
Bayes and BOGSAT: Issues in When and
How to Revise Earthquake Hazard Maps

INTRODUCTION

Recent large earthquakes that caused ground shaking larger
than anticipated have generated interest in how to improve
earthquake hazard mapping. Issues under discussion include
how to evaluate maps’ performance, how to assess their uncer-
tainties, how to make better maps, and how to best use maps
given their limitations.

An important question is what to do after an earthquake
yielding shaking larger than anticipated. Hazard mappers have two
choices. One is to regard the high shaking as a low-probability
event allowed by the map, which used estimates of the probability
of future earthquakes and the resulting shaking to predict the
maximum shaking expected with a certain probability over a
given time (Hanks et al., 2012; Frankel, 2013). The usual choice,
however, is to accept that high shaking was not simply a low-
probability event consistent with the map, and revise the map to
show increased hazard in the heavily shaken area (Fig. 1).

Whether and how much to revise a map is complicated,
because a new map that better describes the past may or may not
better predict the future. For example, increasing the predicted
hazard after an earthquake on a fault will make better predictions
if the average recurrence time is short compared to the map’s
time window but will overpredict future shaking if the average
recurrence time is much longer than the map’s time window.

BAYES’ RULE

For insight into whether and how to remake a hazard map, imag-
ine tossing a coin, which comes up heads four times in a row.
How likely do you think it is to come up heads on the next toss?
You started off assuming that the coin is fair—equally likely to
land heads or tails. Should you change that assumption?

Either choice runs a risk. If the coin is severely biased, stay-
ing with the assumption that it is fair will continue to yield
poor predictions. However, if the coin is fair and the four heads
were just a low-probability event, changing to the assumption
that the coin is biased does a better job of describing what
happened in the past but will make your prediction worse.

Your choice would depend on how confident you were in
your assumption, prior to the tosses, that the coin was fair. If
you were confident that the coin was fair, you would not
change your model and continue to assume that a head or tail

is equally likely. However, if you got the coin at a magic show,
your confidence that it is fair would be lower, and you would be
more apt to change your model to one predicting a head more
likely than a tail.

A statistical approach that combines preconceptions with
observations to decide how to update forecasts as additional
information becomes available uses Bayes’ Rule (Rice, 2007).
In this formulation

revised or posterior probability

∝ likelihood of observations given the prior model

× prior probability

omitting a normalization. This starts by assuming an initial or
prior probability model based on information available prior to
the additional observations, calculating how likely the observa-
tions were given that model, and using the product as the re-
vised or posterior probability model to account for the
additional observations.

We can describe a coin’s probability of landing heads by a
parameter from 0 (always tails) to 1 (always heads) and re-
present our beliefs about the parameter by a probability distri-
bution. If, prior to observing the four heads, we are confident
the coin is fair or nearly fair, our prior probability distribution
is tightly clustered around 0.5 (although to allow surprises, it
assigns nonzero probability throughout the interval). If we
think the coin may be biased, our prior distribution would have
a much larger spread and might be skewed toward 0 or 1.

After some tosses, the revised model depends on both the
observations and the prior model. If we had high confidence
that the coin was fair, a few low-probability observations would
not change it much. However, if we had little confidence in the
prior model, these low-probability observations change it a lot.

In the Bayesian approach, probability represents our belief
in how a system works based on the information we have. This
probability is subjective, because given the little information we
know about the coin, we have no way to know the actual prob-
ability of a head on the next toss. Once we have chosen a
model, we can calculate this probability precisely. However,
because this probability assumes that the model is true, it also
is subjective and subject to revision after the next toss.

This view differs from the frequentist view in which an
event’s probability is the frequency in which it occurs in a large
number of trials. After a thousand independent tosses under
standard conditions, the fraction of heads would be a good
estimate of the probability of a head on the next toss. However,
because we only have four tosses, we factor in our preconcep-
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tions rather than automatically assume that four heads prove
that the probability of one in the next toss is near 1.

Although the Bayesian approach requires assuming a prior
probability distribution, this assumption’s effect is reduced as

more data become available, provided the prior distribution does
not assign zero probability to parameter values that include the
true state of nature. After enough observations, the posterior
distribution does not depend on the assumed prior distribution.

