SEISMOLOGY & EARTH STRUCTURE
Seth Stein
Department of Earth & Planetary Sciences

Northwestern University

Figure 3.5-5: lllustration of various body wave phases.
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Figure 1.1-1: Schematic geometry of a seismic experiment.
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SEISMIC WAVES
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Figure 1.1-4: Seismogram and ray paths for multiple core reflections.
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Figure 1.1-5: Demonstration of the seismic reflection method.
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Figure 1.1-6: Example of a seismic reflection survey.
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Figure 2.2-1: Tensions on a string segment.
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Figure 2.2-2: Propagating pulse, f(x - 2t).
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Table 2.2-1 Relationships Between Wave Variables

QUANTITY
Velocity

Period

Angular Frequency
Frequency
Wavelength

Wavenumber

UNITS
distance/time
time
time™!
time™!
distance

distance™

v=wk=fA=AT
T=2rnlo=1/f=AN
o =27/T =2xf=kv
f=0/r)=1T=v/A
A=2rxlk=v/f=vT

k=2rn/A=w/v=2xflv
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POINT IN SPACE, FUNCTION OF TIME

Figure 2.2-4: Harmonic wave, u = A cos (wt - kx).
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SEISMIC WAVES OCCUR
BECAUSE AN APPLIED FORCE
MAKES ROCK DEFORM
ELASTICALLY & THEN
RETURNS TO ORIGINAL SHAPE

COMPRESSION - VOLUME
CHANGES

SHEAR- DISTORTION: SHAPE
CHANGES

Davidson 5.3

Force

Shear

FIGURE 5.3  Two different ways of straining a rock
(illustrated with a sponge): compression and shear. F represents
the applied force. The shear strain is 6/2, which is half the angle
by which right angles change after shearing.



Figure 2.4-3: Displacements for P and S waves.

S waves: ground motion is perpendicular to wave direction

/////

//////
Z

L L1 M Ll

Direction of wave propagation Onset of waves

\

11111

P waves: ground motion is parallel to wave direction

P OR COMPRESSIONAL S OR SHEAR WAVES -
WAVES - VOLUME DISTORTION WITHOUT
CHANGES MATERIAL VOLUME CHANGES -
COMPRESSED OR MATERIAL SHEARED IN
EXPANDED IN DIRECTION DIRECTION

WAVE PROPAGATES PERPENDICULAR TO

WAVE PROPAGATION



SEISMIC WAVE SPEED (VELOCITY) V, = \/ (3u + k)
P

DEPENDS ON ELASTIC
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P
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u- SHEAR MODULUS - LARGER u PW
IS HARDER TO SHEAR

o- DENSITY Time (min.)

COMPRESSIONAL (P) WAVE SPEED V, DEPENDS ON BOTH MODULI BUT
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Figure 2.4-9: Seismograms recorded 64 km from a small, shallow earthquake.
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THREE COMPONENTS OF GROUND MOTION

P & S waves appear differently

Figure 2.4-8: Seismograms at two Japanese stations above an earthquake.
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Figure 2.4-4: Displacements for P, SV, and SH.
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Figure 2.4-7: Seismic spectrum for various studies.

Reflection Surface waves Crustal

seismology Body waves Normal modes deformation

0.001 0.01 0.1 1 10 100 1000 10% 10° 10 10’
Period (s)

1000 100 10 1 0.1 0.01 0.001 10* 10> 10° 107
Frequency (Hz)

electromagnetic spectrum

00001 hrm 001 nm 1nm 10nm D001t 0M1ft 11t 1007t 3100 mi

Cosmic| | Gamma X-Rays Visible Micro- | 1 | Radio || Electric
Rays Rays v Light IR Waves Power

10 24 / l w G60Hz

400 500 600 700
WAVELENGTH {Nanometers)




Figure 2.5-1: Some examples of earth models used in seismology.
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AS SEISMIC WAVES TRAVEL
FROM MATERIAL OF ONE SPEED
AND DENSITY TO ANOTHER
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TRAVELLING BETWEEN MEDIA OF DIFFERENT VELOCITIES,
WAVES BEND AND CHANGE AMPLITUDE

Figure 2.5-4: Change in wave front and direction during refraction.

