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This paper develops the theory necessary to explain the amplitudes of
the earth’s split normal modes. Expressions are derived for the amplitudes
of the free oscillations of a laterally homogeneous rotating and elliptical
earth excited by a point double couple. The eigenfunctions for this problem
are the complex vector spherical harmonics about the north pole. The am-
plitudes of the normal modes are obtained by transforming SAITO’S (1967)
results, exprcsscd in vector sphcrical harmonics about the earthquake source,
into geographic coordinates. We explicitly show the dependence of the ex-
citation of each singlet within a multiplet on geometric fault parameters,
seismic moment, source depth, earth structure and the gcographic coordi-
nates of the source and recciver. We present synthetic torsional and sphe-
roidal displacement and strain spectra for low order fundamental modes
(6S2=055 0T 2~0Ts) excited by four basic fault geometries.

Our results are suitable for the synthesis of observed spectra and time
domain records in which splitting is an important effect. We have applied
these results elsewhere to the Chilean and Alaskan earthquakes and have
obtained very good agreement with observations.

1. Introduction

Following the observation of split peaks with varying amplitudes in the
free oscillation spectra of the 1960 Chilean earthquake (by NEss er al., 1961
and BENIOFF ef al., 1961), PEKERIS ef al. (1961) and Backus and GILBERT
(1961) showed that the splitting could be explained by the earth’s rotation.
Pekeris et al. and Backus and Gilbert calculated the relative amplitudes of the
low order spheroidal modes excited by several simple sources. In this paper
we calculate the amplitudes of the split modes of a rotating and elliptical earth
due to a realistic model of an earthquake source, a double couple of arbitrary
orientation.

Our results for the excitation of the split modes allow us to use the rela-
tive amplitudes of singlets to study earthquake source mechanisms. Recently
(GeLLER and STEIN, 1977) we have calculated for the first time the theoretical
singlet amplitude ratios from published source parameters for the 1960 Chilean
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earthquake and the 1964 Alaskan earthquake. For both events our synthetic
relative spectral amplitudes are in remarkable agreement with observations of
very low order modes. We are also able to analyze several hundred hours of
records from the Chilean earthquake for these low order modes. These records
are dominated by a complicated signal generated by rotational splitting which
we are able to match quite closely (STEIN and GELLER, 1977) using the results

we derive here.
The calculation of the excitation of the normal modes of a nonrotating,

laterally homogeneous earth is greatly simpliﬁed by its spherical symmetry.
As a result of the degeneracy arising from this symmetry, vector spherical
harmonics in coordinates with the source on the polar axis may be chosen as
eigenfunctions. This choice greatly simplifies the excitation calculations, be-
cause the eigenfrequency depends only on the angular order number, [, and
only modes with azimuthal order numbers m=0, +1, +2 are excited by a
point double couple.

The earth’s rotation and ellipticity remove the degeneracy of the problem.
For the nondegenerate problem, splitting is caused by the perturhing effects of
the Coriolis force, centripetal force and ellipticity, all of which are symmetric
about the earth’s rotation axis. In contrast to the degenerate case, there is a
distinct eigenfrequency, @, for each singlet. DANLEN (1968) showed that the
zeroeth order eigenl’unctions are complex vector spherical harmonics about the
North Pole, and calculated the eigenfrequencies of the split modes for several
earth models. Although the frequency splitting within a multiplet depends on
the earth’s rotation rate, ellipticity and structure, the zeroeth order amplitudes
of the split normal modes do nof depend on the rotation rate and the ellipticity,
and may thus be calculated without taking into account the precise frequency
separation.

A substantial portion of the method for calculating the excitation of the
degenerate modes may be adapted to the nondegenerate case, although much
additional complexity results because the source is not on the axis of symmetry.
The most important consequence of the removal of the degeneracy is that in
general, for a double couple point source, modes of every azimuthal order
number from m= —I to m=--1 are excited. We show that the spectral am-
plitudes of the pair of singlets of orders m are equal. Furthermore, the geo-
graphic coordinates of the source and receiver appear individually in our ex-
pressions for the amplitudes, while for the degenerate case only their relative
position affects the final result.

If the additional perturbation induced by lateral heterogeneity is intro-
duced, then in general the eigenfunctions are linear combinations of the spheri-
cal harmonics {SAITO, 1971; Usami, 1971; MADARIAGA, 1972; MADARIAGA
and Axi1, 1972; LuH, 1974). In this study we consider only the effects of
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rotation and ellipticity which are the primary causes of the splitting of the
low order modes. In the remainder of this paper we use nondegenerate to de-
note the case of a laterally homogeneous, rotating and elliptical earth, which
has complete symmetry about the rotation axis.

Many authors have considered the excitation of the earth’s normal modes.
Sa1To (1967) presented expressions for the excitation of free oscillations by a
point source in a spherically symmetric earth. KANAMORI (1970a, b, 1971,
1976), ABE (1970), Fukao and ABE (1971), Snimazakr (1975), OkaL (1976),
and other authors applied Saito’s normal mode results to the synthesis of long
period surface waves. Kanamori and Crpar (1974) presented compact ex-
pressions for the excitation problem. GILBERT (1970) introduced the moment
tensor representation of a seismic source, which is formally equivalent to
the double couples and couples without moment used by SarTo (1967) and
TakeucHt and Saito (1972). The equivalence has been discussed by several
authors, e.g. GELLER (1976). Lun and DzIEWONsKI (1976) modified the mo-
ment tensor solution to include the effects of rotation and ellipticity.

In this paper we extend Saito's results to obtain the excitation of the non-
degenerate normal modes. Our approach allows us to apply solutions for the
excitation of degenerate normal modes (Saito, Kanamori and Cipar) to the
nondegenerate modes. We derive expressions for torsional and spheroidal
displacement and strain fields in the time domain. These expressions may
then be used to calculate spectral amplitudes.

