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ANALYSIS OF SPLIT NORMAL MODES FOR THE 1977 INDONESIAN
EARTHQUAKE

By SETH STEIN AND JEFFREY A. NUNN*

ABSTRACT

The longest period spheroidal mode multiplets, oS, to oS5, are well recorded
on IDA gravimeter records of the 19 August 1977 (Ms 73%) Indonesian earthquake.
We model these modes, which are split into singlets by rotation and ellipticity,
using time domain synthetics which reproduce the complex interference pattern
between the various singlets in each multiplet. This method, developed to fit a
single strainmeter record of the Chilean earthquake, successfully fits records at
multiple stations using a common source. We also study the attenuation of the
split modes by matching the decay of multiplet envelopes and individual singlets.

INnTRODUCTION

The earth’s longest period spheroidal mode multiplets are split into individual
singlets by the effects of rotation, ellipticity, and lateral heterogeneity. Thus the
multiplet spectrum contains a number of individual singlet peaks, each broadened
by the effects of attenuation and record length (Benioff et al., 1961; Alsop et al.,
1961; Ness et al., 1961). The corresponding time series shows a complicated inter-
ference pattern resulting from the beating of the singlets, each with its own
amplitude and phase (Stein and Geller, 1977, 1978a).

Theoretical results for the eigenfrequencies of the split singlets have been given
by Pekeris et al. (1961) and Backus and Gilbert (1961) for the effects of rotation,
and by Dahlen (1968) and Dahlen and Sailor (1979) for rotation and ellipticity.
Theoretical results for the amplitudes of the split mode singlets were obtained by
Stein and Geller (1977) and Geller and Stein (1977).

The major limitation on studies of these longest period modes has been a shortage
of data. Until recently, the Isabella strainmeter record of the 1960 Chilean earth-
quake and the UCLA gravimeter record of the 1964 Alaskan earthquake were the
only two records adequate for the study of S to ¢Ss. As a result, these two records
became among the most heavily analyzed of geophysical time series.

The 19 August 1977 (Ms 72) Indonesian earthquake, recorded on the ultra-long
period gravimeters of the IDA network (Agnew et al., 1976) provided a new dataset
for the longest period modes. In particular, this data provided records of a single
earthquake at seven stations: such multiple coverage in this frequency range had
not been previously available. The data has already been used for studies of the
attenuation of the unsplit modes (Geller and Stein, 1979; Stein et al., 1981; Buland,
1981; Sleep et al., 1981), for the attenuation of 0So (Reidesel ef al, 1980) and for
source mechanism inversion (Kanamori, 1980; Chou and Dziewonski, 1980). Splitting
parameters for oSz and S; have been obtained from the IDA records by Buland ez
al. (1979).

The purpose of this study is to apply the time domain analysis method developed
by Stein and Geller (1977, 1978a) to the Indonesia records. This technique had been
previously applied to single records of the Chilean and Alaskan earthquakes. The
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= —T74°. The resulting excitation in geographic coordinates is shown in Figure 2 for
the 0S; and S; multiplets.
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natural next step is to apply it to multiple records of a single event, and show that
they can be fit simultaneously using the same source. After successfully fitting the
records, we then use this method to estimate the attenuation of these modes.

Dara

Seven IDA stations recorded the Indonesian earthquake: Nana, Peru (NNA);
Halifax, Nova Scotia (HAL); College, Alaska (CMO); Sutherland, South Africa
(SUR); Raratonga, Cook Islands (RAR); Brazilia, Brazil (BDF); and Garm, USSR
(GAR). The records and processing used are those used by Geller and Stein (1979)
except that the data were not decimated. The earliest portions (up to 30 hr) of each
record were deleted to avoid the saturation due to large amplitude surface waves;
the solid earth tide was removed by twice subtracting a 1-hr running average from
the data. Two stations had shorter record lengths than the others: at GAR due to
long-period noise from the flooding of a nearby river, and at SUR due to the
rezeroing of the instrument mass.

