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TIME-DOMAIN ATTENUATION MEASUREMENTS FOR FUNDAMENTAL
SPHEROIDAL MODES (6Ss TO oS2s) FOR THE 1977 INDONESIAN
EARTHQUAKE

By ROBERT J. GELLER AND SETH STEIN

ABSTRACT

Using ultra-long period records of the 1977 Indonesian earthquake from seven
IDA stations, we have measured the attenuation of fundamental spheroidal
modes from Ss to 0S2s. We determine the attenuation of each mode using a
time domain technique which minimizes the effects of noise on the measure-
ments. These measurements are the first attenuation data for these modes from
multiple ultra-long period records of a single earthquake. Qur resulits are in good
general agreement with single station attenuation measurements from the UCLA
gravimeter records of the Alaskan earthquake. They show systematically lower
Q™ (less attenuation) than results from stacking WWSSN records.

INTRODUCTION

A major goal of current research in long-period seismology is the study of the
attenuation of seismic waves in the Earth. The first step in determining the Earth’s
attenuation structure, as a function of depth and (possibly) frequency and in
searching for possible lateral heterogeneity, is making accurate measurements of
the attenuation of normal modes, surface waves, and body waves. Different data are
best suited for gross Earth attenuation measurements in different frequency bands.

For periods between 20 and about 300 sec, attenuation is best measured from the
decay of traveling surface waves (Tsai and Aki, 1969; Kanamori, 1970; Mitchell ef
al., 1976; Mills and Hales, 1977, 1978a, b; Mills, 1978; Nakanishi, 1978). At periods
longer than about 250 or 300 sec, attenuation may be most accurately determined
by studying the decay of individual modes.

Periods longer than 300 sec are near or beyond the limits of the response of
conventional seismometers like those of the WWSSN. Although it is possible to
study some of these periods using the WWSSN records of great earthquakes (e.g.,
the 1964 Alaskan earthquake), such results are subject to large uncertainties. Other
observations in this band have been made using the Isabella strainmeter record of
the 1960 Chilean earthquake, or the UCLA gravimeter record of the 1964 Alaskan
earthquake (Benioff ef al., 1961; Alsop et al., 1961; Ness et al., 1961; Smith, 1961,
1972; Slichter, 1967; Geller and Stein, 1977; Stein and Geller, 1978a, b; Buland and
Gilbert, 1978; Sailor and Dziewonski, 1978). However, these measurements are
limited by the availability of only a single high-quality ultra-long period record for
each event, and by the relatively high noise level of the instrument.

With the installation of the IDA network (Agnew et al., 1976) of ultra-long period
gravimeters, it is now possible to make attenuation measurements at many stations
for a single earthquake. Since the signal-to-noise ratio of the IDA system is superior
to older instruments, it is now possible to study modes with periods longer than 300
sec from records of earthquakes like the 1977 Indonesian earthquake with seismic
moments on the order of 10 per cent of the great Alaskan or Chilean earthquakes.

In this paper, we use IDA records of the 1977 Indonesian earthquake to measure
the attenuation of fundamental spheroidal modes from ¢Ss (962 sec) to oSas (275
sec). We do not discuss the longest period spheroidal modes, ¢S through oS5, which
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1672 ROBERT J. GELLER AND SETH STEIN

are split by the Earth’s rotation and ellipticity. In order to measure the attenuation
of these split modes, it is necessary to include the effects of the source mechanism,
location and depth, and the receiver location (Stein and Geller, 1977, 1978a, b).
These IDA records have been used to measure the attenuation of S, and 1S, by
Buland et al. (1979).

The August 19, 1977 (Ms 75}) earthquake occurred near Sumbawa, Indonesia. We
used records of this event from seven IDA stations: Nana, Peru (NNA); Halifax,
Nova Scotia (HAL); College, Alaska (CMO); Sutherland, South Africa (SUR);
Raratonga, Cook Islands (RAR); Brasilia, Brazil (BDF), and Garm, USSR (GAR).
The relative geographical positions of the source and receivers are shown in Figure
1. The raw data are from the “mode” channel of the IDA instrument. Data on this
channel are filtered to reduce the amplitudes of signals with a period of greater than
1 hr before digitization. Even after filtering, the amplitude of the solid Earth tide is
still quite large. We have removed the tide by twice subtracting a 13-hr running

F16. 1. Map showing the 1977 Indonesian earthquake (triangle) and IDA stations we used (circles).

average from the data. Prior to this, we deleted the earliest parts of each record,
which were all saturated by large amplitude high-frequency surface waves. This
procedure also eliminates possible aliasing, because the data are sampled at 20-sec
intervals and the mode channel filter still has non-negligible gain at frequencies
higher than the Nyquist (0.025 Hz).

