

VX = & TX. (30)

Before we can actually solve (30), we must decide which trial functions to use. We
decided, because of computational considerations, to use 41 trial functions. In finding
modes with 1 < n < 21, we used ¥, through ¥{7’ as trial functions; for modes with
n > 21 we used ¥y through T,

We chose to find the eigenvalue, as well as the eigenfunction, by inverse iteration
(we replace " by A for convenience). Starting with an initial guess for an eigenfunc-
tion, X, the Rayleigh quotient is used to estimate the eigenvalue

X'vx

0 __
A= XTTX

(31)

We then use the guess for the eigenvalue, A? to find a new guess for the eigenvector,
X% by solving the inhomogeneous linear equation

(V = AT X = 71X, (32)
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Wilkinson (1965) shows that the convergence toward the desired eigenvector is ex-
tremely rapid, if A\ is a good estimate of the eigenvalue. Following Wiggins (1976)
we then use the new estimate of the eigenvector to obtain the next eigenvalue esti-
mate from the Rayleigh quotient. We continue with this procedure until convergence
is obtained; in practice, only two iterations of (32) were ever necessary. After con-
vergence is obtained, we normalize X by using the denominator of the Rayleigh
quotient

R = X'TX (33)
in the normalized eigenfunction
V¥ = Z Xi‘I’i(O)/‘\/R. (34)

In order for this method to succeed, we need good initial guesses for the eigenvector.
These guesses are obtained in the following way. In finding the gravest mode we set
X = (1,0,0,0,--)7 Thereafter, we used the eigenfunction ¥ for the previous
mode “shifted up” by one position as the initial guess

X0 = (0,7, Yy, Vs, -+ )"

It can be shown that this yields a very good initial guess. In our discussion of the
variational method, the fact that we are using only a finite set of trial functions is
implicit in our subscripts; we do not explicity include this in expressions such as (34).

NumeRICAL EXAMPLE

We present a comparison of the exact, variational, first-order perturbation and
second-order perturbation methods for a specific example. We set k; = 0.9, k, = 1.1,
pL = 04:, p2 = 06, andl = 20. Thus, C1 = 15, Co = 135, ko = 0, po = 05, ok = 01,
and 8p = 0.1. The eigenfrequencies for each method (plotted as “reduced” frequencies,
w — &) are given in Figure 1. The eigenfrequencies for the exact solution are plotted
as plus signs.

The eigenfrequency for first-order perturbation theory is the same as the unper-
turbed eigenfrequency, so the first-order perturbation theory does not reflect the
change in elastic properties at all. Woodhouse (1976) has also shown that Rayleigh’s
principle may be inappropriate for problems of this type. The second-order perturba-
tion eigenfrequencies diverge very rapidly from the true eigenfrequency although they
oscillate wildly about the correct asymptote. This is not because the second-order
series did not converge. It did—to the wrong answer. However, if additional terms of
higher order were included in the perturbation series, it would presumably converge
to the correct result eventually.

The agreement between the exact and variational solutions is excellent. The solo-
tone effect and the asymptotic behavior discussed previously can be clearly seen.
Only for very high n does the agreement start to deteriorate at all, and this could
easily be corrected by using more trial functions.

Besides comparing the eigenfrequencies for different methods, we compare the
expansion coefficients for the eigenfunctions. We expand the exact solution for the
eigenfunction, (22) and (23), in terms of the unperturbed eigenfunctions

V(z) = 2 0.2 (2) (35)
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where
i
C, = f 20 0, (2)¥ () d. (36)
0
r + EXACT SOLUTION
& SECOND ORDER VARIATIONAL | l
L
035 i \
3
o LN ..,1||vxx]||f|]']
FIRST ORDER
b IKO EIO N 310 40 50

Fre. 1. Comparison of eigenfrequencies for exact solution, variational method, and first- and
second-order perturbation theory. w,!® is subtracted from all eigenvalues for ease of presen-
tation. The variational solution agrees excellently with the exact solution, while the second-
order perturbation solution oscillates wildly around the correct asymptote. First-order perturba-
tion vields eigenvalues which are identical to those for the unperturbed problem. To put this figure
11n Igerspective, the lowest eigenvalue is w; = 0.2219, s0 the difference between wso and o is about
3 Ol wi.

EXPANSION COEFFICIENTS
EXACT VARIATIONAL. Ist ORDER  2nd ORDER

| | | |
| | ? |

3 L Lt | I

|
4l m I|| m l|1 l l1

) ) i !
St i T T

Fic. 2. Comparison of expansion coefficients for exact solution, variational method, and
first- and second-order perturbation theory, for modes of order N. In each case the coefficient
for the Nth mode is in the center.

