
Northwestern University
Earth & Planetary Sciences Linux Computer System

New User Notes
Seth Stein, March 2007

The departmental computing facility consists of two basic components. One is a set of
Macintoshes. The second is a Linux workstation network with a number of workstations, print-
ers, a color printer/plotters. All new Linux users are installed on the C-shell, or similar shells,
which are command interpreters whose syntax is similar to that of the C programming language.

The assignments in the class are most easily done using the Linux system. You can work
either directly on a Linux workstation, or by logging into one from another computer.

Workstations

The workstations in the computer room (second floor) are for student use. Other possibilities
include graduate student offices: the occupants have priority.

The Network

All the computers in the network have local names, e.g. "beno", and full names
"beno.earth.northwestern.edu"

Logging In

1. Respond to login prompt with your login name and <return>.

2. Respond to password prompt with your password and <return>.

3. If you are logged into one computer, and would like to log onto another, use the “ssh”
(secure shell) command. For example, to log onto lothlorien, type “ssh lothlorien”.

Remote access

Users can log in using programs like "Terminal" or "Nifty Telnet" that support ssh and the
computers’ full names: "ssh -lusername beno.earth.northwestern.edu"

Learning Unix/Linux

There are many ways to learn Unix/Linux. In addition to the many Linux books, web sites
like the introductory tutorial on

http://www.ee.surrey.ac.uk/Teaching/Unix/
are very helpful.

The man command provides descriptions of Linux functions on the screen. For example,
typing “man mail” will produce a description of the mail program. The apropos command finds
manual sections appropos to a subject. For example, “apropos string” would print the names of
all the sections that are about strings.

Editor

Most users use the "vi" editor. This is described in books and on the web. A short introduc-
tion is attached, from

http://heather.cs.ucdavis.edu/˜matloff/UnixAndC/Editors/ViIntro.html

-2-

Producing Hard Copy

A file can be printed on the laser printers in the computer room by typing:

enscript filename for text files
lpr filename for text or postscript files

Languages

The following languages are currently on the system: C, C++, FORTRAN 77, Perl. Fortran is the
one most commonly used in geophysics classes here.

Fortran

FORTRAN 77 programs must have a filename ending with “.f” To compile type

f77 prog.f

This produces an executable file called “a.out” which can be run by simply typing “a.out”. FOR-
TRAN programs traditionally read from logical unit 5 and write to unit 6. These can be any files,
as in:

a.out < inputfile > outputfile

If no input or output file is specified, the defaults are the keyboard and the screen, respectively.
The name of the executable file can be changed using the “-o” flag, so to compile the program
“curve.f” and name it “curve”, type

f77 curve.f -o curve

More details may be found in Fortran manuals or experienced users

Programming thoughts

Thus class relies heavily on using computers to solve geophysical problems. This involves
scientific programming, a programming style used for essentially mathematical applications. This
is a lot easier than the object oriented program using to do things like manipulate windows and
icons. Most assignments are done in Fortran, a language that is especially suitable for scientific
programming and is therefore commonly used in geophysics. Other languages can also be used.
There’s a general discussion in Stein & Wysession, Section A.8.

-3-

Many of the class assignments require modular programming. he idea is to divide large
programs into smaller subroutines or functions, which can be used like the functions (e.g. sine,
square root) supplied by many computer languages. Each subroutine can be tested separately and
then used in various programs. Subroutines can handle applications that frequently recur, such as
reading or plotting data or carrying out a mathematical operation. This approach saves the time
needed to write and debug portions of a program similar to one already available.Moreover, the
overall structure of a program containing a set of calls to subroutines is generally easier to under-
stand, because many complexities are isolated into subroutines.

