Final Exam

AST6112: Fall 2003
December 9, 2013
Full Marks 120
Weight towards grade: 30%

Full Name:

1. Short answer type questions based on student presentations. (Total 15)
(a) Choose one. Typical TTV magnitude for the KPCs is of \sim : 1
i. seconds.
ii. minutes.
iii. hours.
iv. days.
v. months.
(b) Choose one. According to the analysis of Adams 2010, the birth cluster of the Sun likely had about N stars, where N is between:
i. 10 and 10^{2}.
ii. 10^{2} and 10^{3}.
iii. 10^{3} and 10^{4}.
(c) Name two moons of Saturn.
(d) Give an example of a known exo-planetary system with planets in the habitable zone.
(e) Circle all that are correct. Eccentric giant planets are likely created via:
i. planet-planet scattering.
ii. Kozai oscillations due to a distant highly inclined companion.
iii. Secular chaos.
iv. Type I migration.
v. Type II migration.
vi. planet-planetesimal scattering.
(f) Choose one. A clear observational signature of a debris ring around a star is:
i. a UV excess.
ii. an IR excess.
iii. a bimodal spectral energy distribution.
(g) Choose all that are correct.
i. The size distribution in the TNOs can be well approximated by a power law.
ii. The typical sizes of the TNOs are expected to be larger than the asteroids.
iii. The TNO binaries have larger semimajor axes compared with asteroid binaries.
iv. Size distributions for both asteroids and TNOs are likely results of collisional modifications.
(h) Choose one. Obliquity of Venus is about:
i. 7.31°.
ii. 54.5°.
iii. 177.4°.
iv. 97.86°.
(i) In a standard steady accreting disk around a star of mass M_{\star}, at a heliocentric distance r,
sound speed $c_{s} \sim M_{\star}^{3 / 20} r^{-9 / 20}$,
and surface density $\Sigma \sim M_{\star}^{1 / 5} r^{-3 / 5}$.
If two stars have a mass ratio $M_{1} / M_{2}=2$ and all else is kept fixed, find the ratio of the heliocentric distances r_{1} / r_{2} where the disks can become Toomre unstable.
2. In this problem we will use simple assumptions to infer expected terrain features on self gravitating bodies.
(a) Assuming hydrostatic equilibrium find an expression for the expected ratio of heights, $H_{\text {Mars }} / H_{\oplus}$, between the highest stable mountains on Mars $\left(H_{\text {Mars }}\right)$ and Earth $\left(H_{\oplus}\right)$. For simplicity, assume that the average densities (ρ) of the rocks in the Earth and Mars mountains are equal. Further assume that the tensile strengths of the Earth and Mars surfaces are equal. Also assume that ρ is not z-dependent.
(b) Show that if you assume that gravitational acceleration g is not z dependent, then your estimated ratio will have an error $\sim\left(\frac{H_{\oplus}}{R_{\oplus}}-\frac{H_{\text {Mars }}}{R_{\text {Mars }}}\right)$. Here, R_{\oplus} and $R_{\text {Mars }}$ are the average radius of Earth and Mars, respectively.
(c) Based on your answers in the previous parts, which term in the error derived above will dominate?

Hint: You may want to use the following identity based on binomial expansion.
$(1+x)^{n}=1+n x+\mathcal{O}\left(x^{\geq 2}\right)$ for all rational n.
You may also need to assume that $H / R \ll 1$.
3. Please note that this question should be taken with humor and no religious message is intended. This calculation is well known and first appeared in Applied Optics in the 70's. We base our problem on two passages from the Bible.
(Total 20) "Moreover, the light of the moon shall be as the light of the sun and the light of the sun shall be sevenfold as the light of seven days." - Isaiah 30:26, description of the Heaven.
"But the fearful and unbelieving... shall have their part in the lake which burneth with fire and brimstone." - Revelations 21:8, description of Hell.
(a) Derive an expression for the equilibrium temperature of the Earth as a function of albedo A_{b}, emissivity ϵ, radius R_{\oplus}, and distance from the Sun r.
(b) The first statement quoted above essentially means that Heaven receives $7 \times 7=49$ times more radiation flux compared to the Earth. What is the equilibrium temperature of Heaven assuming $A_{b}=0.4, \epsilon=1$, and that Heaven's radius is $=R_{\oplus}$?
(c) According to the quoted information, which is hotter, Heaven or Hell?

