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Earthquake risk is a game of chance of which we do not know all the rules. 
It is true that we gamble against our will, but this doesn’t make it less of a game. 

(Lomnitz, 1989: 1662) 
	
  
	
  

Introduction 
	
  

Humans have to live with natural hazards. Natural hazard scientists describe this challenge in 
terms of hazards – the occurrence of earthquakes, floods or other dangerous phenomena – and 
the risks, or dangers they pose to lives and property. In this formulation, the risk is the product 
of hazard and vulnerability.We want to assess the hazards – estimate how significant they are – and 
develop methods to mitigate or reduce the resulting losses.This paper is drawn largely from Stein 
and Stein (2014), which provides detailed references and gives a brief overview of some key 
issues involved. 

Hazards are geological facts not  under  human control that we assess as best we can. In 
contrast, risks are affected by human actions that increase or decrease vulnerability, like where 
people live and how they build. Areas with high hazard can have low risk because few people 
live there. Areas of modest hazard can have high risk due to large population and poor construc- 
tion. A disaster occurs when – owing to high vulnerability – a natural event has major conse- 
quences for society. 

On average, about 100,000 people per year are killed by natural disasters, with some disasters, 
such as the 2004 Indian Ocean tsunami, causing many more deaths. Although the actual num- 
bers of deaths in many events, such as the 2010 Haiti earthquake, are poorly known, they are 
very large. 

Economic  impacts are even harder to quantify and various measures are used. Disasters 
cause losses, which are the total negative economic impact. These include direct losses due to 
destruction of physical assets such as buildings, farmland, forests, etc. and indirect losses that 
result from the direct losses. Losses due to natural disasters in 2012 worldwide were estimated 
as exceeding US$170 billion. Disaster losses are increasing because more people live in hazardous 
areas. For example, the population of hurricane-prone  Florida has grown from 3 million in 
1950 to 19 million today. 
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Society can thus be viewed as playing a high-stakes game of chance against nature.We know 
that we will lose in two ways. If disaster strikes, direct and indirect losses result. In addition, the 
resources used for measures that we hope will mitigate the hazards and thus reduce losses in the 
future are also lost to society because they cannot be used for other purposes. 

	
  
	
  

Current status 
	
  

Minimizing the combined losses from disasters themselves and also the efforts to mitigate them 
involves developing methods to better assess future hazards and mitigate their effects, but because 
this is difficult, our records are mixed. Sometimes we do well and sometimes not. 

Often  nature surprises us, such as when  an earthquake, hurricane or flood is bigger or has 
greater effects than expected from hazard assessments. In other cases, nature outsmarts us, doing 
great damage despite expensive mitigation measures, or making us divert resources to address a 
minor hazard.We keep learning the hard way to maintain humility before the complexity of nature. 

When natural hazard planning works well, hazards are successfully assessed and mitigated, and 
damage is minor. Conversely, disasters happen because a hazard was inadequately mitigated 
because it was not assessed adequately or the assessment was not effectively used. Disasters reg- 
ularly remind us of how hard it is to assess natural hazards and make effective mitigation policies. 
This paper discusses these issues, mostly using earthquakes as examples, but they arise for all 
natural hazards. 

The great earthquake that struck Japan’s Tohoku coast in March 2011 was the ‘perfect storm,’ 
illustrating the limits of both hazard assessment and mitigation, and the challenges involved in 
doing better. The earthquake was much larger than predicted by sophisticated hazard models, 
and so caused a larger-than-expected tsunami. Because Japan has a major earthquake problem, 
scientists have studied the Japanese subduction zone extensively for many years using sophisti- 
cated equipment and methods, and engineers used the results to develop expensive mitigation 
measures. However, although some mitigation measures significantly reduced losses of life and 
property, more than 15,000 deaths and US$210 billion damage occurred. The earthquake and 
tsunami catalyzed discussions amongst seismologists and earthquake engineers  about the fact 
that highly destructive earthquakes often occur in areas that earthquake hazard maps predict to 
be relatively safe (Geller, 2011; Stein et al., 2012; Stirling, 2012; Gulkan, 2013). As Kerr (2011: 
912) noted, ‘The seismic crystal ball is proving mostly cloudy around the world.’ 