For example:

c exsub.f: simple example of using subroutines and functions
c
c To compile this, type f77 exsub.f -o exsub
c that makes the executable file "exsub"
c To run type "exsub"
c
c read two numbers from standard input (unit 5)

read(5,*) a,b
c check the input

write(6,*) ’add two numbers:’, a, b
c use subroutine

call subadd(a,b,c)
write(6,*) ’ subroutine sum of’,a,’ and ’,b,’ is ’,c

c use function
d= funadd(a,b)
write(6,*) ’ function sum of’,a,’ and ’,b,’ is ’,d
stop
end

subroutine subadd(a,b,c)
c=a+b
return
end

function funadd(a,b)
funadd=a+b
return
end

An Extremely Quick and Simple Introduction
to the Vi Text Editor

Norm Matloff

(last updated October 25, 2006)

1 Overview
A text editor is a program that can be used to create and modify text files. One of the most popular
editors on Linux/Unix systems (it is also available on Windows and many other platforms) is vi.
There are many variations, with the most popular being vim.

2 5-Minute Introduction
As a brief introduction to vi, go through the following: First, type

vi x

at the Unix prompt. Assuming you did not already have a file named x, this command will create one.
(If you have tried this example before, x will already exist, and vi will work on it. If you wish to start
the example from scratch, simply remove x first.)

The file will of course initially be empty. To put something in it, type the letter i (it stands for
"insert-text mode"), and type the following (including hitting the Enter key at the end of each of the
three lines):

The quick
brown
fox will return.

Then hit the Escape key, to end insert-text-mode.

This mode-oriented aspect of the vi editor differs from many other editors in this respect. With
modeless editors such as joe and emacs, for instance, to insert text at the cursor position, one
simply starts typing, and to stop inserting, one just stops typing! However, that means that in
order to perform most commands, one needs to use the Control key (in order to distinguish a
command from text to be inserted). This has given rise to jokes that heavy users of modeless editors
develop gnarled fingers.

Now save the file and exit vi, by typing ZZ (note the capitals).

Again, the key to learning vi is to keep in mind always the difference between insert-text mode
and command mode. In the latter mode, as its name implies, one issues commands, such as the ZZ
above, which we issued to save the file and exit vi. The characters you type will appear on the screen
if you are in insert-text mode, whereas they will not appear on the screen while you are in command

An Extremely Quick and Simple Introduction to the Vi Text Editor http://heather.cs.ucdavis.edu/~matloff/UnixAndC/Editors/ViIntr...

1 of 6 1/4/11 1:56 PM

mode. By far the most frequent problem new vi users have is that they forget they are in insert-text
mode, and so their commands are not obeyed.

For example, suppose a new user wants to type ZZ, to save the file and exit vi, but he has forgotten to
hit the Escape key to terminate insert-text mode. Then the ZZ will appear on the screen, and will
become part of the text of the file-and the ZZ command will not be obeyed.

You now have a file named x. You can check its contents by typing (at the Unix shell prompt)

more x

which will yield

The quick
brown
fox will return.

just as expected.

Now let's see how we can use vi again to modify that file. Type

vi x

again, and make the following changes.

First, suppose we wish to say the fox will not return: We need to first move the cursor to the word
"return". To do this, type /re and hit the Enter key, which instructs vi to move the cursor to the first
instance of /re relative to the current cursor position. (Note that typing only /r' would have moved the
cursor to the first instance of `r', which would be the `r' in `brown', not what we want.)

Now use the i command again: Hit i, then type not (note the space), and then hit Escape.

Next, let's delete the word `brown'. Type b to move the cursor there, and then hit x five times, to
delete each of the five letters in `brown'. (This will still leave us with a blank line. If we did not want
this, we could have used the dd' command, which would have deleted the entire line.)

Now type ZZ to save the file and exit vi. Use the more command again to convince yourself that you
did indeed modify the file.

At this point you know the basics. You may wish to print or constantly display the excellent, clever
and colorful VIM Graphical Cheat Sheet.