Hint: Boiling point of brimstone (Sulfur) is 444.6° C. Hell has a lake of that.
4. For this test assume ISON has an angular velocity $\Omega=2.8 \times 10^{-4} \mathrm{~s}^{-1}$ at its perihelion $q=0.01 \mathrm{AU}$. Also assume that its orbit is not perturbed by any of the solar system planets. Find the following: (Total 30)
(a) What is the orbital eccentricity?
(b) What is the aphelion distance?
(c) What is the angular speed at aphelion?
(d) What is the period?
(e) If right after perihelion passage the apparent brightness of ISON is $\sim 3 \times 10^{-12} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2}$, find an upper limit of its brightness at aphelion assuming no mass is lost.

Reminders:

(i) Remember Kepler's laws.
(ii) The speed at any r along an ellipse is given by $v^{2}=G M\left(\frac{2}{r}-\frac{1}{a}\right)$, where, a is the semimajor axis.
(iii) The apparent brightness of a comet depends both on the distance from the star and the distance from the Earth.
(iv) Typically, the brightness decreases with distance from the star faster than r_{\odot}^{-2}.
Hint: If, for some reason, you could not find the value of eccentricity in problem (a), assume $e=0.999995$ for the later parts. The values you obtain should be very similar to the real ISON properties with the exception that the comet is probably on an ejection trajectory after perihelion passage.
5. Through the following questions we will derive the atmospheric structure of Earth, and figure out what happens to a meteorite during its fall.
(Total 35)
(a) What are the two major types of meteorites?
(b) What are the origins of the top three most numerous meteorites on Earth?
(c) What is the dominant heat transfer mechanism in Earth's troposphere?
(d) Find an expression for an altitude (z)-dependent temperature $T(z)$. For simplicity, assume troposphere has a constant lapse rate $\frac{d T}{d z}=-\mathcal{L}$. Assume ground temperature is T_{0}.
(e) Assuming hydrostatic equilibrium, show that the expression for a z-dependent pressure can be written as follows:
$P(z)=P_{0}\left(1-\mathcal{L} \frac{z}{T_{0}}\right)^{g \mathcal{M} / R \mathcal{L}}$,
where, \mathcal{M} is the mean molecular weight of dry air, and g is the gravitational acceleration. You can assume that air behaves as an ideal gas.
Hint: You may need to use the ideal gas law $P V=n R T$, where, n is the number of moles. You will also need to use the expression you just derived for $T(z)$. You may also need to use the following identity:
$\int \frac{d x}{1-K x}=-\frac{1}{K} \ln (1-K x)$.
(f) From the ideal gas law eliminate V and find an expression for ρ as a function of P and T.
(g) Find the approximate air density at the tropopause, $z=20 \mathrm{~km}$. Use $T_{0}=300 \mathrm{~K}, P_{0}=10^{6}$ dyne $\mathrm{cm}^{-2}, \mathcal{L}=-6.5 \times 10^{-5} \mathrm{~K} \mathrm{~cm}^{-1}$, $\mathcal{M}=29 \mathrm{~g}$ mole $^{-1}, R=8.31 \times 10^{7} \mathrm{erg} \mathrm{K}^{-1} \mathrm{~mole}^{-1}$, and $g=981$ $\mathrm{cm} \mathrm{s}^{-2}$.
(h) Find an expression for the terminal velocity of a meteorite.

Hint: The drag force is given by $\left|F_{\text {drag }}\right|=\frac{C_{D} \rho A v^{2}}{2 m}$. Terminal velocity is reached when the acceleration is zero. Drag force always acts in the opposite direction of the velocity.
(i) Assume that a spherical meteorite of radius $R=10 \mathrm{~cm}$ and density $\rho_{m}=8 \mathrm{~g} \mathrm{~cm}^{-3}$ reaches terminal velocity v_{∞} at the tropopause. Find v_{∞}. Use $C_{D} \approx 0.1$.