Figure 1 shows the longest period portion of the spectrum at each station. The
signal to noise of various modes differs from station to station. For example, oS: is
not as well recorded at any station as it was on the Chile and Alaska records. Sy, on
the other hand, is well recorded at all seven stations; oS3 is well recorded at most
stations, but not at HAL, for example. Splitting is clearly visible for most of the
multiplets.

To model the data, we use the results of Stein and Geller (1977) for the amplitudes
of the split normal mode singlets excited by a double couple source. The solution is
obtained by transforming the spherical harmonic expansion of the displacement
from the frame of reference of the earthquake source into the geographic frame
which yields the observed split modes. The singlet amplitudes depend on source
location, source depth, fault geometry, and receiver location. For a source we used
parameters derived by Kanamori (personal communication): ¢y = 270% & = 45% A

In the geographic coordinate frame, all 2/ + 1 or nine singlets are excited, rather
than the —2 to +2 singlets which are excited in the source frame. The excitation
differs dramatically from station to station, as can be seen by comparing, e.g., CMO
and NNA. The spectra shown are displacement, for which expressions are given by
Stein and Geller (1977); the relation between vertical displacement and the gra-
vimeter records is discussed in an Appendix. The amplitudes of the —m and +m
singlets are equal since the source is a point source. (Previous numerical experiments
for the Chilean earthquake, using a 1000-km fault length, showed almost no
difference from the point source results.)

Figure 3 shows the theoretical spectral amplitude of the largest singlet in each
multiplet at each station. These results generally agree with those expected from
the spectra (Figure 1): e.g., ¢S, is best seen at N NA, BDF, and RAR. It is interesting
to note that the poor signal for S: at SUR and GAR is not due to the short-record
lengths analyzed—the mode is simply not well excited at those stations. Finally, as
the figure shows the maximum singlet excitation, direct comparison between differ-
ent modes at the same station can be misleading because the number of singlets
(and thus total energy) varies between modes, and because of interference between
singlets.

The seismograms were synthesized in the time domain, so that all the processing
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used on the data could be applied to the synthetics. Before examining the results, it
is useful to consider the same process in the frequency domain. Figure 4 shows data
for the oS> multiplet at Brazilia: the +2 and 0 singlets are best excited. The synthetic
amplitude spectrum is shown: first without the effects of attenuation and record
length; next including attenuation (@ = 500), which produces the characteristic
resonance curves; and finally including the effect of record length, giving rise to
(sin x)/x-type spectra, broadened and with side lobes. It is clear that record length
as well as attenuation have major effects on the spectrum and time series. These
effects are included naturally in the time domain synthetics. The agreement between
synthetic and observed spectra (and thus the resulting time series) is good but not
perfect, due to any one of a number of noise effects.

SYNTHETIC SEISMOGRAMS

To analyze the data, modes with adequate spectral amplitudes were narrow band-
filtered to isolate a single multiplet. Synthetic seismograms were then synthesized,
tapered, and bandpassed in exactly the same way as the data. The results are shown
in Figures 5 to 8.

oS (Figure 5) is the best sample; it was well excited at all seven stations. The
excitation (Figure 2) and thus singlet interference pattern differ substantially be-
tween stations. This, then, provides an excellent test for our time domain synthesis
method. The synthetics agree extremely well with data in terms of maximum and
minimum times and of amplitude decay.

oS3 (Figure 6) yields excellent results at five stations: S5 does well (Figure 7) at
two (RAR and HAL). ¢S; is fit adaquately, although not as well as the other modes
at four stations (Figure 8) The difficulties with ¢S appear to be due to the size of
the earthquake: its moment (3 x 10* dyne-cm; Kanamori, personal communication)
is substantially less than that of the Chilean or Alaskan earthquakes. A variety of
experiments designed to improve the results for S had no noticeable effects. This
is not due to inaccurate splitting parameters: those used (Dahlen and Sailor, 1979)
agree well with the observed eigenfrequencies (Buland et al., 1979). Unfortunately,
a signal-to-noise ratio adequate for eigenfrequency determination is not necessarily
adequate for stable amplitude studies.

