Covered Ideas

- Solar system observations
 - diversity in object types: giants, terrestrial, moons, KBOs, asteroids
- Exoplanet observations
 - Observational techniques, various observational biases
- Orbital dynamics
 - Basic equations, resonances, stability, evolution in mass losing star, etc.

- Planet formation
 - Protoplanetary disks
 - Passive
 - Steady state acretion
 - Core accretion scenario
 - GI model

- Planet formation
 - Core accretion scenario
 - Dust (µm) -> rocks (cm m)
 - collisional growth, problem of the radial drift speed
 - Rocks (cm-m) -> planetesimals (1-10 km)
 - Goldreich-Ward mechanism
 - Gravitational instability-Toomre criteria
 - Streaming instability
 - Turbulance
 - Planetesimals -> rocky planets/planetary cores
 - Collisional growth
 - strength-dominated vs gravity-dominated
 - isolation mass, coagulation equation (mass-spectra)
 - Gas giant formation
 - Accretion of atmosphere

- After planet formation
 - Migration
 - Type I
 - Impulse approximation picture based on Lin & Papaloizou (1979)
 - Gravity torques, dependence on Σ-profile, T-profile, magnetic field
 - Lindblad and coorbital resonances
 - Type II
 - Tidal torques after gap opening
 - Slower than Type I
 - Type III
 - Runaway coorbital migration due to asymmetries in coorbital region

Planet-Planet Scattering

A Simulation of Planet-Planet Scattering in the Upsilon Andromedae Planetary System

Diameters of planets have been greatly exaggerated for visibility

Planet-Planet Scattering Eccentric Giants

Planet-Planet Scattering High Inclination

Triaud et al. 2011

Planet-Planet Scattering

Planet-Planet Scattering

Chatterjee et al. 2008

Chatterjee et al. 2008

Planet-Planet Scattering Inclinations

Planet-Planet Scattering Inclinations

Planet-Planetesimal Scattering Analytical Expectations

- Planet scatters planetesimal
 - $da/a \sim dm/m_p$ (Can you show this assuming conservation of angular momentum?)
 - \bullet $\,$ For order one change the total mass in planetesimals needs to be ~ planet mass $\,$
 - Much larger change is expected in the planetesimal disk and planetesimal orbits
 - Compared to planet-planet scattering changes are slow and less violent
 - Empirical evidence in the Solar system that this has occured at some point.

Planet-Planetesimal Scattering Nice Model 2

- Giant planets were close to each other
- Overlapping gaps
- Trapped in some resonance (3:2) leads to excited eccentricity
- Late instability in the planetesimal disk due to this eccentricity
 - Late heavy bombardment
- Outward migration due to Jupiter-Saturn mass ratio

Planet-Planetesimal Scattering Nice Model 2

r (units of Jupiter semi major axis)

Morbidelli & Crida 2007

Grand Tack model (Walsh et al. 2011)

Grand Tack model (Walsh et al. 2011)

Grand Tack model (Walsh et al. 2011)

T= 100.000 ky

Grand Tack model (Walsh et al. 2011)

T= 120.000 ky

Grand Tack model (Walsh et al. 2011)