Evaluation of the integral in (36) is straightforward and need not be given here. The
expansion coefficients for the variational and perturbation methods are obtained
directly from the normalized solutions.

The expansion coefficients for all four methods are shown in Figure 2 for modes
n = 1,11, 21, 31, 41, and 51. The normalized coefficient of the nth unperturbed mode
is plotted in the center of each box. Note that in Figures 2 and 3 “first” and “second”
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order refer to the order of the eigenvalue, and the corresponding eigenfunctions are
“zeroeth” or “first” order. For all methods except the trivial case of first-order per-
turbation theory, the extent to which the eigenfunction is composed of other modes
besides ¥, increases with increasing n. All three approximate methods yield accept-
able results for n = 1, for which the eigenfunction is basically unchanged from the
unperturbed case. Even for the relatively low-order case of n = 11, certain distinctive
patterns are established. The expansion coefficients for the exact solution show that
the eigenfunction is not composed of the original, unperturbed, eigenfunction plus
some very small amounts of the other original eigenfunctions. The amplitudes of the
coefficients of ¥{y’ and ¥{Y are about 40 per cent of the coefficient of \I’fg), s0 it is not
appropriate to regard these as ‘small’ correction terms. Thus, perturbation theory is
inapplicable. Comparing the second-order perturbation solution to the exact solution,
we observe that the relative sizes of the coefficients which are non-zero are roughly
correct. However, because of the form of the coefficients, (10) and the matrix ele-
ments, (28) and (29), we see that, as we move away from the central mode in either
direction, every other coefficient is zero. Thus, although the relative sizes of the co-
efficients which are nonzero are about right, the omission of half of the terms which
should be included causes serious errors in both the eigenvalues (see Figure 1) and
eigenfunctions.

As n increases, the number of unperturbed modes which contribute significantly
to the perturbed solution increases substantially, as is shown by the examples for
n = 41 or n = 51. For these high orders, even the relative size of the second-order
expansion coefficients is completely wrong. We see an interesting effect for the co-
efficient of ¥, For n = 1 and 11, this is the dominant coefficient, for n = 21 it is
essentially equal to the dominant coefficient, and for 31 < n < 51 it is smaller in
magnitude than the most significant coefficients. The effect is particularly striking for
n = 41, for which Cy is less than 20 per cent of the largest coefficient. This example
demonstrates that it is easily possible for the original eigenfunction to make up a
negligible part of the mode of the perturbed problem with the same order number.
This is a fundamental contradiction of the assumption of “small” corrections inherent
in perturbation theory.

TRANSIENT SOLUTION

We consider the problem of finding the fundamental solution for a force which has a
é-function dependence in space and time. After taking the Fourier transform of the
equation of motion we have

HY + po¥ = —8(z — z) (37)

we assume a particular solution of the form ¥ = ) D,¥, where the D, are unknown
coefficients and the ¥, are orthonormalized eigenfunctions. Multiplying by ¥.,,, and
integrating from 0 to I, we find

Dp = — Yml@) (38)

(@ —an?)
Then, using (38) and inverting the Fourier transform we find that

Sin w,t

(39)

Y(z,t) = D, — V(o) ¥a(z)

n

1f, instead of 6(¢) time dependence, the time dependence of (39) is afdi(8(t))= exp
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(—1*/10°), (where 7o is the constant “rise time”), we get basically Gaussian pulses
traveling along the string

Yz, t) = > — W (x0)¥a(z) exp (— (wn70)*) COS wat. (40)

We calculated the excitation for the exact solution using (40) and for the three
approximate solutions for the case of 2, = 5 and 7o = 0.075. For each method, ‘‘snap-
shots” of the displacement along the string are shown in Figure 3 for times from
t = 1 through ¢ = 50. In each calculation, 200 modes are used. Several notable features
appear readily from the comparison between methods. We see that the first-order
perturbation solution does not contain any of the reflected phases from the boundary
in the middle of the string, and the main pulses eventually become slightly out of
phase from those for the exact solution. The solution for second-order perturbation
theory, with inaccurate eigenfrequencies (Figure 1) and eigenfunctions (Figure 2),
rapidly degenerates to a completely incorrect result. For example, even for the snap-
shot at ¢ = 1 the two main pulses are not symmetric and small noncausal phases
appear in the right half of the string.