We calculate synthetic displacement and strain spectra for low order
fundamental mode torsional and spheroidal multiplets (angular orders two
through five) excited by four basic fault geometries (vertical and 45° dip; pure
dip slip and strike slip). For particular source and receiver locations we pre-
sent figures showing the relative spectral amplitudes of the individual singlets
within each multiplet for each displacement and strain component. In general,
the relative amplitudes within a multiplet will vary substantially with angular
order number or even between different displacement or strain components for
the same order number. Usually there is no consistency in the preferential ex-
citation of singlet pairs with azimuthal order numbers --m between multiplets.

Our method may be summarized as follows. We use DAHLEN’s (1968)
results for the case of complete symmetry about the rotation axis. Since the
zeroeth order eigenfunctions are the complex vector spherical harmonics about
the north pole, we obtain the excitation in terms of these eigenfunctions. To
do so we use the rotation matrix elements to transform the excitation expanded
in vector spherical harmonics about the source into the geographic coordi-
nates.

This first order perturbation theory using zeroeth order eigenfunctions
and first order eigenfrequencies is, of course, an approximation. Such an
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approximation, in which the eigenvalue is found to a higher order than the
eigenfunction, is a common practice in applications of perturbation theory.
We regard the resulting zeroeth order amplitudes as being adequate for our
purposes, as our intent is to derive results suitable for comparison to observa-
tions. For this purpose we require far greater precision in the eigenfrequency
than in the eigenfunction.

By examining spectra, eigenfrequencies can be determined quite precisely.
On the other hand, spectral amplitudes cannot be measured very precisely;
the uncertainty is probably at least 109,. Since the error made in omitting
the first order correction to the eigenfunctions is of the same order as the first
order correction to the eigenfrequencies, and is almost certainly smaller than
the experimental uncertainty in the amplitudes, it seems sufficient to use the
zeroeth order amplitudes. Similarly, the first order eigenfrequencies seem
acceptable in view of present experimental errors.

The true test of such an approximation is in its application to the data.
Because we are successful in synthesizing spectra (GELLER and SteiN, 1977)
and time domain records (STeiN and GELLER, 1977) it appears that the first
order perturbation theory is all that we require.

Our method, using the rotation matrix elements, could also be generalized
to the case of a laterally heterogeneous earth. Since the eigenfunctions are
now linear combinations of the spherical harmonics about the north pole
(LuH, 1974), we would again transform the excitation into the geographic co-
ordinates. The final result would then be obtained by taking the appropriate
linear combinations. Due to the complexity of this procedure and our ability
to fit data for very low order modes with a model including only rotation and
ellipticity, we do not include the effect of lateral heterogeneity in this paper.

2. Normal Modes of a Rorating Elliptical Earth

We adapt Sa1T0’s (1967) results for the normal modes of a spherically
symmetric earth to the case of a laterally homogeneous, rotating and elliptical
earth. The displacements and stresses are expanded in complex vector spheri-
cal harmonics about the north pole.

The torsional and spheroidal displacements are respectively
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The torsional and spheroidal vertical stresses, P=(P,,, P, P,,) are
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(' ’ l)'— Z Z Z lm m(O“ (,))n[ Ve (l)]lm(e 7L”l?'l[+(_’l”ml”’ ) (23)

el [ =0 m=-—1
and

a o 1
PS‘('.’ ,): Z:“ ].Z:" Z{_[ 1 lm{n[ (] )]lm‘glm(”" (}1)) _]_‘ n[‘t( ]Im Im(/} (1’))}

X (ein“’?;n’ -} ei‘n"'i_m,") . (2 4)

We follow established usage, and denote eigenfrequencies for both torsional
and spheroidal modes by ,@,,, although the torsional eigenfrequencies (in 2.1)
and (2.3) differ from the spheroidal ones (in (2.2) and (2.4)). The [requency
in question should be clear from the context.

For the degenerate problem, each mode has two eigenfrequencies with
equal absolute value, but opposite sign. However, when a perturbation is
applied, the eigenfrequencies associated with a particular mode no longer
have the same absolute value. The positive eigenfrequencies (,w;,) may be
considered as the “physical” frequencies of the split modes. The negative
eigenfrequencies (,m;,) arise from any application of perturbation theory to
the splitting problem (e.g. Backus and GILBERT, 1961). In later sections the
negative eigenfrequencies will be eliminated from the final expressions.

The sum over # sums all the overtones. From this point we consider
only a single overtone and suppress the sum over n and all overtone indices.
The complete displacement and stress fields can always be derived by adding
all the overtones.

A, and D, are the amplitudes of the individual spheroidal and torsional
modes and are found by solving the excitation problem. [y/],, and [v{],, are
the spheroidal and torsional radial eigenfunctions. Though derived for the
degenerate case, they remain valid, to zeroeth order, for the nondegenerate
case. Following ALTERMAN ef al. (1959) and Sa1T0 (1967) we will suppress
all subscripts on the [,],, in the remainder of the paper.

The surficial basis vectors for the normal mode expansions are the com-
plex vector spherical harmonics

0.0=(0, L VD) V00
lm L

lm( (/)) ()/ln‘((}) (/)), O, 0) (25)
2 (0, )= < W0, 9) 1 0 )>
af sin 0 a6
where
Y0, $)=(— 1)""[([“’")!] Pp(cos Dye™ (m>0) (2.6)
(I+m)! ‘ = '
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0 is the colatitude and ¢ is the longitude. * denotes complex conjugate. The
associated Legendre polynomials are defined as

4" px) . (2.7)

d v m

1);11 (\) —_ ( 1 _x‘l)m, 3

The vector spherical harmonics then have the orthogonality and normaliza-
tion properties

2
0

U rtto, 0 (100, ) sin 0anay
[}

LN
AN

LA s
TONBERITLRY,
R h A e TS

¢

yy SO S“ (S0, $))- (Sin(0, ) sin 0d0ds
| % - SO SO (S20(0, )+ (Su(0, $)) sin 000
] | - ;l"fl By (2.8)
i ‘ l where
éj&%:%‘b%:}w and D

0 m=fm'

mm! T
1

0
m=m'.