	
  
	
  

Challenges 
	
  

Events like the Tohoku  earthquake are prompting  interest in how to improve natural hazard 
assessment and mitigation. Among the key questions are: 

	
  
	
  

Why are good hazard assessments often underutilized? 
	
  

For socio-political reasons, even good hazard assessments sometimes do not  prevent disaster. 
Hurricane  Katrina, which  struck the  US Gulf coast in August 2005, had been  anticipated. 
Mitigation measures including levees and floodwalls were in place, but recognized to be inade- 
quate to withstand a major hurricane. It was also recognized that many residents who did not 
have cars would likely not be able to evacuate unless procedures were established. Thus despite 
accurate and timely warning by the National Weather Service as the storm approached, about 
1,800 people died.The total damage is estimated at US$108 billion, making Katrina the costliest 
hurricane in US history. 
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An American Society of Civil Engineers  (2006) report  assessing the failure of the New 
Orleans’ hurricane protection system described systemic problems: 

	
  
A large portion  of the destruction was caused not  only by the storm itself, but by the 
storm’s  exposure of engineering and engineering-related  policy failures. The  levees and 
floodwalls breached because of a combination of unfortunate choices and decisions, made 
over many years, at almost all levels of responsibility. 

Responsibility for the maintenance and operation of the levees and pump stations was 
spread over many federal, state, parish, and local agencies. This lack of inter-agency coor- 
dination led to many adverse consequences. 

The hurricane protection system was constructed as individual pieces – not as an inter- 
connected  system – with strong portions built adjacent to weak portions, some pump 
stations that could not  withstand the hurricane forces, and many penetrations through 
the levees for roads, railroads, and utilities. Furthermore, the levees were not designed to 
withstand overtopping. 

The hurricane protection system was designed for meteorological conditions (barometric 
pressure and wind speed, for example) that were not as severe as the Weather Bureau and 
National Weather Service listed as being characteristic of a major Gulf Coast hurricane. 

American Society of Civil Engineers (2006: v) 
	
  

Other disasters reveal similar difficulties in mitigation efforts, many of which had been previously 
recognized but not addressed. As Warren Buffett said, ‘You don’t know who’s swimming naked 
until the tide goes out’ (Berkshire Hathaway, n.d.). Much needs to be done in this area. 

	
  
	
  

Why are hazard assessments often poor? 
	
  

In Shakespeare’s Henry IV, Glendower says, ‘I can call spirits from the vasty deep’ and Hotspur 
replies, ‘Why, so can I, or so can any man; but will they come when you do call for them?.’ Sci- 
entists assessing natural hazards face the same challenge: they can make detailed assessments, but 
the earth often does not obey. 

The Japanese seismic hazard map prior to the March 2011 Tohoku  earthquake (Figure 10.1) 
illustrates the problem. The map was produced with the commonly used probabilistic seismic 
hazard assessment algorithm, which uses estimates of the probability of different future earth- 
quakes and the resulting shaking to predict the maximum  shaking expected with  a certain 
probability over a given time. Larger than expected shaking corresponds to a higher than pre- 
dicted hazard. A similar approach was used to forecast the largest expected tsunami. 

The  mappers  used the historic earthquake record to divide the trench, along which the 
Pacific Plate subducts beneath Japan, into segments about 150 km long and infer how large an 
earthquake to expect on each segment.The resulting map predicted less than 0.1 percent prob- 
ability of shaking with intensity ‘6-lower’ on the Japan Meteorological Agency scale in the next 
30 years off Tohoku.Thus such shaking was expected on average only once in the next 30/0.001 
or 30,000 years; however, within 2 years, such shaking occurred. Five segments broke causing a 
magnitude (M) 9.1 earthquake, which was much larger than expected and the resulting tsunami 
was larger than anticipated. The mapping process significantly under-predicted  what happened 
(Stein and Okal, 2011). 

