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   In Shakespeare’s  Henry IV , Glendower says, 

“I can call spirits from the vasty deep,” and 

Hotspur replies, “Why, so can I, or so can any 

man; but will they come when you do call 

for them?” 

 Scientists assessing natural hazards face 

the same issue. They can make detailed 

hazard assessments, but the Earth often acts 

differently. Insight into why this occurs comes 

from a recent approach in risk analysis, which 

separates uncertainties in predicting future 

events into shallow versus deep uncertainties 

[ Cox ,  2012 ;  Hallegatte et al .,  2012 ]. Shallow 

uncertainties arise when the probabilities of 

outcomes are reasonably well known. In such 

cases, past events are good predictors of 

future ones. For example, a baseball player’s 

batting average is a good predictor of the 

chance that he will get a hit. 
 In contrast, deep uncertainties arise when 

the probabilities of outcomes are poorly 

known, unknown, or unknowable. This 

occurs when we have multiple possible 

models with poorly known parameters 

because we inadequately understand the 

system or it has inherently unpredictable 

elements. In such situations, past events may 

give little insight into future ones. An example 

would be trying to predict the winner of the 

World Series in the next baseball season. The 

teams’ past performances provide only 

limited insight into the future of a compli-

cated process. Various models could be 

developed based on past performance, but 

people would place little confidence in them. 

 The issues of shallow and deep uncertain-

ties in assessing natural hazards can be 

illustrated by a simple example using a classic 

probability model.  

  Drawing Balls From an Urn  

 Imagine an urn containing balls 

(Figure 1a), in which  e  balls are labeled “E” 

for event and  n  balls are labeled “N” for no 

event. In mathematics, events and nonevents 

are called “successes” and “failures,” but for 

hurricanes, volcanoes, floods, and earth-

quakes, these may be poor terms because 

“failure” is the preferred outcome. The 

probability of an event is that of drawing an 

E ball, which is the ratio of the number of 

E balls to the total number of balls. 

 Two models describe how the probability 

of an event changes with time. One is 

sampling with replacement—after drawing a 

ball, it is replaced. In successive draws, the 

probability of an event is constant or time 

independent and can be calculated using 

binomial or Poisson distributions [ Taylor , 

 1997 ]. Events are independent because one 

happening does not change the probability of 

another happening. Thus, an event is never 

“overdue” just because one has not happened 

recently, and the fact that one happened 

recently does not make another less likely. 

 An alternative is sampling such that the 

fraction of E balls and the probability of 

another event change with time. One can add 

a number  a  of E balls after a draw when an 

event does not occur and remove  r  E balls 

when an event occurs. This makes the 

probability of an event increase with time 

until one happens, after which it decreases 

and then grows again. Events are not 

independent because one happening 

changes the probability of another. 
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Fig. 1. (a) Model for the probability of an event: A ball is drawn every year from an urn contain-
ing balls labeled “E” for event and “N” for no event. (b) Comparison of the probability of an event 
as a function of time for time-independent (TI; green line) and time-dependent (TD; red and blue 
lines) models. (c) Sequence of events as a function of time for the three models in Figure 1b.
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 Figure 1b illustrates the differences for an 

urn that initially has 20 E balls and 380 N 

balls, giving 1/20 initial probability of an event 

or, on average, one every 20 years for samples 

drawn yearly. For  a  =  r  = 0, the probability is 

time independent and does not change 

(green line). The situation differs for time‐

dependent models, as shown by two cases. 

For one with  a =  1 and  r  = 20 (blue line), the 

probability growth between events is 

approximately offset by the decrease after 

events, so on average, the probability 

oscillates about the time‐independent case. 

For one with  a =  1 and  r  = 10 (red line), the 

probability decreases less after events and 

so tends to increase with time. 

 In mathematical applications, the model—

how sampling is done—and model 

parameters— e ,  n ,  a , and  r —are known. 

For natural hazards, these are inferred from 

the history of past events and scientists’ ideas 

about the process involved. This is like 

inferring the contents of the urn and the 

sampling process from the samples that have 

already been drawn. As Figure 1c shows, 

this is very difficult. The resulting uncertain-

ties in predicting when events will occur are 

shallow if we know the appropriate model 

and parameters reasonably well, and deep 

if we do not. In the time‐independent scenario 

represented by the green line, the probability 

of a future event can be given with reason-

able confidence, whereas in the time‐

dependent scenarios represented by the blue 

and red lines, it cannot. Thus, the best way 

of distinguishing between the scenarios is 

to examine how well models predict 

what occurs. 