Wave fronts Pay paths

Snell’s law in a flat medium:
sini, /vy =sini, /v,
Hence ray parameter p=sini/v

1s constant along a ray



Figure 2.5-5: Transmitted and reflected waves for incident P and SV waves.

Incident Incident Reflected
A i SV g P 5V SV g P
o : A
R ‘\ j1 e . '
ﬁ" Reflected ST
1 o A ’
oy, B ," o, By : /
X
/‘\ .
aZI ﬂz jZ \‘ ) 062, ﬂz jz \\ .
I - "2
) P ) P
sy Transmitted sy Transmitted
(refracted) (refracted)

Snell’s law:

o 153 2% 5P

C: = . —_—

sini; Sin j; sini, Ssin j,

FROM FASTER TO SLOWER MATERIAL- REFRACTED WAVES BENDS
TOWARDS VERTICAL

FROM SLOWER TO FASTER MATERIAL- REFRACTED WAVES BENDS
TOWARDS HORIZONAL



Figure 2.5-14: Derivation of Snell's law using Fermat's principle.
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SNELL’S LAW DESCRIBES OTHER FAMILIAR
EFFECTS

DIFFERENT COLORS (WAVELENGTHS) OF
LIGHT TRAVEL AT DIFFERENT SPEEDS IN
WATER OR GLASS, SO REFRACTED AT
DIFFERENT ANGLES

RAINDROPS CAUSE THE RAINBOW.

THIS IS WHY YOU ONLY SEE A RAINBOW
WHEN THE SUN IS BEHIND YOU




TSUNAMI SPEED IN
DEEP WATER of depth d

¢ = (gd)'
g=9.8m/s2 d=4000 m

c =200 m/s =720 km/hr =
450 mph

In open ocean, wavelength
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Figure 2.8-9: Ray paths for tsunami generated by the 1960 Chile earthquake.
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CRITICAL ANGLE

Figure 2.5-7: Critical angle for P waves incident upon a boundary.
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Figure 2.5-11: Propagation of waves in a low-velocity channel.
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REFLECTION (R) AND TRANSMISSION (T) COEFFICIENTS

Figure 2.2-5: Transmitted and reflected wave pulses.
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Figure 2.2-6: Waves on a string of two different densities.
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KHAO LAK, THAILAND DECEMBER 26,2004

TSUNAMI wave speed =
(water depth x acceleration of
gravity)'/2

1 Earthquakes cause the ocean 2 Initial waves,
floor to collapse in places and rise largely underwater,

elsewhere, displacing water travel very fast —
and generating waves. toward the shore.

3 In the shallow waters near 4 The tsunami reaches the
the shore, the waves decrease shore, causing severe flooding
in speed while rising in height and extreme currents.




Figure 2.4-10: Ground displacement from the 1989 Loma Prieta earthquake.
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TRAVEL TIME CURVES

Figure 3.5-3: Travel time data and curves for the IASP91 model.
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Figure 3.5-5: lllustration of various body wave phases.

SKP

Solid mantle

P DPCPSKKP



Figure 3.5-1: Comparison of the J-B and IASP91 earth models.
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SEISMIC RAY PATHS BEND AS VELOCITY INCREASES
WITH DEPTH

Figure 1.1-2: Schematic ray paths for an increase in seismic velocity with depth.
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Figure 3.4-5: Ray path effects for increasing velocity.
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Figure 3.4-6: Ray path triplication effects for a velocity increase.

p=rsini/v=dT/dA

Rapid velocity increase
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The amplitude is proportional
to the second derivative of the
travel time curve, or the
derivative of the p(A) curve.