Similar discrepancies have occurred around the world (Stein et al., 2012). The 2008 M7.9 
Wenchuan, China, earthquake caused more 65,000 deaths and occurred on a fault system assessed 
as low  hazard. The  2010 M7.1  Haiti  earthquake, which  caused more  than  100,000  deaths, 
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Figure 10.1    Comparison of Japanese hazard map to the locations of earthquakes since 1979 
that caused ten or more fatalities 

	
  

	
  
occurred on a fault mapped in 2001 as having low hazard, but produced shaking far greater 
than predicted. The  2011 M6.3 earthquake, which did considerable damage in Christchurch, 
New Zealand, caused much stronger ground motion than was predicted for the next 10,000 years. 

Our  ability to forecast natural hazard events is improving due to new data and methods; 
however, some key parameters are poorly known, unknown or unknowable. A major challenge, 
therefore, is to improve what we can, in many cases by looking at what has gone wrong. 

	
  
Why are supposedly rare events relatively common? 

	
  

When hazard assessments do poorly, a common explanation is that the events are low-probability 
events.These are termed ‘black swans’ because before Europeans reached Australia all swans were 
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thought to be white. After Hurricane Sandy in 2012 caused more than US$60 billion damage, 
New York governor Cuomo said,‘we have a 100-year flood every two years . . . the frequency of 
extreme weather is going way up’ (Dwyer, 2012). Less than a year later, major floods in Central 
Europe did enormous damage. A German café owner, who  was trying to keep the highest 
floodwater in five centuries out of his cafe, complained, ‘The flood of a century is supposed to 
happen once in a lifetime, not once every 10 years’ (Eddy, 2013). 

Such supposedly rare events illustrate the need to improve models. In many cases, the hazard 
was modelled as time-independent  events, assuming that their history gives a reasonable estimate 
of their future probability. However, long-term meteorological hazard forecasts face uncertain- 
ties associated with possible effects of climate change because rainfall patterns and storm fre- 
quencies or intensities may change. For example, the European floods reflect winter storms from 
the Atlantic shifting northward, causing increased rain and flooding in northern  Europe and 
increasing drought in southern Europe. 

	
  
	
  

How much can forecasts be improved? 
	
  

Although our ability to forecast natural hazard events is improving, some key parameters  are 
poorly known, unknown or unknowable. For example, where and when large earthquakes hap- 
pen is more variable than assumed in hazard maps. Some earthquakes appear where and when 
they were not expected and others are much larger than expected. Part of the problem is that 
because large earthquakes on a given fault segment occur hundreds or thousands of years apart 
on average, the short records from seismology (about a hundred years) and historical accounts 
(hundreds to thousands of years) are often inadequate to show what is going on. 

Moreover, earthquake occurrence seems at least partly chaotic. It seems likely that all earth- 
quakes start off as tiny earthquakes, which happen frequently, but only a few cascades through 
random failure into successively larger earthquakes.This hypothesis draws on ideas from nonlin- 
ear dynamics or chaos theory, in which some small perturbations grow to have unpredictable 
large consequences. 

A useful analogy is a thought experiment (Lorenz, 1995). If weather was not chaotic, it would 
be controlled only by the seasons, and every year storms would follow the same tracks. In reality, 
storm tracks differ significantly from year to year. Thus, ‘the difficulty in planning things in the 
real world, and the occasional disastrous effects of hurricanes and other storms, must be attributed 
to chaos’ (Lorenz, 1995: 109). 

By analogy, without  chaos steady motion  between plates would produce earthquakes that 
repeat in space and time. In contrast, the chaos view predicts that the locations of big earth- 
quakes on a plate boundary and intervals between them should be highly variable, placing fun- 
damental limitations on how well we can forecast earthquake hazards. 