3 Going Further: Other Frequently-Used Commands
You now know how to use vi to insert text, move the cursor to text, and delete text. Technically, the
bare-bones set of commands introduced above is sufficient for any use of vi. However, if you limit
yourself to these few commands, you will be doing a large amount of unnecessary, tiresome typing.

So, you should also learn at least some of these other frequently-used vi commands:

 h move cursor one character to left
 j move cursor one line down
 k move cursor one line up
 l move cursor one character to right

An Extremely Quick and Simple Introduction to the Vi Text Editor http://heather.cs.ucdavis.edu/~matloff/UnixAndC/Editors/ViIntr...

2 of 6 1/4/11 1:56 PM

 w move cursor one word to right
 b move cursor one word to left
 0 move cursor to beginning of line
 $ move cursor to end of line
 nG move cursor to line n
 control-f scroll forward one screen
 control-b scroll backward one screen

 i insert to left of current cursor position (end with ESC)
 a append to right of current cursor position (end with ESC)
 dw delete current word (end with ESC)
 cw change current word (end with ESC)
 r change current character
 ~ change case (upper-, lower-) of current character

 dd delete current line
 D delete portion of current line to right of the cursor
 x delete current character
 ma mark currrent position
 d`a delete everything from the marked position to here
 `a go back to the marked position
 p dump out at current place your last deletion (``paste'')

 u undo the last command
 . repeat the last command

 J combine (``join'') next line with this one

 :w write file to disk, stay in vi
 :q! quit VI, do not write file to disk,
 ZZ write file to disk, quit vi

 :r filename read in a copy of the specified file to the current
 buffer

 /string search forward for string (end with Enter)
 ?string search backward for string (end with Enter)
 n repeat the last search (``next search'')

 :s/s1/s2 replace (``substitute'') (the first) s1 in this line by s2
 :lr/s/s1/s2/g replace all instances of s1 in the line range lr by s2
 (lr is of form `a,b', where a and b are either explicit
 line numbers, or . (current line) or $ (last line)
 :map k s map the key k to a string of vi commands s (see below)
 :abb s1 s2 expand the string s1 in append/insert mode to a string
 s2 (see below)
 % go to the "mate," if one exists, of this parenthesis
 or brace or bracket (very useful for programmers!)

All of the `:' commands end with your hitting the Enter key. (By the way, these are called "ex"
commands, after the name of the simpler editor from which vi is descended.)

The a command, which puts text to the right of the cursor, does put you in insert-text mode, just like
the i command does.

By the way, if you need to insert a control character while in append/insert mode, hit control-v first.
For example, to insert control-g into the file being edited, type control-v then control-g.

One of vi's advantages is easy cursor movement. Since the keys h,j,k,l are adjacent and easily

An Extremely Quick and Simple Introduction to the Vi Text Editor http://heather.cs.ucdavis.edu/~matloff/UnixAndC/Editors/ViIntr...

3 of 6 1/4/11 1:56 PM

accessible with the fingers of your right hand, you can quickly reach them to move the cursor, instead
of fumbling around for the arrow keys as with many other editors (though they can be used in vi too).
You will find that this use of h,j,k,l become second nature to you very quickly, very much increasing
your speed, efficiency and enjoyment of text editing.

Many of the commands can be prefixed by a number. For example, 3dd means to delete (consecutive)
three lines, starting with the current one. As an another example, 4cw will delete the next four words.

The p command can be used for "cut-and-paste" and copy operations. For example, to move three
lines from place A to place B:

1. Move the cursor to A.

2. Type 3dd.

3. Move the cursor to B.

4. Type p.

The same steps can be used to copy text, except that p must be used twice, the first time being
immediately after Step 2 (to put back the text just deleted).

Note that you can do operations like cut-and-paste, cursor movement, and so on, much more easily
using a mouse. This requires a GUI version of vi, which we will discuss later in this document.