Figure 3.5-12: Ray paths for P waves through the upper mantle.
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Figure 3.4-7: Ray path shadow-zone effects for a velocity decrease.
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Figure 3.5-7: Ray paths and travel times for major core phases.
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Figure 2.5-16: Huygens' principle for the propagation of a straight wave front.
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Figure 2.5-17: Derivation of Snell's law using Huygens' principle.
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DIFFRACTION: ENERGY

ARRIVES WHERE THERE’S
NO GEOMETRIC (SNELL’S
LAW) PATH

Process is frequency
dependent: long wavelengths
(long periods) diffract more

Destructive interference when (for D >> d):  A/2=d sin @ = dx,/D

Actual diffraction pattern is: % where { =2xdx/AD

/\—27[

Diffraction is described by Huygens’ principle, but not geometric ray theory.

\/—n’




SURFACE
WAVES

LOVE: SH

RAYLEIGH: P-SV

Figure 2.7-1: Seismograms recorded at a distance of 110°, showing surface waves.
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Figure 2.7-3: Multiple surface waves circle the earth.
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Figure 2.8-3: Example of calculating Love wave group velocity dispersion.
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Figure 2.7-10: Displacements of for Love waves in a layer over a halfspace.
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Figure 3.5-19: Snapshots of a synthetic SH wave field at various times.
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TOMOGRAPHY (“SLICE PICTURE”)

BEAMS TRAVEL THROUGH
OBJECT AT MANY DIFFERENT
ANGLES

COMBINE BEAMS FOR DETAILED
PICTURE OF VARIATIONS INSIDE
OBJECT

(CAT= COMPUTED AXIAL
TOMOGRAPHY)

MEDICAL TOMOGRAPHY USES X-
RAYS (ELECTROMAGNETIC
RADIATION) TO “SEE”
VARIATIONS IN ABSORPTION DUE
TO BONES, TISSUE ETC
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SEISMIC TOMOGRAPHY OF MIDOCEAN RIDGE
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TOMOGRAPHY SHOWS THERMAL
STRUCTURE OF SUBDUCTING
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COLD (HIGH SEISMIC VELOCITY)
OCEANIC PLATE SUBDUCTS INTO
WARMER (LOWER SEISMIC
VELOCITY) MANTLE

WARM REGION OF BACK ARC
MELTING CAUSES VOLCANOES

SLAB HEATS UP SLOWLY
(MILLIONS OF YEARS)

(W) HLd3a

-200

-400

-600

Fiji

P-wave Tomography

Lau -
Spreading 1‘::93 Pacific

Center Plate

200

1800

1500

1200

800

8600

300

400 600
DISTANCE (KM)

TEMPERATURE MODEL

Jo FHNLVYHIdNIL



ANALYSES OF
TRAVEL TIME
CURVES GIVE
VELOCITIES,
COMPOSITIONS,
AND CHANGES
WITH DEPTH
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Earth’s mass:
g =GM/a*
Because g = 9.8 m/s>, G=6.67 x 107" Nmzkg_z, and a = 6371 km,

we get My, = 5.97 x 10°* kg.

The average density, p,, is found by dividing the mass by the volume:

p, =M/ [(4/3)75613} ~ 5.5g/cm’

This value is significantly higher than the density of the surface rocks (about 3 g/cm?).
(Evidence for a core of denser material)

Because density varies with depth, the mass varies with depth as

a

M =4r J p(r)rdr
0



TRAVEL TIME CURVES GIVE VELOCITY AT DEPTH
TO DETERMINE COMPOSITION, NEED TO KNOW WHAT MATERIALS
COULD EXIST AT THOSE DEPTHS (PRESSURES) AND TEMPERATURES
THAT WOULD HAVE OBSERVED VELOCITIES
PRESSURE = DENSITY x DEPTH x ACCELERATION OF GRAVITY
SO PRESSURE INCREASES WITH DEPTH
3 km depth => 1000 ATMOSPHERES
400 km => 133,000 ATMOSPHERES, ~1500°C

CORE-MANTLE BOUNDARY (2900 km) => 1.3 million ATMOSPHERES,
~3700°C

CENTER OF EARTH (6371 km) => 3.5 million ATMOSPHERES, ~4200°C

MATERIALS BEHAVE VERY DIFFERENTLY AT THESE CONDITIONS
THAN AT SURFACE



INCREASE OF PRESSURE WITH DEPTH HAS TWO EFFECTS

- STEADY COMPRESSION (SQUISHING) OF MATERIAL MAKES IT
STRONGER AND DENSER AND SO INCREASES VELOCITY
GRADUALLY WITH DEPTH IN UPPER (100-410 km depth) AND
LOWER (660-2900 km depth) MANTLE