A similar situation arises for volcanoes.Volcano prediction is sometimes very successful. The 
area around Mount St. Helens, Washington, was evacuated before the 1980 eruption, reducing 
the loss of life to only 60 people, including a geologist studying the volcano and citizens who 
refused to  leave. The  1991 eruption  of Mount  Pinatubo  in the  Philippines destroyed over 
100,000 houses and a nearby US Air Force base, and yet only 281 people died because of evac- 
uations. In other cases, however, a volcano may seem to be preparing to erupt, but does not. In 
1982, uplift and other  activity near Mammoth  Lakes, California, suggested that an eruption 
might be imminent. A volcano alert was issued, causing significant problems. Housing prices fell 
40 percent. Businesses closed, new shopping centers stood empty and townspeople left to seek 
jobs elsewhere. Angry residents called the US Geological Survey the ‘US Guessing Society,’ and 
the county supervisor who arranged for a new road providing an escape route in the event of 
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an eruption was recalled in a special election. Even in hindsight, however, the alert seems sensi- 
ble given the data then available, illustrating the challenge involved. The incident provided the 
basis for the film Dante’s Peak, in which the volcano actually erupts.Volcanologists thus accept 
that ‘volcanoes are really difficult to predict because they are so nonlinear – they suddenly decide 
to do something very different’ (Fountain, 2015). 

	
  
	
  

How can forecast performance be measured? 
	
  

In some applications, although hazard assessments are used to make costly policy decisions, their 
predictions have never been objectively tested. For example, earthquake hazard mapping is used 
to make major decisions but without  careful assessment of the uncertainties in these maps or 
objective testing of how well they predict future shaking.We have no real idea of how well they 
predict what actually happens, and the fact that they sometimes do poorly is not surprising. 

In contrast, weather forecasts are routinely evaluated to assess how  well their predictions 
matched what actually occurred (Stephenson, 2000).This assessment involves adopting metrics. 
Murphy  (1993: 281) notes that ‘it is difficult to establish well-defined goals for any project 
designed to enhance forecasting performance without an unambiguous definition of what con- 
stitutes a good forecast.’ 

Recent  large earthquakes have catalyzed interest for earthquakes using various approaches 
(Stirling and Petersen, 2006; Miyazawa and Mori, 2009; Stirling and Gerstenberger, 2010; Stein 
et al., 2012; Wyss et al., 2012; Nekrasova et al., 2014; Mak et al., 2014) and are being developed 
under auspices of the Global Earthquake Model project (www.globalquakemodel.org). 

An important point is that no single metric alone fully characterizes what we would like 
forecasts to do. For example, how good a baseball player Babe Ruth  was depends on the met- 
ric used. In many seasons Ruth  led the league in both home runs and in the number of times 
he struck out. By one metric he did very well, and by another, very poorly. Similarly, using 
several metrics can provide useful insight for comparing and improving hazard assessments 
(Stein et al., 2015a). 

	
  
	
  

How can forecast uncertainties be quantified and presented? 
	
  

Many natural hazard forecasts involve subjective assessments and choices amongst many poorly 
known or unknown  parameters. Such models are sometimes termed BOGSATs, from ‘Bunch 
Of Guys Sitting Around a Table’ (Kurowicka and Cooke, 2006). As a result, their uncertainties 
are hard to quantify. 

Typically, scientists consider shallow uncertainty, recognizing they do not know the outcomes, 
but assuming they know a probability density function describing them. In this case, models 
based on a system’s past are good predictors of the future. The alternative is deep uncertainty in 
which the probability density function is unknown, and models based on a system’s past are 
therefore likely to be poor predictors of the future (Stein and Stein, 2013a). In sports terms, 
shallow uncertainty is like estimating the chance that a soccer player will score on a penalty 
kick. For this, his past average is a good predictor. Deep uncertainty is like trying to predict the 
champion in the next season because the team’s past performance gives only limited insight 
into the future. 

For example, earthquake hazard maps involve choosing hundreds or thousands of parame- 
ters to predict the answers to four questions over periods of 500–2,500 years:Where will large 
earthquakes occur? When  will they occur? How  large will they be? How  strong will their 
shaking be? Some parameters are reasonably well known, some are somewhat known, some 
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are essentially unknown,  and some may be unknowable  (e.g. Stein et al., 2012). Although 
some parameters could be better estimated, and knowledge of some will improve as new data 
and models become available, major uncertainties seem likely to remain (Stein and Friedrich, 
2014). 