Equation (2.6) gives us the symmetry relations
TIm(O’ (//)):(- 1)1" l;;:.—m(o’ (I’))
S0, §)=(—1)"SiLn(0, 9) (2.9)
S%m((}ﬂ (/{)):(_—l)msi.‘-m((]’ (II))
for the vector spherical harmonics.
DaHLEN (1968) applied perturbation theory to the degenerale case. and

calculated the splitting for several earth models. The perturbed eigenfrequen-
cies may be found from the unperturbed eigenlrequency, using

a)lm:(l)l-{—(a(l))lm . (210)

Here the perturbed eigenfrequency, my,, and the unperturbed eigenfrequency,
@,, may be either positive or negative but must have the same sign. The

frequency shift (do) is given by

(0w =y (c; - mBA-m'y)) (2.11)
in Dahlen’s notation, where the splitting parameters «, and j, are due to the
ellipticity, and 3, is due to the earth’s rotation. Because of the m* dependence
of (dw),,, the perturbed eigenfrequencies are not symmetrically spaced about
the unperturbed eigenfrequency or the central perturbed frequency.
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The splitting parameters for positive and negative [requencies are related
by
oo Y= o))

Bl )= —p(or) (2.12)
rl@n)=r(or) -
Since w} = —wy, (2.11) and (2.12) show that

(6w, = —(Bw)] _, (2.13)
and thus
W= — O (2.14)
but in general |5 |o,|-
We will use (2.14), together with the symmetry relations between spheri-
cal harmonics (2.9), to eliminate the negative eigenfrequencies from the ex-
pressions in sections 4 and 5.

3. Transformation of the Source Discontinuities into Geographic Coordinates

We now generalize Sa1T0’s (1967) results to the case of a rotating, el-
liptical earth. A point source causes discontinuities in stress and displacement
across an infinitesimal shell, which are expanded in vector spherical harmon-
ics. The expansion coeflicients are required to find the amplitudes of the free
oscillations. For the nondegenerate case, the expansion must be carried out
in the geographic coordinate frame. Lun and DziEwONsKI (1976) calculate
these expansion coefficients from scratch for each individual source location
and mechanism.

Our approach is to use Saito’s expansion coefficients for the discontinui-
ties resulting from a double couple, ina coordinate system with the source on
the polar axis. We then use elements of the rotation matrices to transform
this spherical harmonic expansion into the geographic coordinate frame. Thus
for any source location we perform a simple transformation rather than com-
pletely recalculate the expansion coeflicients.

It is first necessary to introduce the coordinate system of the earthquake
source, and to show how the rotation matrix elements allow us to transform the
expansion coefficients from this coordinate system to the geographic system.

We adopt the fault geometry of Kanamori and Cipar, shown in Fig. 1.
We use a coordinate system in which the source is at (r=r,, #'=0, ¢’=0) and
describe points in this system by (r, 0, ¢'). In this frame the fault strike, at
an angle o measured counterclockwise from north, is the A7 axis. The Xjaxis
is vertical. The fault plane dips at an angle § measured from the negative A,
axis, and the slip angle A, which gives the direction in which the hanging wall
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FAULT FPLANE North

Fig. 1. Fault representation of Kanamori and Cipar (slightly modified). o
is the slip vector, and gives the displacement of the hanging wall block.
# is the normal to the fault planc, and L points north. The strike p is
measured counterclockwise from L. The dip angle 4 is mecasured from
the negative X; axis, and the slip angle Z is measured in the fault planc
counterclockwise from JXj.

block moves with respect to the foot wall, is measured counterclockwise from
X7 in the fault plane. The cartesian unit vector in the direction of slip is
given by

p=(cos 2, sin A cos 4, sin 4 sin d) (3.1

and the unit normal to the fault plane is
/i=(0, —sin d, cos d) . (3.2)

The geographic coordinates of the source are (ry, 0,, ¢,), and points in the
geographic system have coordinates (r, 0, ¢). The X; axis is the polar axis and
the X,-X, plane is the plane of the prime meridian. Thus the unit vector ¢
points south at any point and ¢ points east.

Hereafter, we will use primes (X7, /1, v{, 4},) to denote quantities associ-
ated with the source coordinate frame. The corresponding unprimed quantities
are associated with the geographic coordinates.

The source and geographic systems can be related to each other through
the three Euler angles which allow us to rotate the geographic (X}, A,, X}) axes
into the source (X}, X3, X7) axes. To perform this transformation we start with

"
the X;, X,, X, axes and make three counterclockwise rotations. We first rotate
by « about the X; axis, then by £ about the resulting X, (or X¥) axis, and
finally by y about the X} axis. This process is shown in Fig. 2. The line L,
drawn to clarify the choice of Euler angles, points north in the A7-X} plane.