    Application to Natural Hazards  

 Both shallow and deep uncertainties 

arise for natural hazards. The occurrences 

of floods and hurricanes in a given area are 

treated as involving shallow uncertainties. 

These are modeled as time‐independent 

events [ Kirby ,  1969 ;  Klotzbach and Gray ,  2010 ], 

assuming that the history of events gives a 

reasonable estimate of their future probability, 

which improves as the history available gets 

longer. The resulting shallow uncertainties 

reflect a model that works reasonably well, 

with reasonably well estimated parameters. 

However, forecasts with a long timescale face 

deep uncertainties associated with possible 

effects of climate change because rainfall 

patterns and storm frequencies or intensities 

may change in ways that are hard to predict 

from climate models [ Morgan et al .,  2009 ]. 

 Earthquake hazard assessments involve 

multiple sources of deep uncertainty. This fact 

was brought to the fore by the great March 

2011 earthquake off Japan’s Tohoku coast, 

which was much larger than predicted by the 

map showing earthquake hazard for the area 

and produced a much higher tsunami than 

expected in hazard planning [ Geller ,  2011 ]. 

Such underestimates often occur [ Kerr ,  2011 ], 

illustrating the uncertainties involved in 

estimating future hazards from past events 

[ Stein et al .,  2012 ]. As a result, hazard maps 

are often changed repeatedly as large 

earthquakes continue to occur in areas 

previously shown as having low hazard 

[ Peresan and Panza ,  2012 ]. 

 One source of deep uncertainty is 

assessing earthquake recurrence in time. 

As in the urn example (Figure 1), neither the 

appropriate model nor the appropriate 

parameters is well constrained, despite 

decades of study. Many seismic hazard maps 

use time‐independent models. Other studies 

favor models in which strain accumulates 

across a fault and is released in earthquakes, 

so the probability of a large earthquake 

decreases after one occurs and then rises. 

Using the limited historical record to infer 

which model, which probability distribution, 

and which parameters are most appropriate 

is challenging, especially because time‐

dependent models have additional param-

eters. By analogy to the urn example, it is 

unsurprising that studies find divergent 

results [ Parsons ,  2008 ;  Savage ,  1992 ;  Kagan 

et al .,  2012 ]. 

 The resulting deep uncertainty is illustrated 

by the Parkfield earthquake prediction in 

which, based on a 128‐year period during 

which part of the San Andreas Fault had 

moderate (magnitude 6) earthquakes about 

every 22 years, the next such earthquake was 

predicted using a time‐dependent model to 

occur at 95% confidence before 1993. 

However, such an earthquake did not occur 

until 2004, 11 years after the end of the 

prediction window [ Kerr ,  2004 ]. This event 

can be regarded as either occurring too late, 

consistent with a low‐probability event, or as 

indicating that the recurrence is better 

described as time independent [ Jackson and 

Kagan ,  2006 ]. 

 A second source of deep uncertainty 

involves where to expect earthquakes. On 

plate boundaries, although all parts of the 

boundary are expected to slip eventually, 

attempts to forecast the timing of major slip 

events have been unsuccessful. However, 

within plates it is hard to forecast even where 

large earthquakes will occur. A prime 

example is in northern China, where a 2000‐

year record shows migration of large 

earthquakes between fault systems spread 

over a broad region, such that no large 

earthquake ruptured the same fault segment 

twice in this time interval [ Liu et al .,  2011 ]. 

A map based on any short subset of the 

record would be biased. For example, a map 

using the 2000‐year earthquake record 

prior to 1950 would miss the subsequent 

activity in the northern China plain, including 

the 1976 Tangshan earthquake (moment 

magnitude 7.8), which occurred on a 

previously unknown fault and killed nearly 

240,000 people. 

 A third source of deep uncertainty is how 

large an earthquake to expect. We do not 

know whether the largest known earthquake 

in an area is really the largest that happens 

there or just the largest observed to date. As 

the 2011 Tohoku and 2004 Sumatra earth-

quakes showed, a much bigger earthquake 

than expected often occurs [ McCaffery ,  2007 ; 

 Stein and Okal ,  2011 ]. This realization is a 

challenge for hazard planning. For example, 

Japanese authorities face the question of 

whether to invest in preparing communities 

along the Nankai Trough for much larger 

tsunamis than previously anticipated because 

their probability cannot be usefully estimated 

beyond saying such a tsunami would be rare, 

perhaps once in a millennium [ Cyranoski , 

 2012 ]. 