The agreement between the exact solution and the variational solution is excellent.
Even for t = 50, the snapshots agree pulse for pulse. From ¢ = 1 through ¢ = 3 the
pulses spread away from z, = 5, the point at which the string was plucked, as they
would on a completely uniform and infinite string. The effect of the boundary occurs
at ¢ = 4. The pulse traveling on the left has been reflected by the rigid boundary and
now travels to the right (away from the boundary) with the negative of its previous
amplitude. Meanwhile, the rightmost pulse has passed through the first-order dis-
continuity at z = 10. The reflection and transmission coefficients for the wave travel-
ing to the right are

R piCy — pPaCz
pic1 + p22

_ _ 2mC
pic: -+ pace

For our problem, R = —0.15 and T = 0.85. (For waves traveling to the left, B =
0.15 and T = 1.15.) The reflection and transmission coefficients for both the vari-
ational and exact solutions agree with these theoretical values. Note that the ampli-
tudes of the main pulses do not decay appreciably, because the product of the trans-
mission coefficient, for passage from left-to-right times the coefficient for right-to-left
transmission is (0.85) (1.15) = 0.98. Thus the reflected pulses, although having sig-
nificant amplitudes themselves, cause only a slight decrease in the size of the main
pulses.

The velocity in the left half is 1.5 and the pulse which was reflected from the in-
ternal boundary has traveled 15 units when it hits the left-hand boundary at ¢ = 10.
Since the travel time for the center of the pulse is exactly 10 units, the leading half
of the pulse (which was reflected with a reflection coefficient of —1) exactly cancels
out the trailing half, producing a net displacement of zero. The fact that the solution,
as plotted, is zero, demonstrates the accuracy of our variational solution.

With increasing time, the wave forms become more and more complex as additional
reflected pulses are created. (In fact there are even small secondary reflected pulses
caused by passage of primary reflected pulses through the internal discontinuity!)
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Although, formally, the normal mode solution must produce all of the pulses predicted
by optics, it is nonetheless extremely gratifying to observe that this actually occurs.
It is worth noting that this discussion is for an extreme case, that of a step dis-

Time EXACT VARIATIONAL Ist ORDER 2nd ORDER
T Yy YT
T YT Yy vy

A e e —y

Fie. 3a. Comparison of displacement “snapshots’ for exact solution, variational method and
first- and second-order perturbation theory for 1 £ ¢ £ 10; 200 modes are summed in each case
and all figures have the same amplitude scale.

Time EXACT VARIATIONAL Ist ORDER 2nd ORDER
/T R S S S W | —
—h kN ok SN

1
e R
15 A A A e NA

R S

| —
ey ey e e e

20 _,.,J\_ﬂ_ b ‘__Aﬁr

NSNS S WU S SR S S [ T S [

B 0 20

Fic. 8b. Comparison of displacement ‘‘snapshots’ for exact solution variational method and
first-and second-order perturbation theory for 11 £ ¢ < 20.

continuity. It is possible that perturbation theory would be more successful for a
more gradual transition zone.

Discusston

We have presented clear and compelling evidence that of the variational, first-
order perturbation and second-order perturbation theories, only the variational
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method yields accurate solutions for a one-dimensional lateral heterogeneity problem.
Our result suggests, but does not demonstrate, that the variational method, using

Time
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2
+

25 w‘{—*—“\r‘“—"“

VARIATIONAL.

_Jp___r\_

e
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[
VT
e
—
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t

Ist ORDER
B S
B

1

2nd ORDER
S -
P A
it Vo'
e
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e
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Fic. 3¢. Comparison of displacement ‘“‘snapshots’ for exact solution, variational method and
first- and second-order perturbation theory for 21 = ¢ = 30.
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Fic. 3d. Comparison of displacement “‘snapshots’ for exaet solution, variational method and
first- and second-order perturbation theory for 31 £ t = 40.

20

the unperturbed eigenfunctions as trial functions, should be strongly preferred for
the three-dimensional lateral heterogeneity problem in the Earth. We now are testing
this suggestion.

Figure 3 is a schematic picture of what might happen to long-period surface waves
as they make multiple circuits about the Earth. Initially the wave forms are very
simple, but become more and more complex as the waves propagate across discon-
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Time EXACT VARIATIONAL. ist ORDER 2nd ORDER

45 /»_*A_J;_J /;,\._M

50 Ty
! i 1 [l ] 3 i | il J L 1 i i} il
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Fi1c. 3e. Comparison of displacement “snapshots” for exact solution, variational method and
first- and second-order perturbation theory for 41 < ¢ < 50.

tinuous boundaries. Perhaps very similar phenomena occur as waves on the Earth
cross continent-ocean boundaries. If so, then the variational caleulation of the modes
of a laterally heterogeneous Earth may help shed light on the observed wave forms,
and on the nature of the Earth’s lateral heterogeneity.
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