We see that for a source at 4, ¢,, with fault strike o,

<

o -
J==

Fe=an . (3.3)

]

~

= 89 i 8

(This is only true for the Euler angle conventions of BrINK and SATCHLER
(1968)—at least three other conventions are used by other authors.)
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North Pole
X Euler angles

Steike X, 3
l o =

L
_?Xz about X5
~J
Xy Xz
Greenwich
North Pole
. v L
Strike X, /}\ X; Source
: B=6,
about X,
X
XZ
North Pole
Sourlce
X3 Fig. 2. Euler angles which rotate
' geographic (X1, X, Xy) axes
X, Strike into source (X7, X3, X}) axes.
P . y=mtp All rgtalions are right ha.nded.
Xz'ﬂ X, about X'3 T]/IC lllnc L points north in the
% 4 X1-X; plane.
1

Brink and Satchler show that spherical harmonics in the two coordinate
systems are related by the rotation matrices £z}, («, 8, ;) which are irreducible
representations of the rotation group. For brevity, we will denote this set of
three Euler angles by R=(a, 8, y). The rotation matrix elements are then

given by

'Q).snk(R):eﬂimm“{(T/{)dgnk(l;) (3'4)
where
PV (R N (B S
D)= 23 = = k=) (e ke = m)!
>< [Siﬂ (ﬁ/z)]'}t-i-k—m[cOS (f,g/z)]‘ll»!-m—-'k—'ll (3"3)

and the summation ranges over all values of 1 which give non-negative fac-
torials. Derivations of the rotation matrix elements are also given by SATO
(1950).

The relation between spherical harmonics in the source and geographic
frames is then

!
Yl )= 2 DR (0, 9) - (3.6)
M-l

Since the vector spherical harmonics are themselves vectors, we may write
equalities between vectors (rather than their components)

Wa»%é:ﬁ:it@e-a:,
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Tl/c,([}’v 5')1) g: fnl(R) lm({}’ (1,))

= -]

il

L

M-

SL(0, o= 3 FLUR)S

me= -
1

lk([/’ ) Z 'f/’ ml»(R ‘S'lm((l’ (/)) .

m=—1

(0, @) (3.7)

(To compare individual components in (3.7) directly, the (¢, ¢)) components
must be rotated into the (¢’, ¢’) frame, or vice versa.)

We now use the rotation matrix elements to obtain the expansion in ge-
ographic coordinates of the discontinuities in displacement and stress caused
by a point source. We begin with this expansion in the source coordinates,
and derive the relations between the two expansions. These relations will
allow us to convert Saito’s source frame results to the geographic results we
require.

In the source frame, Saito’s expressions for the discontinuities in displace-
ment and stress can be rewritten as

dU(r )= U(r,+¢, 1) — Ulr,—e¢, 1)
1 « < 1 7 3 ’ ’ A A 7 17
:2_& ) %,_l [0 () Tl 0, )+ 015 ()S1(0 )
g:S5()S3,.(0", $')]e™ dw (3.8)
and
oP(r; N=P(r,+¢, t)—P(/‘S—e, 1)

L{= & ey ' ’ 1y
x Z Z [{/L’I((U)Tln'(() ( )'[_(/ ﬂ(m) lm(() (/))

:272' Je—eo 1=0 m=w—1
+ g3 (@)8,.(07, ¢ e dw (3.9)

where dU(r,; 1) and 6P(r,; t) are the jumps in displacement and stress respec-
tively across a spherical shell at the source depth r=r,.

For the special case of a step function source time dependence, the fre-
quency dependent discontinuity coefficients gj(w) may be written

="/ (3.10)

where the f} are the expansion coefficients for the spatial dependence of the
discontinuity. Each (fT)" or (f})" has an implicit dependence on [ and m.
To transform (3.8) and (3.9) to the geographic coordinates, we use the
results derived in (3.7) for the vector spherical harmonics, and derive a general
relation between the discontinuity expansion coefficients in geographic coordi-
nates and those in source coordinates in terms of the rotation matrix elements

(Jhim= 5 Rt - (3.11)
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In this equation we have written the /, m dependence of the f; explicitly. We
will omit these subscripts in the remainder of our discussions. Note that, as
the f; are coeflicients of the basis vectors, they transform, (3.11), in the oppo-
site sense as the vector spherical harmonics (3.7).

Using this relation between the discontinuity expansion coefficients, we
could rewrite (3.8) and (3.9) to obtain expressions for the discontinuities in
displacement and stress in the geographie coordinates. We will not do so,
because in calculating the excitation, we require the discontinuity expansion
coefficients, f; (3.11), rather than the discontinuities themselves.

4. Torsional Modes Excited by a Point Double Couple

We now use the expansion coefficients in geographic coordinates to apply
Saito’s excitation results to the nondegenerate case. We derive the excitation
of the torsional modes in some detail in this section; we present results for
spheroidal modes in the next section. It is shown that although (in source
coordinates) only singlets of orders m=—2 through m=+2 are excited in
the degenerate case, all 2/41 singlets within a multiplet are excited in the
nondegenerate case.

We now modify Saito’s results for the displacements resulting from a
point source with step function time dependence and unit seismic moment. To
zeroeth order, in the geographic frame, Saito’s expression may be written as

. . o ! X . EN Lo X
v, [)ZIZU gz Alm.,]vgv(’v)Tlm(() (/ﬁ)le“"lm'+€W“"t] ’ (41)

where r is the position of the receiver, y!(r) and yj(r) are the eigenfunctions
for the torsional modes, and I] is an energy integral defined by Saito. A, is
the modal amplitude

= O =y (OD]er, (4.2)

2yT
2011

As we have shown, we can express this as

!
‘Alm: Z ’iz‘fnk(Ry/”k (43)
fomm =1
where the source frame modal amplitude is
-2 T\ ,7' — TN T f e
g = DO =Y. e (N)e=r, (4.4)
2wl

These equations are valid for an arbitrary point source. Saito gives ex-
pressions for (f7)" and (f7)' for a double couple, in terms of the real spherical
harmonics (Py(cos #) cos m¢ and Pp(sin 0) sin m¢) and in terms of the cartesian
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components of the unit slip vector, 2, and the unit normal to the fault plane,
A. These can be transformed into the coefficients of positive and negative
complex spherical harmonics for the fault representation of Kanamori and
Cipar. For the complex (but still completely unnormalized) spherical har-
monics, Pp(cos 0)e'™¢, the coeflicients become