One way to illustrate the uncertainties is to examine how hazard map predictions depend 
on the choice of poorly known parameters. Figure 10.2 compares the predicted hazard at two 
cities in the central US, which varies by a factor of more than three. At Memphis, close to the 
region’s  main faults, the primary effect is from the assumed maximum magnitude, with M8 
models predicting the highest hazard. At St. Louis, the ground motion  model has the largest 
effect and the ‘Frankel’ models predict the highest hazard. The uncertainty is even bigger than 
shown because the effect of choosing between time-independent  and time-dependent  models 
is shown  for specific parameters  and a specific combination  of maximum  magnitude  and 
ground motion model. 

Unfortunately, such uncertainties are not  usually communicated  to users of hazard maps; 
instead, mappers typically combine predictions for various parameters through a ‘logic tree’ in 
which they assign weights to the parameter choices. Adjusting the weights changes the predicted 
hazard. Because there is no objective way to assign weights, the result – which often will not be 
known for hundreds of years or longer – will be as good or as bad as the preconceptions that 
the mappers used to assign weights actually turn out to be. As we have seen, sometimes these 
prove to have been poor choices. Because showing the resulting single value does not convey 
the uncertainty, it would be better to communicate estimates of these uncertainties to potential 
users. Recognizing the uncertainties – even if they are poorly known and probably underesti- 
mated – would help users decide how much credence to place in maps and make them more 
useful in formulating cost-effective hazard mitigation policies. 

A good example would be the meteorological community’s  goal (Hirschberg et al., 2011: 
1654) of ‘routinely providing the nation with comprehensive, skillful, reliable, sharp, and useful 
information about the uncertainty of hydrometeorological forecasts.’ Although researchers deal- 
ing with other hazards have different challenges and a longer way to go, it makes sense to try to 
do the same. 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

	
  
Figure 10.2    Comparison of earthquake hazard, described as peak ground acceleration (PGA) 
as a percentage of the acceleration of gravity expected with 2 percent risk in 50 years, 
predicted by various assumptions for two sites in the central US 
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When and how should hazard assessments be updated? 
	
  

An important question is what to do after a hazardous event is much greater or has greater 
effects than predicted, such as an earthquake yielding shaking larger than anticipated. Hazard 
assessors have two choices.They can regard what occurred as a low-probability event consistent 
with the assessment or accept it as showing the need to revise the assessment. 

Whether and how much to revise a hazard assessment  is complicated because a new assessment 
that describes the past better may or may not predict the future better. The issue is like deciding 
after a coin has come up heads four times whether to continue assuming that the coin is fair and 
the run is a low-probability event, or to change to a model in which the coin is assumed to be 
biased. Either choice runs a risk. If the coin is severely biased, staying with the assumption that it 
is fair will continue to yield poor predictions; however, if the coin is fair and the four heads were 
just a low-probability event, changing to the assumption that the coin is biased does a better job 
of describing what happened in the past, but will make the prediction worse. 

For example, an earthquake that produced higher-than-expected  shaking can be regarded as 
a low-probability event allowed by the hazard map. The usual choice, however, is to revise the 
map to show increased hazard in the heavily shaken area. This process can amount  to ‘Texas 
sharpshooting,’ named because it is like first shooting at the barn and then drawing a target 
around the bullet holes.To make things worse, sometimes the new map does not predict future 
shaking well and soon requires further updating. Italy’s earthquake hazard map, intended  to 
forecast hazards over the next 500 years, has required remaking every few years (Figure 10.3). 

This decision could be addressed using Bayes’ Rule, in which how much to change a model 
after an event depends on one’s confidence in it prior to the event.The less confidence we have 
in the prior model, the more a new datum can change it. Stein et al. (2015b) suggest considering 
the BOGSAT  process from a Bayesian perspective. This would recognize that the predicted 
hazard reflects mappers’ view of the world based on their assessment of diverse data and models, 
and that when  and how  maps are revised once new data become available depends on the 
mappers’ preconceptions. 

	
  
	
  

How sensible policy be made given our limited forecasting skills? 
	