- AT APPROPRIATE PRESSURE AND TEMPERATURE CONDITIONS
MINERALS TRANSFORM TO DENSER PHASES, CAUSING THE RAPID
VELOCITY INCREASES (DISCONTINUITIES) AT 410 AND 660 km depth

%




SIMULATING EARTH’S
INTERIOR

Lab experiments

Pressure = Force/Area

Figure 3.8-10: Crystal structures of a a olivine and y-spinel.
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DENSITY INCREASES WITH DEPTH
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TEMPERATURES IN THE EARTH - GEOTHERM

BELOW MELTING CURVE (SOLIDUS) IN MANTLE AND SOLID INNER
CORE

ABOVE MELTING CURVE IN LIQUID OUTER CORE
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Transition zone between upper & lower mantles bounded by 410 and
660 km discontinuities

Velocity increases due to mineral phase changes

Olivine

Figure 3.8-8: Predicted mineral assemblages for the mantle.
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Figure 3.8-11: Effect of phase changes on velocity structure.
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SOLID INNER CORE FREEZES FROM OUTER CORE

Fractional crystalization as earth cools
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Figure 3.8-15: Geotherm and solidus for the core.
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Figure 5.1-1: Cartoon of plate tectonics.
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Figure 5.1-2: Diagram showing ideas about mantle convection.
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Condl\hlction Plate tectonics makes Earth different
x ars

Moon,

Mercury / Seafloor topography and heat flow indicate

Venus Earth’s heat loss primarily (~70%) by plate
tectonics, with ~25% by conduction

Grossly similar sister planets, Mars and Venus,
seem conduction-dominated: large-scale plate
tectonics appears absent, at least at present

Mars may have had
plate tectonics, now
Plate tectonics Plumes  stopped, perhaps
due to both cooling &
loss of water (which
reduces rock
strength & thus may
be needed for plate
tectonics)

Venus may still be
hot with episodic
overturns rather than
steady-state plate
tectonics




Mercury?

A Venus?
EARTH Moon
PLATE TECTONICS
i
CHARACTERIZES 3 5
EARTH RELATIVE TO ¢ %/ 3
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OTHER PLANETS - NAS
% 35 G
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Formation Vigorous Plate Terminal Quiescence g
convection tectonics volcanism

Condensation Planetesimal
interaction

Terrestrial (inner) planets may follow similar life cycle with stages including

formation, early convection and core formation, plate tectonics, terminal

volcanism, and quiescence.

Evolution driven by available energy sources as planets cool with time. Planets

formed at about the same time but are at different stages in their life cycles.

(Consider human and dog born on the same date).
Earth in middle age with active plate tectonics

Moon & Mars old, dead, inactive - “one plate planets”



DEAD MOON & MARS

Seismological & other data suggest moon now has a thick lithosphere
and is tectonically inactive

Lost much of its heat, presumably because of small size, which favors
rapid heat loss.

Expect the heat available from gravitational energy of accretion and
radioactivity to increase as the planet' s volume, whereas rate of heat
loss should depend on surface area

remaining heat = available /loss ~(4/3)mwr3/ 4 wr?2 =r/3

The land area of the Earth is approximately
Larger planets would retain more heat equal to the total surface of Mars.

and be more active

Mercury and Mars, larger than the
moon but smaller than earth, should
have also reached their old age with
little further active tectonics.

<
B
.’

¥ The land area of Africa is about the same
\‘ as the total surface of the Moon.




Remember, always,
the words of
Francis Birch (1952)

Ordinary language undergoes modification to a high-
pressure form when applied to the interior of the Earth.
A few examples of equivalents follow:

High-pressure form Ordinary meaning
certain dubious
undoubtedly perhaps

positive proof vague suggestion
unanswerable argument trivial objection

pure iron uncertain mixture of all the elements