The starting time varies from record to record, and all but SUR and GAR extend
to 140 hr after the earthquake. At some stations two successive casettes were
chained together to obtain a long enough record. The gap (about 20 min) between
casettes was filled with zeroes. The data at GAR beyond about 60 hr are unusable
because of noise resulting from the flooding of a nearby river (R. Buland, personal
communication, 1978). The Sutherland record is shorter than any of the others but
GAR because the mass was physically rezeroed at the beginning and end of the
record. The portions of the record we used in our study, after detiding, are shown in
Figure 2. Several aftershocks and local earthquakes are clearly visible on the records
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Fic. 2. IDA records of the Indonesian earthquake after removal of the earth tide and of clipped
portions of the data. Amplitudes are in digital units.
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in Figure 2. We decided not to remove these signals, after some experiments which
showed that no improvement resulted.

Spectra for all seven records are shown in Figure 3. They were obtained by
decimating (and smoothing) the time series in Figure 2 to no more than 7 ,192 points,
tapering 10 per cent at either end with a cosine window, and then padding with
enough zeroes to get 8,192 points. The fundamental spheroidal modes have excellent
signal-to-noise ratios. Splitting can be seen for 4S: to oS; and many overtones are
clearly visible. The radial modes oSo and 1S, are also visible. The unsplit spheroidal
modes oS5 to 0S5, which we studied, have good signal-to-noise on most records.
Some modes (e.g., 0Sxr at CMO) are not well recorded at a given station, and were
excluded from our analysis.

TiME DOMAIN ATTENUATION MEASUREMENTS

‘The major advantages of time-domain measurement are in its ability to minimize
the effects of various types of noise. By studying the decay of the amplitude of a
mode as a function of time, it is possible to directly determine the quality of the
observation, in ways not possible in the frequency domain. A damped harmonic
oscillator, recorded with no noise, will show a standard resonance peak in the
frequency domain or exponentially decaying amplitude in the time domain; its
attenuation can be measured in either domain with equal facility. However, as noise
is introduced, it is almost impossible to determine the amount of noise contamination
in the frequency domain. On the other hand, the extent to which the signal in the
time domain differs from a pure decaying exponential provides a straightforward
way to determine the quality of an observation. A noise burst, resulting from an
aftershock or some other source of contamination, will be easily detectable from the
scalloping of the exponential decay; such biased observations can therefore be
rejected. (Computing the power in successive windows, a seemingly equivalent
method, is actually much less effective in detecting such effects.) Another advantage
of time-domain measurements is that they allow immediate identification of the
ambient noise level, and signals at or below this level can be disregarded. The details
of our procedure are discussed below.

Starting with the Fourier transform of a tapered time series, we then narrow-band
filter the transform to isolate a particular mode, using a zero-phase filter with unit
gain in the passband and 5 per cent cosine tapering at either end of the window.
(Other narrow-band filter windows appear to yield roughly similar results.) The
narrow-band filtered transform is then inverse transformed to obtain the time series
for the mode, and its Hilbert transform. We then plot the logarithm of the analytic
signal, which represents the decay of the envelope of the mode as a function of time.
@' is then determined from the slope of straight lines fit to the envelope using least
squares.

It is far preferable to state the attenuation measurement in terms of @ ! rather
than in terms of @. @ is the quantity actually measured from the slope of the line
and the most natural quantity to use in inverting for attenuation as a function of
depth. Finally, because attenuation is always quite low, any discussion posed in
terms of @, rather than @', tends to exaggerate small differences. (The difference
between @ = 100 and € = 1,000 is A(Q ") = 0.009, while the difference between
= 1,000 and @ = 10,000 is only A(Q™") = 0.0009. Although the latter difference is
actually ten times smaller, this tends to be overlooked in practice.)
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ecords of the Indonesian earthquake which we used for our @' study.

The angular orders of the fundamental spheroidal modes are shown at the top of the Brasili

a record.
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TesT CASES

Our time-domain measurement procedure was tested on synthetic-mode data,
both to test the programs used for the analysis and to study the effects of noise. A
synthetic time series was constructed consisting of the sum of two modes with
different frequencies and Q! (Figure 4). The synthetic starts 10 hr after the origin
time and extends for 90 hr. The two modes have periods of 600 and 450 sec, and @’s
of 500 and 250, respectively.