4 Advanced Topics

4.1 Macros

When you are using vi, you can use the map and abb commands to save a lot of typing. For example,
I often accidentally transpose two letters when I am typing fast, say typing `taht' instead of `that'.
Since I do this so often, I place the command

:map v xp

which means that the v key now performs the operations xand p, (try `xp' yourself and you will see it
work), in my

~/.exrc

file ((without the colon; see below).

Also, since I often edit HTML files, I save myself typing by including lines like

abb cg

in my .exrc file. This means that whenever I am vi's insert/append mode and type "cg" and then hit the
space bar, vi will automatically expand it to "".

Here are some more examples:

map ; $
map - 1G

An Extremely Quick and Simple Introduction to the Vi Text Editor http://heather.cs.ucdavis.edu/~matloff/UnixAndC/Editors/ViIntr...

4 of 6 1/4/11 1:56 PM

map \ $G

map ^K ~

map ^X :.,$d^M

map! ^P ^[a. ^[hbmmi?\<^[2h"zdt.@z^Mywmx`mP xi
map! ^N ^[a. ^[hbmmi/\<^[2h"zdt.@z^Mywmx`mP xi

abb taht that
abb wb http://heather.cs.ucdavis.edu/~matloff

The first three simply perform cursor movement (to end-of-line, start-of-file, end-of-file) Most of them
only saves one keystroke, but they require much less finger movement (for the standard touch-typing
hand position) and since they are such frequently-used operations they are worthwhile. The fourth
map is for case change, again (for me) a frequent operation.

The fifth map deletes all material from the current cursor position to the end of the file. I often find
this useful, when editing a reply to an e-mail message for instance, or when I use :r to import another
file into the one I am editing.

The sixth and seventh maps, which are labeled "map!" instead of "map" to indicate that they operate
during append or insert mode, are modifications of some macros which are "famous" in the vi user
community. They are used for "word completion," an extremely useful trick to save typing. Suppose
for example I am currently in append/insert mode and I wish to type the word "investigation," and that
I have used the word previously. If I just type, say, "inv" and then control-p, vi will search for a word
earlier in my file which began with "inv" and complete my "inv" to that word, in this case
"investigation ". Typing control-n will do the same thing, except that it will search forward instead of
backwards.

Note again that in typing these macros in one's .exrc file, one must hit control-v first. For example, to
insert control-g into the file being edited during append/insert mode, type control-v then control-g.

4.2 The .exrc Startup File

When you invoke the vi editor, it will look for the file

~/.exrc

and obey any "ex" commands it finds there. For example, I have lines in my startup file corresponding
to the map and abb examples in the last section:

map v xp
abb cg

(Note that in the .exrc file we omit the colon, i.e. we type "map" instead of ":map", because vi
assumes these are all "ex" commands.) That way I have those settings (and many others) permanently
set, rather than my needing to type them in again each time I use vi.

4.3 Mainly for Programmers

An Extremely Quick and Simple Introduction to the Vi Text Editor http://heather.cs.ucdavis.edu/~matloff/UnixAndC/Editors/ViIntr...

5 of 6 1/4/11 1:56 PM

There are a number of editing commands available in vi and most other sophisticated text editors
which are especially useful for programmers. They are described in

(click here)

http://heather.cs.ucdavis.edu/~matloff/progedit.html

The reader is urged to make daily use of these, which can really save a lot of time and effort.

4.4 Lots and Lots About Vi

There is a large compendium of information about vi at

(click here)

http://www.math.fu-berlin.de/~guckes/vi/

A nice compact reference for vi commands is available at

(click here)

http://www.ungerhu.com/jxh/vi.html

5 Other Editors, Including Other Versions of Vi
Arguments over the pros and cons of various editors become almost "religious" in their ferocity. I
have tried all of the major Unix text editors, but have always come back to vi.

In my view, the best versions of vi currently available are elvis and vim. Both have really good
features, especially their X11 GUI versions. It is much easier to do a cut-and-paste operation, for
example, using the mouse instead of "by hand."