241 1 1

PTY = —sin Acos 20 icos Acosd 4.5
=G T 9) (4.5)
for m=-1, and
ri(f7y = 241101 (—cos A sin d+1isin Asin d cos 0) (4.6)
4rzl* r, 2

K

for m= 4-2. Both of these quantities are zero for m=0, and |m|>2. (g, is
the rigidity at the source depth r,.)
To convert these coefficients into the coefficients of our normalized com-
plex spherical harmonics, we multiply by the conversion factors,
,m:[(H" 171)!]”(_ H™ for m>0 4.7)
(I—m1)!
and
Cin=C, (=" for m<O.
For convenience, we introduce the source amplitude factors defined by
Kanamori and Cipar for the degenerate excitation problem

2041 >< 1 > -
L, = (s 4.8
' (47{(:)'5'1,”11" s yatr) (4:5)

TS ERVERN
L,= > >1.1 "
i <4xw§L3]1’l (,.3 )

We now calculate the source frame modal amplitude (4.4), Aj,, which
is zero for |m|>2. If the radiation pattern terms are expressed as

and

1, 5 . N
n=, (—sin A cos 20 —i cos 4 ¢os 4)

and
Pa= 31 (—cos Asin g-}-isin A sin d cos d) (4.9)
we can write
A== Ly pyChy
1=1L,p,Cy
A,=0 (4.10)
A= Lapi G
;,—3:L2/7'§:Cl,—z .
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(4.9)
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Thus we have the symmetry relation

g = (— Dy (4.11)

fm ™" L—-m

Brink and Satchler give a symmetry relation for the &', functions,

DRy =[ L (R (=)t (4.12)

g,

Substituting (4.10) and (4.11) into (4.3), we find the same symmetry for the
geographic modal amplitudes as for the source frame amplitudes

A= (= 1) AF . (4.13)

L,—m

We use (4.13) and the symmetry properties of the vector spherical har-
monics (2.9) to eliminate the negative eigenfrequencies, wj,, [rom (4.1).
Defining

Blm(r) :)'II (,) Alm Tlm,(O) (/)> y (4. 14)

which do not depend on the eigenfrequencies, we obtain the torsional mode
displacements resulting from a double couple point source with step function
source time history:
£ I
U] (’.’ l) — Z - {Blm(,,)euu{ml v}_ Bl:i;n(r)e——'uulml} s (4‘ 1 5)
1=0 m=—1
where w,, is the positive eigenfrequency.
We can also combine terms to write the displacements in terms of real
quamities

Ur'(r, )= f_‘_‘ Z, l [2Re(B,,(r)) cos w,,t —2Im(By,(r)) sin w1} . (4.16)
l=0 m=~—

The displacements from spatially finite sources, or those with more com-
plicated time functions, may be derived from (4.15) or (4.16) by convolution.
By performing the implied summation over the overtones (n) and the sum-
mations over [ and m, we obtain the entire displacement field. By summing
only over [ and m we obtain a given overtone (e.g. the fundamental). We
can also sum, for a given n and /, all 211 singlets of a multiplet (e.g. ;S,).
As shown in STEIN and GELLER (1977) the singlets interfere in the time do-
main to produce a complicated beat pattern.

5. Spheroidal Modes Excited by a Point Double Couple

To find the spheroidal mode solutions, we modify Saito’s results for the
displacements resulting from an arbitrary point source with step function time
dependence and unit seismic moment. To zeroeth order, in the geographic
frame, Saito’s expression is
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o

i
Ustr, y==33 35 D, f(0S.(0, ) - y5(n)ST.(0, (/”))}[C’i"'itu'» -emt] (5.1)
!

Lz mrrez —
where
b PO =RyEO)+ Ly —fiyi)] =, (5:2)
I 2mi(1F - L25) |

We relate-the geographic and source frame modal amplitudes by

l)lm: 2 "@fnk(R)Dl’k . (5‘3)
k=2

Thus in the source frame,

g, = A PR = (930 + L) 5 () = Y Vi heary (5 4
" 20i(I5 + LI5)

I§ and J§ are energy integrals for the spheroidal modes, also defined by Saito.
As we did for the torsional modes, we convert Saito’s expansion coeffi-
cients for a double couple to those of the normalized complex vector spherical

harmonics. These expressions are simplified by introducing the amplitude
factors K,, K,, K, of Kanamori and Cipar:

, 2/4-1 2(32,-+2p,) . r . L
b NS 0=, 500 )
T\ drai(I5 4 L5, /N 242, () 34, 2/43‘)‘( )= (1)
- 1Sy
= qu 1 o yi(r,) (5.5)
Azwi(IT -+ LAY 1,
K= = 2l i)
o dzoj(li L o,
where 2, and s, are the elastic constants at the source depth.
Using these, and the radiation pattern terms
Go= 1 sin Asin d cos
2
¢= i(-cos]cos §-isin 2 cos 25) (5.6)
Gy = i (—sin 2 cos 0 sin 0—i cos A sin d)

we can derive our final relations for the Dj, (which are zero for |m|>2)
D, =K,q,C\,
Dy =K,q,Cyy
Diy=KyyCo (5.7)
1)2,—1:1(1(/?:(:1,»«1
D) _,=KgqiC, .
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Again, note that D], =(—1)"D;*,. Thus for the geographic expansion co-
efficients
D= (—~1"Df_,, . (5.8)

L—m

To obtain our final results for the disp]acements, we define

El ",(") - Dlm{,yf(r)sl]m(a’ (/)) + }’?(’)Sim(p? ¢)} (5 ‘9)

which do not depend on the eigenfrequencies. We can then write (after dis-
posing of the negative frequencies) that

= 1
Us(r, N=3 3 {E,(r)em' - Ef (r)e”"int) (5.10)
m=—1

=0 -

or

Usr, )=3 3 [2Re(E

=0 me=~1

(1)) cos @t —2Im(E,,(r)) sin w1} . (5.11)

im

Note that (5.11) shows that the displacements are real. As with the torsional
modes, w,,, is the positive eigenfrequency.