▴ Figure 1. (top) Japanese seismic-hazard maps before and after the 2011 Tohoku earthquake. The predicted hazard has been increased
both along the east coast, where the 2011 earthquake occurred, and on the west coast. (http://www.j‑shis.bosai.go.jp/map/?lang=en;
last accessed December 2014.) (bottom) Comparison of successive Italian hazard maps (Stein et al., 2013). The 1999 map was updated to
reflect the 2002 Molise earthquake, and the 2006 map will likely be updated after the 2012 Emilia earthquake.
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EARTHQUAKE PROBABILITIES

Seismologists often approach estimating earthquake hazards in
the spirit of Bayes’ Rule, because this involves assuming prob-
ability models based on limited data and then using new data
to improve them (Marzocchi and Jordan, 2014). To see this,
consider a simple example in which we assume that the prob-
ability of a large earthquake on a fault is described by a Poisson
process with parameter λ � 1=T , corresponding to an average
return time of T years. Following Campbell (1982), we re-
present our uncertainty about λ using a gamma distribution
with mean μ and standard deviation σ as our prior probability
distribution. If an earthquake occurs only one year after the
last, the prior distribution is updated to the posterior distribu-
tion, and the prior mean μ updates to the posterior mean μ′ �
μ�1� σ2=μ2�=�1� σ2=μ� (Rice, 2007).

Consider μ to be specified as 0.02, that is T � 50 yrs. If
we are highly confident about λ when the forecast is made, σ is
small, so the posterior mean μ′ and prior mean μ are close. We
treat the new observation that did not fit the model well as a rare
event that does not change our preconception much. However,
if we were uncertain that λ would be near the prior mean μ, σ is
large so the new observation changes our view, making the
posterior mean very different (larger) than the prior mean.

Figure 2 shows how the updated forecast, described by the
posterior mean, increasingly differs from the initial forecast
(prior mean) when the uncertainty in the prior distribution is
larger. The less confidence we have in the prior model, the
more a new datum can change it.

This example is useful because inferring earthquake prob-
abilities, which are crucial inputs for hazard mapping, is very
difficult given the poorly understood faulting process and the
limitations of the earthquake record (Savage, 1994; Parsons,
2008). It is unclear whether to assume earthquake recurrence
is described by a Poisson process with no memory, so the prob-
ability is constant with time, or by time-dependent models
based on an earthquake cycle in which the probability is small
shortly after the past one, and then increases. Numerical sim-
ulation shows that these two are difficult to distinguish even in
a simple case (Stein and Stein, 2013a). Moreover, using a time-
dependent model requires choosing many parameters that are
poorly constrained by the available earthquake history.

From a statistical view, Stark and Freedman (2003) con-
cluded that earthquake probability estimates are “shaky.” In
their view, “the interpretation that probability is a property of
a model and has meaning for the world only by analogy seems
the most appropriate.… The problem in earthquake forecasts is
that the models have not been tested against relevant data. In-
deed, the models cannot be tested on a human time scale, so
there is little reason to believe the probability estimate.” Savage
(1991) concluded that earthquake probability estimates for
California are “virtually meaningless” and that it would be
meaningful only to quote broad ranges, such as low (<10%),
intermediate (10%–90%), or high (>90%). In other words, it
seems reasonable to say that earthquakes of a given size are

more likely on some faults than others, but quantifying this
involves large uncertainty.

HAZARD MAPS

The earthquake probability example illustrates the challenge for
hazard maps: choosing hundreds or thousands of parameters to
predict the answers to four questions over periods of 500–
2500 yr: Where will large earthquakes occur? When will they
occur? How large will they be? How strong will their shaking be?

Some of the parameters required are reasonably well
known, some are somewhat known, some are essentially un-
known, and some may be unknowable (e.g., Stein et al., 2012).
As a result, mappers combine data and models with their sense
of how the earth works. Stark and Freedman (2003) note that
this involves “geological mapping, geodetic mapping, viscoelastic
loading calculations, paleoseismic observations, extrapolating
rules of thumb across geography and magnitude, simulation, and
many appeals to expert opinion. Philosophical difficulties aside,
the numerical probability values seem rather arbitrary.”

Such models, which involve subjective assessments and
choices among many poorly known or unknown parameters,
are sometimes termed BOGSATs, from “Bunch Of Guys Sitting
Around aTable” (Kurowicka and Cooke, 2006). Not surprisingly,
sometimes the resulting maps do well at predicting what occurs
in future earthquakes, and sometimes they do poorly. However, at
this point, there is no way to avoid BOGSAT. Although some
parameters could be better estimated, and knowledge of some will
improve as new data and models become available, major uncer-
tainties seem likely to remain (Stein and Friedrich, 2014).