 These deep uncertainties result from 

scientists’ limited understanding of how 

earthquakes vary in time, space, and size. 

Thus, although geologic and paleoseismic 

data can be used to study the past motion on 

individual faults and GPS data can show the 

present strain accumulation on each, there 

are probably fundamental limits as to what 

can be said about future strain release. 

Additional uncertainties are involved in 

choosing a relation to predict the ground 

motion expected at a given distance from 

earthquakes of a given size. These uncertain-

ties should be recognized and communicated 

to users of hazard maps [ Stein et al .,  2012 ; 

 Stein and Geller ,  2012 ].

     Hazard Mitigation Strategies in the Face 

of Uncertainty  

 Ultimately, the goal of hazard assessments 

is to help develop mitigation policies. This 

step involves an additional uncertainty 

because formulating policies also involves 

comparing the costs and benefits of mitiga-

tion options [ Goda and Hong ,  2006 ;  Stein and 

Stein ,  2012 ,  2013 ]. More extensive mitigation 

measures cost more but are expected to 

produce increasing reduction of losses in 

future events. For example, given the damage 

to New York City by the storm surge from 

Hurricane Sandy, options under consideration 

range from doing nothing, through intermedi-

ate strategies like providing doors to keep 

water out of vulnerable tunnels, to building 

up coastlines and installing barriers to keep 

storm surges out of rivers [ Navarro ,  2012 ]. A 

challenge is that even for an assumed level of 

flooding—the estimation of which involves 

the deep uncertainties associated with 

climate change [e.g.,  Bamber and Aspinall , 

 2013 ]—there is uncertainty in estimating the 

expected losses for, and thus the benefits of, 

different mitigation options. Similar issues 

arise in mitigating volcanic risk, both via 

long‐term land use planning and short‐term 

evacuations [ Marzocchi and Woo ,  2009 ]. 

 Such situations illustrate  Cox ’s [ 2012 , 

p. 1607] description, “Some of the most 

troubling risk management challenges of 

our time are characterized by deep uncertain-

ties. Well‐validated, trustworthy risk models 

giving the probabilities of future conse-

quences for alternative present decisions are 

not available; the relevance of past data for 

predicting future outcomes is in doubt; 
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experts disagree about the probable 

consequences of alternative policies.” 

 The deep versus shallow uncertainty 

approach is one of several ways of attempting 

to characterize unknown future events. In a 

seminal paper,  Knight  [ 1921 ] proposed that to 

distinguish between “the measurable 

uncertainty and an unmeasurable one, we 

may use the term ‘risk’ to designate the 

former and the term ‘uncertainty’ for the 

latter.” Since then, various nomenclatures and 

ways of classifying uncertainty have been 

used in different fields. For example, in the 

natural hazards literature, “hazard” denotes 

the natural occurrence of earthquakes or 

other phenomena, and “risk” denotes the 

dangers that hazards pose to lives and 

property. 

 Seismic hazard analysis follows the 

engineering literature in distinguishing 

uncertainties by their sources, in which 

aleatory (from the Latin word for dice,  aleae ) 

uncertainties are due to irreducible physical 

variability of a system and epistemic 

uncertainties are due to lack of knowledge of 

the system. The shallow versus deep 

distinction has similarities but focuses on the 

mathematical representation, in that shallow 

uncertainties can be usefully treated through 

probabilities but deep ones cannot. 

 The aleatory/epistemic versus shallow/deep 

approaches lead to different ways of choosing 

mitigation strategies. In seismic hazard 

analysis, a specific scenario is chosen by the 

logic tree process, in which weights are 

assigned to various possible scenarios [ Reiter , 

 1990 ]. The deep uncertainty view leads to an 

approach called robust risk management—

accepting that there is a large range of 

possible scenarios and developing policies 

that should give a reasonable outcome for a 

large range of the possible scenarios [ Manski , 

 2010 ;  Cox ,  2012 ;  Stein and Stein ,  2013 ]. 

 Although using the deep uncertainties 

approach in natural hazard policy decisions 

would be new, analogous approaches are 

being explored in the context of how to adapt 

to climate change [ Morgan et al .,  2009 ; 

 Hallegatte et al .,  2012 ]. In years to come, 

similar approaches can be used to improve 

natural hazard mitigation policies. 
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