For an isotropic source of unit moment (5.1) through (5.4), (5.10) and
(5.11) are used, but the only nonzero excitation coefficient in the source
frame is

Diy=K;C,y (5.12)

where the source amplitude factor Kj is adapted from TAKEUCHI and Sa1to
(1972)
m:‘u?+1‘[_,4% Jﬂm_qﬁm>4ﬁgmﬁmq.ﬁjb
drai(l,+ L) (P21 1 (b2 (A= 2p8)0,

6. Numerical Results

The final expressions for the displacements of spheroidal (5.11) and tor-
sional (4.16) modes are suitable for numerical computation. We require only
the source amplitude factors K, K;, K;, L, and L,, the radial eigenfunctions
y:(r), the three geometric fault parameters (strike, dip and slip), the locations
of the source and receiver and the seismic moment. We investigate the de-
pendence of the displacement and strain spectra of the fundamental torsional
and spheroidal modes on the geometric fault parameters and the positions of
the source and receiver. This also provides us with a method of checking
our results. We ensure that the total of the displacements and strains within
each multiplet at time 1=0 are equal to those calculated from the expressions
of Kanamor1 and CipAR (1974) for the degenerate modes. A second test is to
verify that for an isotropic source we derive the same results from the addition
theorem for Legendre polynomials (PEKERIS ef al., 1961).
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Table 1. Source amplitude factors and surface eigenfunctions.

Mode Ky K, K yi@) (em)  yi(a)(cm)
0Ss 616103 .209% 108 .678 x 105 1. .252% 10t
05y L773»10-3 245105 —.160 % 10~ I. —.124
oS .768 103 243 % 105 —. 137 <104 1. ~.150
oS5 -760 x 10~ .204 105 —.105% 104 1. -, 146

Mode L Lo »1(a) (cm)

ol .493 % 105 .987 104 1.
ol .391 % 10-5 .337 < 10 1.
o7y 341 x 10~ 178 % 10+ l.

l.

oT5 .308 < 10-8 114104

The values of the source amplitude factors K, K;, K, and L,, L,, which
were used by Kanamori and Cipar are listed in Table 1. These amplitude fac-
tors are for a hypocentral depth of 55 km and a moment of 10" dyne-cm. We
also list the radial displacement eigenfunctions at the earth’s surface (r=a)
for each mode. y!(a) and y{(a) are normalized to one; only yj(a) varies from
mode to mode.

We also require the radiation pattern coefficients, which are given in Table
2 for each of the four basic faults. For the degenerate case, g, is the coeflicient
for radially symmetric Rayleigh waves; ¢, and p,, for two-lobed Rayleigh and
Love waves and ¢, and p,, for a four-lobed radiation pattern. Seismologists
have developed considerable intuition in using surface wave radiation patterns
to find fault geometries. It is much more difficult to interpret the singlet am-
plitudes in our figures intuitively, because each singlet amplitude involves a
sum, (4.3) or (5.3), of source frame amplitudes weighted by the rotation ma-
trix elements. Thus, except for some special cases, it is difficult to find simple
explanations of the relative amplitudes of singlets within a multiplet.

Strain and displacement spectra are calculated for eight fundamental low
order number modes: ,S,-S, and ;T,—,T;. These modes were chosen because

Table 2. Source frame radiation pattern terms.

Fault Type 2 o Go a qz 140 Pz
Vertical dip slip 5 . i 1
(Figs. 3 & 8) %0 20 0 T4 0 4 0
Vertical strike slip 5 . i 1
(Figs. 4 & 9) 0 %0 0 0 T4 0 T4
45° dipping dip slip R s 1 I i
(Figs. 5 & 10) 90745 4 0 I 0 8
45° dipping strike slip 00 45 0 1 i i 1

(Figs. 6 & 11) Ta4y2 T44/2 Ta4y2 42
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it appears almost certain that they are not seriously affected by perturbations
resulting from lateral inhomogeneities. Furthermore, it is only for the lowest
order modes that individual singlet peaks have definitely been resolved obser-
vationally.

In Figs. 3-6 we show synthetic line spectra for four fundamental sphe-
roidal modes. For graphical purposes the lines are drawn symmetrically and
evenly spaced about the central frequency, although the eigenfrequency spac-
ing is in fact uneven and asymmetric. The effect of attenuation in broadening
these lines has not been included. Amplitudes are normalized within each
displacement and strain component.

We plot the spectral amplitude (the modulus of the appropriate /, m com-

ponent of E,,) of each displacement and horizontal strain. Note that the
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Fig. 3. Spheroidal mode amplitude spectra Fig. 4. Spheroidal mode amplitude spectra
for a vertical dip slip fault at §,=30°, for a vertical strike slip fault at §,=307,
6,=07 observed at =105, ¢=120" for #a=0" obscrved at §=105°, ¢=120° for
p=0°and p=45°. p=0° and p=45°.
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Fig. 5. Spheroidal mode amplitude spectra Fig. 6. Spheroidal mode amplitude spectra
for a 45° dipping dip slip fault at ;= for a 45° dipping strike slip fault at f,=
30°, ¢,=0° observed at §=105°, (y=120° 30°, ¢5,==0° observed at 0=105>, =120~
for p=0" and p=45°, for p=0” and p=45".

spectral amplitudes are equal for the positive and negative (4-m) members of
each singlet pair. It is also interesting that the amplitudes depend separately
on the colatitude of the source and receiver, rather than only on the separa-
tion. In fact, the longitudes have no effect on the amplitude spectra and affect
only the phase. (For a spatially finite source, the longitudes will affect the
spectral amplitudes through interference, and the +m amplitudes will no
longer be equal.)