  

On the hazard assessment side, the problem is that we lack full information. Geoscience tells us 
a lot about the natural processes that cause hazards, but not everything. We are learning more 
with new ideas, methods, and data, but still have a long way to go. For example, meteorologists 
are steadily improving forecasts of the tracks of hurricanes, but  forecasting their strength is 
harder. We know a reasonable amount about why and where earthquakes will happen, some 
about how big they will be, but much less about when they will happen. Although learning 
more is a major research task, into which there is considerable amount of effort being put in, 
major advances will probably come slowly because of how complicated nature is and how much 
we do not yet understand.We therefore need to decide what to do given these uncertainties. 

On the mitigation side, methods are getting better and cheaper. Still, choosing strategies is 
constrained because society has finite resources.There’s no free lunch – resources used for mit- 
igating hazards are not available for other purposes. Funds that hospitals spend strengthening 
buildings to resist earthquake shaking cannot be used to treat patients. Money spent putting 
more steel in school buildings does not get used to hire teachers. Spending on seawalls and 
levees comes at the expense of other needs. 

The challenge is deciding how much mitigation is enough. More mitigation can reduce losses in 
possible future disasters, at increased cost. In the extreme, too much mitigation could cost more 
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Figure 10.3    Comparison of successive Italian hazard maps, which forecast some earthquake 
locations well and others poorly 

	
  

	
  
than the problem we want to mitigate. However, less mitigation reduces costs, but can increase 
potential losses and hence too little mitigation can cause losses that it would make more sense 
to avoid.We want to hit a ‘sweet spot’ – a sensible balance.This means being careful, thoughtful 
gamblers. Choosing priorities is always hard, but it is especially difficult in dealing with natural 
hazards because of our limited ability to forecast the future. 

We need to develop sensible approaches to evaluate alternative strategies. In addition to 
science, this process involves complicated economic, societal, and political factors. For example, 
after Hurricane Katrina breached coastal defenses in 2005 and flooded much of New Orleans, 
choosing to  what level these defenses should be rebuilt became an issue. Should they be 
rebuilt to withstand a similar hurricane or a stronger one? Similarly, given the damage to New 
York City by the storm surge from Hurricane Sandy in 2012, options under consideration 
range from doing little, through intermediate strategies like providing doors to keep water out 
of vulnerable tunnels, to building up coastlines or installing barriers to keep the storm surge 
out of rivers. 

Although our first instinct might be to protect ourselves as well as possible, reality sets in 
quickly because resources used for hazard mitigation are not available for other societal needs. 
Should we spend billions of dollars making buildings in the central US as earthquake-resistant 
as in California, or would these funds do more good if used otherwise? Should all hospitals in 
California be made earthquake-resistant or would it be wiser to use these resources caring for 
millions of people without health insurance? As a doctor mused, ‘we could treat a lot of people 
for $50 billion.’ In the same spirit, a European Union  official charged with hazard mitigation 
pointed out that plans for higher levees to reduce river flood damage compete for funds with 
ones to improve kindergartens. 

Unfortunately – as the Tohoku  sea walls showed – mitigation policies are often developed 
without careful consideration of their benefits and costs. Communities are often unclear about 
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what they are buying and what they are paying. Because they are playing against nature without 
a clear strategy, it is not surprising that they sometimes do badly. Doing better requires selecting 
strategies to wisely use limited resources.This is not easy because the benefits of various strate- 
gies cannot be estimated precisely, given our limited ability to estimate the occurrence  and 
effects of future events; however, even simple estimates of the costs and benefits of different 
strategies often show that some make much more sense than others. 

Figure 10.4 illustrates a way to compare options (Stein and Stein, 2012, 2013b).The optimum 
level of mitigation n∗  minimizes the total cost K(n), the sum of the present value of expected loss 
in future earthquakes and the cost of mitigation. The U-shaped total cost curves illustrate the 
tradeoff between mitigation and loss. For no mitigation, n = 0, the total cost K(0) equals the 
expected loss, Q(0). Initial levels of mitigation reduce the expected loss by more than their cost, 
and so the curve decreases to a minimum at the optimum. K(n) is steepest for n = 0 and flattens 
as it approaches the optimum, showing the decreasing marginal return on mitigation. 

Relative  to the optimum, less mitigation decreases construction  costs but  increases the 
expected damage and therefore the total cost. Consequently, it makes sense to invest more in 
mitigation. Conversely, more mitigation than the optimum gives less expected damage but at 
higher total cost, and so the additional resources required would do more good if invested 
otherwise. 