ATTENUATION

The Qs of the longest period spheroidal modes, ¢S: to oS5, form the best constraint
on the attenuation structure of the lowermost mantle, due to the depths sampled by
their kernals (Sailor, 1978; Sailor and Dziewonski, 1978; Stein ef al., 1981; Nakanishi,
1981). At present, measurements of these @s scatter considerably, as discussed by
Stein and Geller (1978b). As a result, lower mantle @ structure is poorly constrained
(Stein et al., 1981).

It is difficult to measure these @s, primarily because only the very largest
earthquakes provide sufficiently large amplitudes at these long periods. Only the
Chilean and Alaskan data have to date been usable: considerable scatter occurs
from the use of different techniques on the same dataset. The Indonesian earthquake
is considerably smaller, but the data quality is higher, so we attempted to measure
@ for the longest period modes.

Comparison of theoretical multiplet beat patterns with data provides a method of
measuring the attenuation of split modes which minimizes the difficulties introduced
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by the splitting (Stein and Geller, 1978b). In this procedure we form the Hilbert
transform envelope of data and synthetics, and smooth each with a 50-hr running
average for ease of comparison. By comparing the data to synthetics generated with
a range of values of @, a best-fitting value can be obtained.
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Fi1G. 6. Observed and synthetic multiplet time series for oS;. @' = 0.002 was used for all synthetics.

Figure 9 shows the results for (S at the best five stations. Dashed lines are the
data and solid lines are synthetics, corresponding to the indicated values of Q.
Several of the stations—HAL, BDF, and NNA—show extremely stable measure-
ments with @' between 0.003 and 0.002 (§ from 333 to 500).
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Figure 10 shows similar results for (S; and S.. As expected from our earlier
discussion, the values for oS; are substantially better than those for (Ss, which show
serious noise effects.

An alternative to examining the decay of an entire multiplet is to study an
individual singlet. In general, this is rather difficult, as individual singlets are not
well resolved in the data. Naturally, singlets are best resolved under the fortuitous
circumstance that the “outermost”, i.e., m = +/ singlets are much better excited
than the adjacent ones. By predicting the relative excitation of singlets at each
station, we can determine stations at which narrow-band filtering for singlets is most
likely to be successful.

Figure 2, showing the theoretical relative amplitudes of the ,S; multiplet, indicates
that the best isolated +3 singlets occur at BDF and NNA. At the other stations, e.g.,
CMO, isolating a single singlet is much more difficult because of the relative
amplitudes. This occurs despite the fact that the overall multiplet signals are quite
good and very well modeled by the synthetics.
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Fic. 7. Observed and synthetic muitiplet time series for 0S2. @7 = 0.0015 was used for all synthetics.

Figure 11 shows amplitude decay curves for four ¢S, singlets; two at BDF and two
at NNA. The smooth curves on the logarithmic amplitude plot indicate that the
singlets are relatively free of noise, which would yield a scalloped decay curve (Geller
and Stein, 1979). The data, although adequate, is not as good as for the shorter
period multiplets used by Geller and Stein (1979). A least-squares line was fit to the
segment of the data from the peak amplitude until the time the signal decayed to
e”! of the peak value. Q! was then computed from the slope of the line. The
nominal error bars, from the standard least-squares formula, are only a few per cent,
but these errors are considered to seriously underestimate the true uncertainties
(Geller and Stein, 1979). More realistic estimates can be derived from the differences
between measurements.

Figure 12 shows the best singlet amplitude data for ,S,. The +4 singlet at BDF
did not yield stable results. Similar efforts to measure singlet decay for ¢S, at BDF,
RAR, NNA were unsuccessful: although the amplitude spectrum showed well
isolated peaks, the decay curves showed serious scalloping. This is unfortunate as
the @' of 0S: is quite important for lower mantle attenuation structure.
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The combined singlet and multiplet attenuation results for ¢S; and oS: are
summarized in Figure 13. With the present data alone, it seems most prudent to
regard the differences between individual multiplet measurements, individual singlet
measurements, and the multiplet and singlet measurements as a measure of the
uncertainty in our knowledge of the attenuation of these two modes.