I have Web pages on both of these versions of vi, at

(click here)

http://heather.cs.ucdavis.edu/~matloff/vim.html

and

(click here)

http://heather.cs.ucdavis.edu/~matloff/elvis.html

But in the end it is a matter of taste. I have used vi as the introductory editor here because it is so
prevalent in the Unix world, but you may wish to give others, say emacs or some of the X11-only
editors, a try.

File translated from TEX by TTH, version 3.30.
On 18 Oct 2003, 16:54.

An Extremely Quick and Simple Introduction to the Vi Text Editor http://heather.cs.ucdavis.edu/~matloff/UnixAndC/Editors/ViIntr...

6 of 6 1/4/11 1:56 PM

Introduction to Plotting with nplot
Seth Stein

March 2002

nplot is a FORTRAN-callable subroutine that makes it fairly easy to produce line and point plots of
curves. Itcan also be used for other, more complex uses with a little bit of effort. It’s less capable, but
easier to use for simple plots, than GMT. This program, an old department standby, has been ported to
the linux machines and works, at least in simple forms.

In a program, thenplot call looks like this:

call nplot(n, x, y, xlabel, ylabel, title, para).

n is an integer that tells the routine how many points to plot. x andy are real arrays that contain the x and
y coordinates of the points to be plotted, such that the coordinates of theith point are (x(i), y(i)). xlabel,
ylabel, and title are character strings used to label the plot.In the simplest form, these are character con-
stants (strings enclosed by single quotes). These strings are terminated, due to a Linux "feature", by the
string "//char(0)". There are also several character string manipulation routines that can be used produce
more complex labels; these will be discussed later. Para is an array of 22 real numbers that control the
size and style of the plot. The simplest way to use this is to set all the elements ofpara to zero at the
beginning of a program. In this case, a line plot of a standard size will result.As discussed later, more
sophisticated plots can be done by setting various elements ofpara.

Example I
Let’s look at a simple example, a program to plot the functiony = ax2 + b

c program curve.f: plots y=a*(x**2)+b
dimension x(10),y(10),para(22)

c parameters
n=10
dx=1.0
a=2.
b=3.

c initialize control array to defaults
do 80 i=1,22
para(i)=0.

80 continue
c generate curve

do 85 i=1,n
x(i)=(i-1)*dx
y(i)=a*(x(i)**2) + b

85 continue
c plot curve

call nplot(n,x,y,’xlabel’//char(0),’ylabel’//char(0),
x’nplot example’//char(0),para)

stop
end

The program is simple: we set thepara array to zero, generate then points in thex andy arrays, and
call nplot.

-2-

Using nplot
To compile the program and name it “curve”, we invoke the fortran compiler using thenplotoption:

f77-s -O curve.f -lnplot -o curve

We can then run the program by simply typing

curve

Programs containing thenplot routines produce a file calledpltfil The output plotfile, called "pltfil"
can be converted to postscript using

bpen -v -t pltfil > pltfil.ps

which is aliased as "psmake". To plot this file on the laser printers, use

lpr pltfil.ps

and to preview the plot on a workstation use the command

xv pltfil.ps

Line and Point Plots
Tw o different plot types are available: aline plot, which connects the points in thex andy arrays,

and a point plot, which puts a single symbol at each point.The plot type is controlled bypara(13).
Para(13) = 0.0 produces a line plot.Positive values ofpara(13) give a character plot using the character
specified by the ASCII value ofpara(13) as the point symbol. (A commonly used value is 42.0, which is
an asterisk.)Negative values ofpara(13) produce a plot with solid polygonal point symbols.The cur-
rently defined symbols are:

-1.0: upward-pointing equilateral triangle
-2.0: downward-pointing triangle
-3.0: rightward-pointing triangle
-4.0: leftward-pointing triangle
-5.0: square
-6.0: diamond
-7.0: hexagon

When making a character/point plot,para(14) controls the size of the point symbol. The default
value used whenpara(14) = 0.0 is rather large;para(14) = 4.0 produces good-looking plots.