Nonetheless, despite their large uncertainties, hazard maps
have some useful information. From a mitigation policy stand-
point, inaccurate hazard (and loss) estimates are still useful unless
they involve gross misestimates (Stein and Stein, 2013b). For
example, a highway department would likely use its limited funds
to preferentially strengthen bridges in predicted high-hazard areas.

▴ Figure 2. Sensitivity of updated forecast of λ, initially assumed
to equal 0.02, to assumed prior uncertainty. The lower our confi-
dence in the initial forecast, the more the new datum changes it.
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In our view, one should consider the BOGSAT process
from a Bayesian perspective. This recognizes that the predicted
hazard reflects mapmakers’ view of the world based on their
assessment of diverse data and models, and that when and
how maps are revised once new data become available depends
on the mapmakers’ preconceptions. Because this is the case,
how can it be done better?

At a fundamental level, we need to learn more about when
and how revising maps makes them better or worse predictors
of the future. In some cases revisions should make the map
work better, and in others, worse. In particular, raising the pre-
dicted hazard where a large earthquake recently occurred may
improve the match of the model to past data (though this is
rarely quantified using a previously defined metric) but degrade
its fit to future events.

On a working level, we suggest several changes to current
procedures.

First, maps should specify what they seek to predict and how
their performance should be measured. Various metrics can be
used, so users can know what the mappers’ goals are and be able
at later time to assess how well the map met them. For example,
how well did the map perform compared to one that assumed a
much smoother variation in the predicted hazard (Geller, 2011)?

Second, hazard map documentation should list the param-
eters used and estimates of their uncertainties. Often much
of this information is available in the documentation (e.g.,
Field et al., 2008). In particular, weights assigned to logic tree
branches are a discretized version of the prior probability
density function assumed for that parameter. It would be useful
to list model assumptions in a consistent form to make changes
between successive maps easier to identify and discuss.

Third, estimates of the expected uncertainty in the pre-
dicted hazard should be presented and explained. Forecasts with
significant economic and policy implications typically present

▴ Figure 3. Presenting forecast uncertainties. (a) Forecast of Australian Gross Domestic Product (GDP) growth. Uncertainty bounds are
70% and 90% (Reserve Bank of Australia, 2013). (b) Forecast of U.S. Social Security expenditure as percentage of GDP (Congressional
Budget Office, 2010) (c) Comparison of the rise in global temperature by the year 2099 predicted by various climate models. For various
carbon emissions scenarios, for example, B1, the vertical band shows the predicted warming (Intergovernmental Panel on Climate
Change [IPCC], 2007). (d) Comparison of earthquake hazard, described as peak ground acceleration as a percentage of the acceleration
of gravity expected with 2% risk in 50 yr, predicted by various assumptions for two sites in the central United States (Stein et al., 2012).
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uncertainties (Fig. 3). Although forecasts sometimes miss their
targets (Stein and Stein, 2014), uncertainty estimates are still
useful. This would involve generating hazard curves and maps
for different parameter values within their assumed uncertain-
ties. The resulting range of estimates could be presented via un-
certainty maps or tabulations at sites. These uncertainties could
be factored in policy making, as is done for other forecasts.

Fourth, changes in parameter values between successive
maps should be listed and explained. Some will likely reflect
what happened in earthquakes after the map was made whereas
others will reflect data not used in the earlier map, because they
were not recognized, not appreciated, or unavailable. The cri-
teria used to decide when parameters were changed should be
defined (Ramsey, 1926).

Deciding when and how to revise hazard maps would
combine Bayes and BOGSAT. Conceptually, changing param-
eters would reflect Bayes’ Rule, because those previously
thought to have greater uncertainty would be most easily
changed by new data or ideas. Operationally, because most
parameters are estimated via a combination of data, models,
and assumptions, the actual values would come from BOGSAT
rather than explicit calculation. Even so, the Bayesian approach
would add value because it is systematic. If BOGSAT leads to
big changes in the map, one can assess what that implies about
prior confidence in the forecasts.

This approach would give users information about the un-
certainties to make better decisions. Meteorologists (Hirschberg
et al., 2011) have adopted a goal of “routinely providing the
nation with comprehensive, skillful, reliable, sharp, and useful
information about the uncertainty of hydrometeorological fore-
casts.” Although seismologists have a tougher challenge and a
longer way to go, we should try to do the same.
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