Figures 3-6 show spectra for four basic fault geometries: vertical dip
slip, vertical strike slip, 45° dipping dipslipand 450 dipping strike slip. Two
cases are shown in each figure. The top halves of the figures show spectra for
the case of fault strike, o=0° and the bottom halves are for p=45°. Each half
is organized as follows. The columns, from left to right, display the multiplets
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Sas 054 ¢Ss and S, The rows, from top to bottom, show the displacement
components U,, U,, U, and strain components ¢,;, €., and ¢,,. Allof the plots
were made with the epicenter at #,=30°, ¢,=0° and a receiver at 0=105°,
¢=120°. Thus, regardless of the source geomelry, several singlets always have
low amplitudes in these figures because of the small values of Py(cos 105°) or
its derivatives. Even so, the changes in relative spectral amplitudes at a given
receiver site (for which the arguments of the associated Legendre polynomials
and their derivatives are fixed) caused by variations in fault parameters are
substantial.

In general the effect of varying the fault strike appears to be less signifi-
cant than that of varying the dip or slip angles. In certain cases though, a
change in the strike can cause substantial changes in the spectra. For example,
for the 45° dipping strike slip fault with »=0° in Fig. 6, the m=0 (zonal)
singlet is small for all four multiplets. On the other hand, the 45° striking
fault has large zonal amplitudes for several components. In fact, the zonal
term dominates the U, component of ,S,, U, of ,S, and ¢, of ,S,, which contrast
sharply to the same components for the north striking fault. The change in
strike has an even more remarkable effect for Fig. 4, the verlical strike slip
fault. The zonal term is identically zero for the north striking fault, but domi-
nates some of the components of the 45° striking fault (e.g. U, and ¢, of ,S;
and U, of ,8,). (It can be seen either intuitively, from the asymmetry of the
displacement about the fault with longitude, or formally, from (5.3), that the
zonal terms are zero for the north striking strike slip fault.) In Figs. 3 through
6 the 45° striking fault usually has a larger amplitude for the zonal singlet
than the north striking fault; of course the amplitude of the zonal singlet is
always zero for U, and e,,. Changes in the strike alter the relative excitation
within all of the multiplets in these figures; the 45° dipping slip fault (Fig. 5)
is affected least.

The effects of varying the dip and slipdirections are even more noticeable.
For our four figures this effect stems from the different radiation pattern fac-
tors, g, listed in Table 2. The ¢, in turn affect the polar frame excitation
coefficients given by (5.3). Note that for a particular strike (either p=0° or
45°), the ,S, and ,S, multiplets look similar for the two strike slip faults (Figs.
4 and 6), and that these multiplets are less similar for the dip slip faults (Figs.
3 and 5). The strike-slip pair is quite dissimilar to the dip slip pair. Such
generalizations cannot be made for ,S, and ,S,. For example, for S, the U,
components of the strike slip faults appear similar while the dip slip faults are
very different. These effects can be understood in terms of the coefficients in
Tables 1 and 2, the rotation matrices and the vector spherical harmonics, but
each individual case must be analyzed in detail. For example, (S, changes
substantially with a change in strike for the vertical dip slip fault (Fig. 3),




136 S. Sipnvand R.J. Griner

ISOTROPIC SOURCE

052 053 05a 055

o | i | b | bk

oo | L | [l adha,

Y L | AL al

866 Lm_i JML J.LHJL JJLLLJ,

Cop| lJllJ IHIHJ Lh_l__h_ll JJLLJLLW_ - o U

oo 1L ]I ]l ol e an otropic s al e300 o
2 (‘)~2 2(1)‘2 Aé(l)~2‘~4 4|2|6'é°4 observed at #:=105°, ¢==120°.

but hardly at all for the 45° dipping dip slip fault (Fig. 5). The reason for
this is discussed in detail below.

In Fig. 7 we show the spectra for an “isotropic” point source (e.g. an
explosion). The relative spectral amplitudes within a multiplet are obtained
from (5.9), (5.12) and (5.13). (It can be seen from (3.3), (3.5) and (5.3) that
“fault strike,” p, has no effect on the spectra.) Note that for ,S, and ,S, the
spectra in Fig. 7 are nearly identical to the spectra in Figs. 5a and 5b. Even
if the fault dip is reduced to 10° (not shown here) the similarity remains. The
explanation of this similarity is as follows. From Table 1 we see that, for S,
and ,S,, K, is several hundred times larger than K, or K,. Whenever ¢,, the
coefficient of K, in (5.7), is comparable in magnitude to ¢, and g,, then the
“isotropic” term will dominate the spectra. From Table 2 we see that for the
four basic fault geometries only the 45° dipping dip slip fault has ¢, 0. Thus
the spectra from this fault resemble the isotropic spectra, while the spectra in
Figs. 3, 4 and 6 do not.

Thus the spectra from a shallow angle thrust fault closely resemble the
spectra from an isotropic source for low order spheroidal modes. Ina recent
paper (GELLER and STEIN, 1977) we discuss the observational consequences of
this similarity. KanamorI and CIpAR (1974) determined the mechanism of the
1960 Chilean earthquake to be a low angle thrust fault. Due to this particular
geometry, PEKERIS et al. (1961) were able to match the observed relative spec-
tral amplitudes with an isotropic source model. Spectra from the isotropic
source would not have matched the spectra of a pure strike-slip earthquake.