The synthetics were processed in the same way as the data. First, we removed the
“tide” by twice subtracting the running average (which essentially has no effect for
the synthetic), then tapered and Fourier transformed to obtain the spectrum. Each
of the two modes was then narrow-band filtered to produce the two decaying
envelopes shown on the right side of Figure 4. The format of these two envelope

T T T T
two modes: no noise synihelic dota o 4T 7]
100 ‘ T 1 1 T g
E alk §
50}» - Y
' §
oL | o ]
| :
-50 - -
50 i b |
- i | 1 1
100 0 100 0 20 40 60 80 100
MOD1  202+- | 205+~ 2 223+~ 7
+400e 0% T T T S B B B S B 4 : : : :
v ]
u=00e~o."— | 2 2t .
| .3
| ! -
.200e+0% r - : O- i
‘ a
£
10000 ‘F J ° 2tk -
Ot!' L : 1 | j!\ 1 }l\x ! { ) . . E\ c
0 .02 .04 .08 .08 .1 .12 .14 .16 .18 .2 .22 .24 ~4r "WMW” -
cpm
' -6 1 I 1 1 ]
0 20 40 60 80 100

MoD2 405+- 2 401+~ 0 400+- O

FiG. 4. Test of the time domain @ ' measurements for synthetic without noise. Details of the @
plots (right) are given in the caption for Figure 6.

plots is identical to those used later for the actual data. The x-axis is time, in hours;
the y-axis is the (natural) logarithm of the amplitude, in digital units.

Q! is measured by fitting straight lines to segments of the data ranging from the
time of the peak amplitude until the time that the signal decays to e e?ande™
of the peak, respectively. €' is then given by

Q' =-mT/n

where T is the period of the mode and 7% is the slope of the line. Thus there are
three @' estimates for each mode, corresponding to the three least-squares lines
shown. The numbers below the x-axis from left to right are actually Q! x 10°, for
each of the three lines. In this case thizre was no noise and the exact answers, as
obtained, are 200 and 400, respectively The standard deviations shown for each @'
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value are obtained from the standard least-squares formula, using twice the number
of frequency points in the passband as the number of degrees of freedom. Such least-
squares standard deviations tend to significantly underestimate the uncertainty of
the results. As discussed below, the differences between @' measurements at
different receivers is a better measure of the error.

We also tested our method by adding noise to the synthetic data (Figure 5). At
each time point noise uniformly distributed between +15 digital units was added.
The filtered time series are somewhat degraded, but the time-domain attenuation
measurements are still successful.

REesuLTs

Our method was applied to the seven IDA records shown in Figure 2. Amplitude
decay plots were prepared for the 23 modes from ¢Ss to ¢Sas. The filter passbands for
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Fi6. 5. Same as Figure 4, for a synthetic with random white noise.

each mode are given in Table 1. Plots of the envelope were made for each mode at
each station, but only those records in which the amplitude decayed smoothly as a
function of time were used. These @ ~' measurements are shown in Figures 6 through
14. In occasional cases, the e ™" straight line was obviously biased by a local amplitude
minimum which did not affect the e ™% or e lines. In such cases, only the @ ™" values
corresponding to the last two measurements are shown. Different numbers of
stations had sufficiently high-data quality for each mode. In one case, 6511, none of
the data were acceptable. Because the amplitude scale is logarithmic, the noise at
the end of some records is of negligible amplitude. Some of the very low-amplitude
noise is the result of the zero fill at the end of the records. In general, the data are
extremely good, and the values of @ " for each record (shown X 10°) are very well
constrained.
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By deleting data where the amplitude decay is not smooth, we reject several
sources of error. One such case is when an overtcne, within the frequency window
of the mode, is well excited. The noisy amplitude decay correlates with a strong
overtone peak in the amplitude spectrum. For example, 0S; (811 sec) is seriously
contaminated by 2Ss (804 sec) at GAR, RAR, SUR, and CMO (Figure 15).

Our difficulties with ¢S1;, where no usable records were obtained, may be due to
coupling between ¢Sy and o712 (Luh, 1974; Chao and Gilbert, 1979).

We have neglected the effect of splitting due to lateral heterogeneity, where the
individual singlets are not observable as separate peaks because of attenuation and
record length (Dahlen 1976, 1979). This effect may cause differences in eigenfre-
quency (Jordan, 1978) and attenuation (Buland, in preparation) at different stations.