Plot size
It is possible to change the size of the plot produced bynplot by changing the value ofpara(1) and

para(2). Thefirst element contains the x size of the plot in inches, and the second element controls the y
size. Ifeither of these is set to 0.0, the default size of 5.5 inches is used.

X and Y Range
Normally, on the first call tonplot, the plot is scaled so that the array to be graphed will just fit

within the plotting rectangle.To change this (e.g.if you want to plot a bigger curve later), you can set the
x and y ranges of the plot before callingnplot. Para(3) andpara(4) are the x- and y-coordinates of the
lower-left corner of the plot, andpara(5) andpara(6) are the coordinates of the upper-right corner. After
the first call tonplot, these numbers should not be changed while the same graph is being drawn.

Note that it is possible to have para(3) > para(5) or para(4) > para(6), that is, to have the values
decrease from left to right or bottom to top.This could be used to plot depth increasing downward, for
example.

-3-

Labeling Plots
The simplest form of plot labeling available is that produced by the nplot call itself.Thexlabel, yla-

bel, and title strings are put beneath, to the left of, and above the plot, respectively. In addition, there is
are two routines,nlabel andplabel that can be used to place additional label strings on a plot.They are
called as follows:

call nlabel(xp, yp, string, para)
call plabel(xp, yp, string, para)

string is a character string, andpara is the same 22 element real array that was used in an earliernplot
call. For nlabel xp andyp are the x- and y-coordinates,in inchesfrom the lower-left corner of the plot, of
the point where the lower-left corner of the first character of the label string will be plotted.For plabel
xp andyp are the x- and y-coordinates,in the units of the plot itself, of the point where the lower-left cor-
ner of the first character of the label string will be plotted.nplot mustbe called at least once beforenla-
bel or plabel are used.

There are several character-string manipulation routines provided as part of the nplot package.
These routines all handle FORTRAN character strings that are declared by a statement like:

character*40 label

where, in this case, 40 is the length of the string, andlabel is the variable name.The routines are as called
as follows:

call conzro(s, m)
call const(s, t)
call conum(s, x, p)

conzro initializes a strings of lengthm, and should be used before anything else is done to the string.
constappends a string constantt to the strings. conum appends a decimal number, x, to p decimal places,
to the strings. The size of characters used for labels is controlled bypara(11).

These ideas are illustrated by the example below:

-4-

c program curve2.f : plots both
c y=a*(x**2)+b as a line plot and y= a*x + b as a point plot
c also demonstrates labeler

character lab(40)
dimension x(10),y(10),yy(10),para(22)

c parameters
n=10

dx=1.0
a=2.
b=3.

c initialize control array to defaults
do 80 i=1,22
para(i)=0.

80 continue
c generate line and curve

do 85 i=1,n
x(i)=(i-1)*dx
y(i)=a*x(i)**2 + b
yy(i)=a*x(i) + b

85 continue
c plot curve

call nplot(n,x,y,’x’//char(0),’y’//char(0),
x’nplot example’//char(0),para)

c change control array to plot points
para(13)=42.
para(14)=8.

c plot line
call nplot(n,x,yy,’ ’,’ ’ ,’’,para)

c generate label
call conzro(lab,40)
call const(lab,’ y =’//char(0))
call conum(lab,a,2)
call const(lab,’*x + ’//char(0))
call conum(lab,b,2)
call const(lab,’ y= ’ //char(0))
call conum(lab,a,2)
call const(lab,’ x**2 + ’//char(0))
call conum(lab,b,2)

c plot label
call nlabel(0.,-.9,lab,para)
stop
end

Fancier things
nplot can do much more, including fill regions with patterns or shading, and make color plots. For

full details, use the online manual by typing
man nplot

or get a hard copy by typing
man -t nplot