Figures 8-11 show the displacement and strain spectra (the moduli of the
appropriate /, m component of B,,) for torsional modes ,T,-,T, for the same
set of fault parameters as for the spheroidal modes. The torsional modes have
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no zonal terms in the source frame, but the zonal singlet in the geographic
frame is often excited. A spectacular example is the excitation of the U,
component of ,T,, and the ¢,, components of ,T,, by the vertical strike slip
fault (Fig. 9). The torsional modes, of course, have no radial displacement
component. They also have the property that e,,= —e,, since there is no net
dilatation. The amplitude spectra of these two strain components are thus
identical.

The spectra of the components of ,7',and T, are generally similar for the
two strike slip faults. This resemblance is much weaker for the dip slip faults.
For example, ,T, is similar in Figs. 8 and 10, but ,7, is quite different. For
the two lower angular order modes the spectra of the strike slip faults are
generally very similar, while those of the dip slip faults are sometimes similar,
but often show substantial differences. An excellent example of this variability
can be seen by examining the two displacement components of \7, in Figs. 8
and 10——the U, components are similar while the U, components are very dif-
ferent. These same two components show interesting results from a change
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in strike, which can be seen by contrasting the U, components of \7, between
the two halves of Fig. 10. As we observed for the spheroidal modes, the 45°
striking fault excites the zonal singlet more strongly.

In conclusion, the amplitude spectra for both displacements and strains
show a complicated dependence on the fault parameters for a variety of faults.
It is not possible to predict the spectra using only the locations of the source
and receiver to compute the values of the vector spherical harmonics. The
geometric fault parameters (strike, dip and slip) must also be used for a com-
plete synthesis of the relative spectral amplitudes.

7. Discussion

Although our derivations are lengthy and somewhat complicated, the
results may be easily used to compute the strains and displacements excited
by arbitrary faults. The computations are simplified by the separation of the
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expressions into factors for five different effects. When any single parameter
is changed only part of the results need be recalculated.

The radiation pattern terms ¢, and p; are controlled by the fault dip and
slip angles. The Euler angles, and thus the arguments of D! (R), depend on
the fault strike and the geographic coordinates of the epicenter. The receiver
position provides the arguments of the vector spherical harmonics. Theearth’s
structure controls the radial eigenfunctions and the energy integrals. Finally,
the source depth controls the values of y,(r,), A(r,) and p(r,). For computa-
tional purposes the earth structure and source depth effects are combined in
the source amplitude factors K,, K, K, and L, L,.

It is important to note that for a given source-receiver geometry and fault
mechanism, the relative amplitudes of the singlet pairs within a multiplet
often differs between multiplets, and even between strain and displacement
components of the same multiplet. Our figures show that in general, similar
patterns are not observed for different multiplets.

Lui and DziEwonskl (1976) suggested that certain patterns might persist
between multiplets in the excitation of singlets. (Their excitation coeflicients
roughly correspond to our A, and D,,.) Their suggestion, which seems to be
correct, refers to excitation coeflicients which are independent of receiver lo-
cation. On the other hand, the singlet spectral amplitudes are obtained by
multiplying the excitation coefficients by the appropriate components of the
vector spherical harmonics. Thereflore, since each singlet involvesa different
spherical harmonic the observed spectral amplitudes are strongly dependent
on receiver position. For example, Luh and Dziewonski commented that the
prominent m= 41 peaks in the strain record of the Chilean earthquake at
Isabella (BENIOFF ef al., 1961) might support their suggestion. Since the strain
spectrum includes the effect of the receiver location, this similarity is fortui-
tous. However, in this case the m= 41 excilation was so dominant that these
lines would be largest at most receivers.

Our synthetic spectra have some implications for the determination of
the eigenfrequencies of an “equivalent degenerate earth model” from the
actual data. It is not uncommon for a multiplet to be excited such that one
pair of singlets (e.g. the U, or U, components of ,Sy° for both 45° dipping
strike slip faults in Fig. 6) have much larger amplitudes than the remainder
of the multiplet. If the equivalent degenerate central frequency for the mul-
tiplet were determined by finding the frequency midway between S} and ,S;%,
this estimate would be inaccurate because of the asymmetry of the nondegener-
ate eigenfrequencies about the unperturbed singlet frequency.

GruBerT (1971) suggests that if sources and receivers are distributed
randomly on the earth’s surface, then stacking a large number of spectral
observations would yield an accurate estimate of the degenerate eigenfrequen-
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cies if the averaged amplitudes of the individual singlets are approximately
equal. However, the spectral amplitudes are influenced by geometric fault
parameters as well as source and receiver locations. Thus, it may also be
necessary to stack the spectra for a random sample of fault mechanisms.
Failure to do so may lead to systematic errors in estimates of the unperturbed
eigenfrequencies of the lowest order modes. Since the present dataset used
for eigenfrequency estimation probably does not include a random sample of
fault parameters and since it has not been demonstrated that stacking will
yield approximately equal singlet amplitudes, further study of this question
would be useful.

8. Conclusions

We derive expressions for the displacement and strain components of the
free oscillations of a laterally homogeneous, rotating and elliptical earth ex-
cited by a point double couple. We use the rotation matrix elements % L (R)
to derive the excitation of the nondegenerate modes {rom results developed
for the degenerate modes of a nonrotating spherically symmetric earth. Our
results are presented in a condensed form suitable for computational use. We
show calculations of the excitation of low order modes for a variety of source
and receiver locations and for a number of different fault parameters. Our
methods allow the synthesis of spectra and time domain records of low order
modes for which individual singlets have been observationally resolved. This
represents a powerful new tool which may be applied to the study of normal
mode amplitude data.
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