List of Constants

All values are in CGS unless otherwise noted

\#Astronomical constants
$\mathrm{AU}=1.496 \mathrm{e} 13$
$\mathrm{pc}=3.086 \mathrm{e} 18$
lightyear $=9.463 \mathrm{e} 17$
Msun $=1.99 \mathrm{e} 33$
Rsun $=6.96 \mathrm{e} 10$
Lsun $=3.9 \mathrm{e} 33$
Tsun $=5.780 \mathrm{e} 3$
Solar magnitude $=-26.73$
Solar absolute magnitude in $\mathrm{B}=5.48$
Solar absolute magnitude in $\mathrm{V}=4.83$
spinSun $=25$. days

\#Planets

\#Masses of planets

MMercury $=0.3302 \mathrm{e} 27$
MVenus $=4.8685 \mathrm{e} 27$
MEarth $=5.9736 \mathrm{e} 27$
MMars $=0.64185 \mathrm{e} 27$
MJupiter $=1.8986 \mathrm{e} 30$
MSaturn $=5.6846 \mathrm{e} 29$
MUranus $=86.832 \mathrm{e} 27$
MNeptune $=102.43 \mathrm{e} 27$
MPluto $=1.27 \mathrm{e} 25$
\#Radii of planets
RMercury = 2440e5
RVenus $=6051.8 \mathrm{e} 5$
REarth $=6371 \mathrm{e} 5$
RMars $=3389.9 \mathrm{e} 5$
RJupiter $=69.911 \mathrm{e} 8$
RSaturn $=57.316 \mathrm{e} 8$
RUranus $=25054.86 \mathrm{e} 5$
RNeptune $=2.4764 \mathrm{e} 9$

\#Density of planets

rhoMercury $=5.427$
rhoVenus $=5.204$
rhoEarth $=5.515$
rhoMars $=3.933$
rhoJupiter $=1.326$
rhoSaturn $=0.6873$
rhoUranus $=1.318$
rhoNeptune $=1.638$
\#Eccentricity of planets
eMercury $=0.205$
eVenus $=0.007$
eEarth $=0.0168$
eMars $=0.0934$
eJupiter $=0.0485$
eSaturn $=0.055$
eUranus $=0.046$
eNeptune $=0.009$
INeptune $=1.770$
\#Semimajor axes of planets in AU
aMercury $=0.387$
aVenus $=0.72333201$
aEarth $=1$.
aMars $=1.52368946$
aJupiter $=5.2027584$
aSaturn $=9.5428244$
aUranus $=19.19206$
aNeptune $=30.06893$
\#Spin periods of planets (day)
spinEarth $=0.997$
spinMars $=1.026$
spinJupiter $=0.414$
spinSaturn $=0.44$
spinUranus $=0.718$
spinNeptune $=0.671$
\#Inclination of planets degree w.r.t. Earth's orbit
IMercury $=7.005$
IVenus $=3.39447$
IEarth $=0.0$
IMars $=1.84973$
IJupiter $=1.3033$
ISaturn $=2.4889$
IUranus $=0.773$

\#Universal constants

Planck constant $\mathrm{h}=6.6260755 \mathrm{e}-27$
Speed of light $\mathrm{c}=2.99792458 \mathrm{e} 10$
$\mathrm{k}=1.380658 \mathrm{e}-16$
hbar $=1.05457266 \mathrm{e}-27$
$\mathrm{G}=6.67259 \mathrm{e}-8$
$\sigma=5.67051 \mathrm{e}-5$
Rydberg constants $=2.1798741 \mathrm{e}-11$
Hydrogenmass $=1.67 \mathrm{e}-24$

\#Conversion of units

$\mathrm{km}=100000$
year $=31556925.9936$
day $=86400.0$
Angstrom $=1 \mathrm{e}-8$
hour $=3600$.

