Concise Photochemical Synthesis of the Antimalarial Indole Alkaloid Decursivine

Mascal, M.; Modes, K.V.; Durmus, A. Angew. Chem. Int. Ed. 2011, 50, early view.

Protecting-Group-Free Total Synthesis of (E)- and (Z)-Alstoscholarine

Gerfaud, T.; Xie, C.; Neuville, L.; Zhu, J. Angew. Chem. Int. Ed. 2011, 50, 3954-3957.

Roxanne Atienza Short Literature Presentation April 18, 2011

Concise Photochemical Synthesis of the Antimalarial Indole Alkaloid Decursivine

Mascal, M.; Modes, K.V.; Durmus, A. Angew. Chem. Int. Ed. 2011, 50, early view.

A four-step synthesis of the extracyclic, antimalarial indole natural product decursivine is described starting from commercial piperonyl bromide and serotonin (see scheme). A photoinitiated reaction cascade involving indole radical cation formation,

rearrangement, radical recombination, rearomatization, elimination, and diastereoselective auto-acid-catalyzed closure of the dihydrofuran ring combine in a single step to conclude this remarkably efficient synthesis.

Mark Mascal

Kyle Modes

Asuman Durmus

PhD., University of London, Imperial College Postdoctoral Fellow, University of Strasbourg, France Lecturer, Loughborough University, UK Lecturer, University of Nottingham, UK Donald J. Cram Teacher-Scholar and Visiting Professor, UCLA Appointed to faculty, UC Davis, 2003-present

Decursivine

isolated from *Rhaphiophora decursiva*extracyclic indole alkaloid
biological activity: 4.4 microg/mL against chloroquinine-resistant malaria parasite *Plasmodium flaciparum*

Decursivine

Previous Synthesis by Leduc and Kerr 2007

20 steps from *p*-aminophenol 3% overall yield

Mascal Retrosynthesis

Witkop cyclization

4 steps from piperonyl bromide!

Forward Synthesis

Witkop Reaction

Formation of Decursivine

Protecting-Group-Free Total Synthesis of (E)- and (Z)-Alstoscholarine

Gerfaud, T.; Xie, C.; Neuville, L.; Zhu, J. Angew. Chem. Int. Ed. **2011**, 50, 3954-3957.

Looking for hidden symmetry:

Jieping Zhu

Jieping Zhu, Director of Research 1st class at CNRS and Full professor of organic chemistry at the Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

- Born in 1965 in Hangzhou, P. R. China
- B.Sc., Hanzhou Normal University in 1984
- M.Sc., Lanzhou University in 1987 (Prof. Y.-L. Li)
- Ph.D., Université Paris XI in 1991 (Prof. H.-P. Husson and Prof. J.-C. Quirion)
- Post-doct., Texas A & M University, USA (Prof. Sir D. H. R. Barton)

Awards

- CNRS bronze medal (1996)
- French Chemical Society SFC-Acros award (1999)
- AstraZeneca Award in Organic Chemistry (UK, 2002)
- Japan Society for Promotion of Science (JSPS) Senior research fellow (2002)
- Prix EMILE JUNGFLEISCH of French Academy of Sciences (2003)
- National Science Foundation Outstanding Young Oversea Scientist award (China, 2003)

Thibaud

Gerfaud

- Liebig Lectureship of the German Chemical Society (2004)
- Novartis Chemistry Lecture Award (Switzerland, 2008)
- CNRS silver medal (2009)
- Award of the Organic Chemistry Division of the French Chemical Society (DCO-SCF) (2010)

Alstoscholarine

 isolated from Alstonia scholaris, traditional medicinal plant in South Asia in 2007

 pentacyclic structure
 bridged [3.1.3] bicycle, fused indole ring and pyrrole ring
 no known biological activity to date

Alstoscholarine

Chunsong

Xie

Luc Neuville

Retrosynthetic Breakdown

Forward Synthesis

Forward Synthesis

The End

н

∕́́́́́́Н CO₂Me

Me

DMF, POCI3, DCE, rt

Vilsmeier-Haack

1,1-bis(phenylthio)ethane, [Cp₂TiCl₂] (10 equiv.), $P(OEt)_3$ (20 equiv.), Mg (12 equiv.) 4 A MS, THF, 70 °C, 6h

Ethylidenation

H CO₂Me

31 % over 2 steps

9 % over 2 steps