The optimum can be viewed in terms of the derivatives of the functions (Figure 4B). Because 
increasingly high levels of mitigation are more costly, the marginal cost increases with n. Conversely, 
the reduced loss from additional mitigation decreases.The lines intersect at the optimum, n. 
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FIgure 10.4    (A) Comparison of total cost curves for two estimated hazard levels. For each, the 
optimal mitigation level, n*, minimizes the total cost, the sum of expected loss and mitigation 
cost.  (B) In terms of derivatives, n* occurs when the reduced loss –Q’(n) equals the 
incremental mitigation cost C’(n). If the hazard is assumed to be described by one curve but 
actually described by the other, the assumed optimal mitigation level causes nonoptimal 
mitigation, and thus excess expected loss or excess mitigation cost 
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Given our limited ability to assess hazards, we should formulate policies whilst accepting the 
uncertainties involved. To see how, consider cost curves between K1(n) and K2(n). These can 
correspond to high and low estimates of the hazard, high and low estimates of the loss, or, more 
realistically, a combination of the uncertainties in hazard and loss estimates.These start at different 
values, representing the expected loss without  mitigation. They  converge for high levels of 
mitigation because in the limit of enough mitigation there would be no loss. 

In the limiting cases, the hazard is assumed to be described by one curve but is actually 
described by the other. As a result, the optimal mitigation level chosen as the minimum of the 
assumed curve gives rise to non-optimal mitigation, shown by the corresponding point on the 
other  curve. Assuming too-low  hazard causes under-mitigation  and excess expected loss, as 
shown by the height of the U-curve above the dashed line for optimum mitigation. In terms of 
the derivatives, it is the triangular area between the marginal loss reduction and marginal miti- 
gation cost lines. Conversely, assuming too-high hazard causes over-mitigation and excess miti- 
gation cost; however, as long as this point is below the dashed line for the correct curve, the total 
cost is less than from doing no mitigation. 

Given the range of hazard estimates, we should choose an estimate between  them. The 
resulting curve will lie between the two curves, and thus probably have a minimum between 
n1∗  and n2∗. Relative to the actual but unknown  optimum, this mitigation is non-optimal, but 
perhaps not unduly so. As long as the total cost is below the loss for no mitigation, non-optimal 
mitigation is better than none. 

This is a simple example of robust risk management – accepting the uncertainty and devel- 
oping policies to give acceptable results for a range of possible hazard and loss scenarios. Such 
graphs are schematic guides rather than functions we can compute exactly. Given the uncertain- 
ties involved, it would be unrealistic to seek an optimum strategy; however, even simple estimates 
can show which strategies make more sense than others. Although in real cases such approaches 
cannot give an optimum strategy, they could identify sensible strategies. 

	
  
	
  

How can we develop a new multidisciplinary  ethos? 
	
  

Mitigation policy decisions involve socio-cultural preferences beyond purely economic 
grounds. Society is sometimes overly concerned about relatively minor hazards and down- 
plays other  more  significant ones. This  situation  often  leads to  policies that  make  little 
scientific or economic sense. Hazard assessments often underestimate the limits of scientific 
knowledge. Mitigation policies are often developed without considering their costs and bene- 
fits.The net result is that communities often over-prepare for some hazards and under-prepare 
for others. 

For these and other reasons, no unique or right answers exist for a particular community, 
much  less for all communities; however, new approaches like those discussed here can help 
communities make more informed and better decisions. 

Part of the problem is that current approaches generally treat the relevant geoscience, engi- 
neering, economics, and policy formulation separately. Geoscientists generally focus on using 
science to assess hazards, engineers and planners focus on mitigation approaches, and economists 
focus on costs and benefits. Each group often focuses on its aspect of the problem, but does not 
fully appreciate how the others think, what they know, and what they do not know. 

More effective natural hazards policy can be developed by advancing each of the relevant 
disciplines and integrating their knowledge  and methods. Fortunately, there is an increasing 
awareness of this need, especially among young researchers who would like to do a better job of 
mitigating hazards. 
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