Also shown are the results of previous studies using the data from the Chilean
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Fic. 13. Comparison of attenuation measurements for »S; and ,S;.

(Benioff et al., 1961), Alaskan (Slichter, 1967; Sailor and Dziewonski, 1978), or both
(Smith, 1972; Stein and Geller, 1978), earthquakes. The results of this study are
generally similar to those of the previous studies. This is quite encouraging in that
it is important to establish the uncertainty in values for @, since the uncertainty can
be explicitly included in inversions. The formal uncertainties in a single ¢ measure-
ment probably underestimate the true uncertainties; which are better established
by multiple independent measurements using as wide a range of analysis techniques
as possible. Each type of measurement has its own uncertainty. The plus and minus
singlets at a single station, which should have identical @s, give the minimum
scatter. Greater scatter occurs between the same singlets at different stations, which
should also have the same @. There are many possible sources of uncertainty in the
time domain synthesis, some of which are discussed in the Appendix. Other uncer-
tainties include lateral heterogeneity, either in velocity or in @ (Sleep et al., 1981),
which can cause either real or apparent differences between singlets, and affect the
multiplet results. Clearly a major improvement, as well as better data for oS,, will
require IDA records of a significantly larger earthquake.

CONCLUSIONS

The results of our analysis show that the split modes can be very well modeled by
calculating the excitation of the individual singlets in the multiplet. Time domain
synthetics successfully reproduce strikingly different records observed at the indi-
vidual stations. The envelopes of the data can be used to study the attenuation of
the multiplet. Furthermore, the theoretical excitation can be used to identify
individual singlets which can be used for attenuation studies. When IDA data for
earthquakes larger than the Indonesian event become available, these methods
should yield even better results.

APPENDIX

The vertical component of displacement for a multiplet of angular order / can be
written

{
= Lwimt xSty = wimt/ 2@,
U(t) z (Elme + Elm e )e

me=-]
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or

!
Uty = Y {2Re(Eim) cos wimt — 2Im(E},) sin wint} e <mt>m

=]

where E), is the value at the earth’s surface of the radial component of the E;,(r)
vector (Stein and Geller, 1977).
The corresponding acceleration is then

!
U = ) (—win) {2Re(Zim) 08 wimt ~ 2Im(Z;)sin wImt}e_“”"”/lem

m=-1

where
1 Im(E..)
Re(Zim) = Re(Em) |1 — — —
e{Zim) e(Eim) < 4Q7m> on
and
. 1 Re(Elm)
Im(Z1m) = Im(Ezm) (1 4Q‘22m > le .

For the modes in question, @ is approximately 300, so corrections of order 1/Q
and 1/Q° may be neglected, and the acceleration amplitudes Z;,, can be taken equal
to the displacement amplitudes ;.

A second effect is the factor —wj., which differs from singlet to singlet. The
maximum possible frequency difference occurs for the —/ and [ singlets in each
multiplet. For ¢S;, the ratio (w3s/w’-3) is approximately 1.06, so any effect will be
negligible, especially compared to the noise in the data. Numerical experiments in
which multiplets were synthesized with and without this factor were indistinguish-
able.

An additional effect is that the gravimeter measures acceleration and changes in
the gravity field. Okal (1981) has calculated the magnitude of this effect and showed
that it is less than 5 per cent for oS; to ¢Ss, and approximately 9 per cent for ¢Ss. It
has therefore been neglected in these calculations.

The synthetic spectra (Figures 2 and 4) and time series (Figures 5 to 8) were thus
calculated for the vertical component of displacement. In a further simplification
(for computational purposes) @, rather than the formally correct Qim/wm for a
spherically symmetric structure was assumed constant for the multiplet. Finally, as
discussed earlier, a point source approximation, justified for these extremely long-
period modes, was used in calculating the excitation.

The agreement between the theoretical and observed seismograms suggests that
these approximations are justified relative to the noise level in the data.
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