The error estimate from the least-squares fit indicates the precision of the
attenuation measurement at each station. The differences between stations then

TABLE 1
FILTER PASSBANDS
Mode Period Range {sec)
0S6 983.00-937.00
087 840.00-780.00
0S8 721.00-693.00
0S9 643.00-619.00
0S10 593.00-566.00 -2
0811 541.00-530.00 — ~ -
0812 509.00-491.00
0S13 492.00-464.00
0S14 455.00-441.00
0S15 428.00-422.00
0516 410.00-402.00
0817 393.00-384.00
05818 375.00-370.40
0S19 365.80-355.00
0S20 353.00-342.40
0821 340.20-331.10
0822 329.70-321.20
0523 319.10-311.20
0524 308.00-304.20
0525 302.50-295.20
0826 293.60-285.70
05827 285.70-281.90
0528 276.80-274.20

indicate the uncertainty of the average global measurement of attenuation. A
significant fraction of this uncertainty may be due to lateral heterogeneity because
the differences between stations are much greater than the uncertainty of most
individual single station measurements. With additional data from other earth-
quakes, it may be possible to resolve true lateral heterogeneity in attenuation.

Lateral heterogeneity affects the @' of individual singlets in a complicated way
which depends on the eigenfunctions of each singlet. Present methods for calculating
the modes of a laterally heterogeneous earth model, primarily relying on first-order
perturbation theory, do not calculate the eigenfunctions with the necessary accuracy
to make studies of the lateral heterogeneity of @ '. By analogy to a one-dimensional
laterally heterogenous body (Geller and Stein, 1978), it is probably necessary to use
variational methods to obtain the necessary accuracy.
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Discussion

Table 2 lists the mean of the @' values at each station and the mean of all the
@' measurements for each mode. The standard deviation shown for each global
mean is obtained from the misfit of the individual single station measurements.
Because different stations were available for different modes, there conceivably are
some systematic biases. However, there are no differences between stations above
the background scatter.

The @' measurements at each station are plotted in Figure 16, and the mode
means are plotted in Figure 17. Also shown in Figure 17 are the @' data of Sailor
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Fic. 15. Effect of overtone interference on ¢S7. At College, oS is contaminated by .Ss, as shown by the
phase and amplitude spectra, while at Nana, ¢S is not affected. The amplitude decay plot at College is
unusable.

and Dziewonski (1978), both for gravimeter measurements and for stacked WWSSN
seismograms, the value for oS: of Buland and Gilbert (1978), and our previous (Stein
and Geller, 1978b) measurements for split modes oS: to ¢S5 for the Chilean and
Alaskan earthquakes. Their gravimeter data are in accord with ours, while the
stacked records give higher @', Sailor and Dziewonski noted that stacking could
result in systematically high @', but at the time of their study no better dataset
was available. They also pointed out the difficulty of estimating the uncertainty in
the measurements, given a single value.
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Our dataset consists of @ ! measurements from ¢Ss to 6S2s for seven IDA records
of the 1977 Indonesian earthquake. We could measure @ ™' for 21 of these modes for
at least three stations. Within the present error bars for @' data, the agreement
between our results, Sailor and Dziewonski’s (1978), and Bolt and Hansen’s (1979)
results is very good. Our measurements have greatly increased the number of
reliable @' data in the band from about 900 to 300 sec. We discuss the implications
for gross Earth @' structure elsewhere (Mills ef al., 1979).

TABLE 2
ATTENUATION (100,000/Q)
Garm Nana College Brasilia Halifax Sutherland  Raratonga Average

oS 348 290 190 258 — — —_— 272 + 66
0S; —_ 323 —_ 309 477 — o 370 £ 93
oSs 272 342 — 261 336 — — 303 + 42
oS — — 271 317 185 — — 9258 = 67
oS 265 228 — 296 255 319 376 290 £ 53
oS - - - - - - d -

oS — 407 — —_ 426 — 323 385+ 55
oS3 324 426 — — 324 - — 358 £ 59
0S1s 547 491 282 —_ 230 — 456 401 + 138
oS5 230 — 319 202 281 -— 403 287 = 59
oS1e 359 288 — 286 319 303 343 316 = 30
oS17 276 325 408 352 _ 356 352 345 £ 43
oS 214 273 — — — — 186 224 + 44
oS —_ 332 — 338 —— 415 — 362 = 46
aSa0 291 423 —_ 479 — — 385 395+ 79
0Sa 372 411 —_ 368 338 —_ 402 3718 = 28
oS 393 414 — 390 336 — 351 377+ 32
oS — 354 561 488 305 — 419 425 + 102
0823 — 388 364 — — — 319 357x 35
0825 541 420 — — 359 _ 394 429 + 79
0Sa6 509 470 — — 492 —_— 461 483 + 22
0Su7 — 261 — — -— — — 261 —
0S8 436 453 312 — — 425 407 = 64
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