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1. Consider that you are going to write a large survey proposal for tran-
siting planet search. What are the considerations you should keep in
mind about the following and why? (Total 15)

(a) Field of view. 2

(b) Stellar properties. 4

(c) Duration of search. 2

(d) Frequency of data collection. Note: Remember, you cannot collect
and send infinite amount of data to Earth. 2

(e) If you want to detect an Earth-like planet around a Sun-like star,
what should be your detector precision, and duration of search? 3

(f) If you are interested in detecting transit timing variation signals
how should you modify the frequency of data collection? 2
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2. Here we will derive the vertical structure of a passive circumstellar disk
using the hydrostatic equilibrium condition. (Total 10)
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FIG. 9 Geometry for calculation of the vertical hydrostatic
equilibrium of a circumstellar disk.

above this critical rate to two orders of magnitude be-
low, so it is oversimplifying to assume that protoplan-
etary disks are either always passive or always active.
Rather, the dominant source of energy for a disk is likely
to be a function of both time and radius. We expect
internal heating to dominate at early epochs and / or
small orbital radii, while at late times and at large radii
reprocessing dominates.

1. Vertical structure

The vertical structure of a geometrically thin disk (ei-
ther passive or active) is derived by considering vertical
hydrostatic equilibrium (Figure 9). The pressure gradi-
ent,

dP

dz
= −ρgz (19)

where ρ is the gas density. Ignoring any contribution
to the gravitational force from the disk (this is justified
provided that the disk is not too massive), the vertical
component of gravity seen by a parcel of gas at cylindrical
radius r and height above the midplane z is,

gz =
GM∗
d2

sin θ =
GM∗
d3

z. (20)

For a thin disk z " r, so

gz # Ω2z (21)

where Ω ≡
√

GM∗/r3 is the Keplerian angular veloc-
ity. If we assume for simplicity that the disk is vertically
isothermal (this will be a decent approximation for a pas-
sive disk, less so for an active disk) then the equation of
state is P = ρc2

s, where cs is the (constant) sound speed.
The equation of hydrostatic equilibrium (equation 19)
then becomes,

c2
s

dρ

dz
= −Ω2ρz. (22)

The solution is,

ρ = ρz=0e
−z2/2h2

(23)

where h, the vertical scale height, is given by,

h =
cs

Ω
. (24)
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FIG. 10 Geometry for calculating the temperature profile of
a flat, passive disk. We consider unit surface area in the disk
plane at distance r from a star of radius R∗. The axis of
spherical polar co-ordinates is the line between the surface
and the center of the star, with φ = 0 in the direction of the
stellar pole.

Comparing the thickness to the radius,

h

r
=

cs

vφ
(25)

where vφ is the local orbital velocity. We see that the
aspect ratio of the disk h/r is inversely proportional to
the Mach number of the flow.

The shape of the disk depends upon h(r)/r. If we pa-
rameterize the radial variation of the sound speed via,

cs ∝ r−β (26)

then the aspect ratio varies as,

h

r
∝ r−β+1/2. (27)

The disk will flare – i.e. h/r will increase with radius
giving the disk a bowl-like shape – if β < 1/2. This
requires a temperature profile T (r) ∝ r−1 or shallower.
As we will show shortly, flaring disks are expected to be
the norm, at least relatively close to the star.

2. Radial temperature profile

The physics of the calculation of the radial tempera-
ture profile of a passive disk is described in papers by
Adams & Shu (1986), Kenyon & Hartmann (1987) and
Chiang & Goldreich (1997). We begin by considering the
absolute simplest model: a flat thin disk in the equato-
rial plane that absorbs all incident stellar radiation and
re-emits it as a single temperature blackbody. The back-
warming of the star by the disk is neglected.

We consider a surface in the plane of the disk at dis-
tance r from a star of radius R∗. The star is assumed to
be a sphere of constant brightness I∗. Setting up spheri-
cal polar co-ordinates, as shown in Figure 10, the stellar
flux passing through this surface is,

F =

∫
I∗ sin θ cosφdΩ. (28)

We count the flux coming from the top half of the star
only (and to be consistent equate that to radiation from

Figure 1: Geometry for calculation of the vertical hydrostatic equilibrium of
a circumstellar disk.

(a) Using Figure ?? write down the vertical hydrostatic equilibrium
equation for a passive, non-self-gravitating disk around a star of
mass M?. 2
Hint: This equation should relate vertical pressure gradient, dP

dz
,

with density, ρ.

(b) Solve for the density structure in this disk. At the end of this
stage you should obtain ρ = ρ(z, h). Use h ≡ cs

Ω
, where Ω is the

angular velocity of the gas. 4
Hint: You may want to use the relation between pressure and
density: P = ρc2

s, where cs is the sound speed. You may use Ω is
close to Keplerian. You can also use z � r.

(c) What is the physical meaning of h? 1

(d) Assume that the temperature profile in the disk is T ∼ r−1/2.
Show that the disk will be flared. 3
Hint: How is T related to cs?
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3. In the core-accretion paradigm planets form by growing from dust
grains to fully formed planets. Describe the dominant physical pro-
cesses, growth mechanism, and size scales at the following distinct
stages of planet formation. (Total 30)

(a) Dust to rocks. 3

(b) Rocks to planetesimals. 3

(c) Planetesimals to rocky planets. 3

(d) Rocky planets to gas giants. 3

(e) During the growth stage between rocks to planetesimals, a serious
problem is the often referred loosely as the ”meter-size barrier”.
Describe what this is and what physical effect is responsible for
this. 3
In the following parts we will derive some important numbers
regarding this effect.

(f) Write down the radial component of the force equation for gas. 3
Hint: The pressure is force per unit area. What is momentum
due to radial pressure gradient dP

dr
? Momentum due to pressure

gradient should be a function of dP
dr

and density ρ. You should be
able to write down azimuthal gas velocity vφ,gas as a function of
star mass, M?, distance from star, r, and pressure gradient.

(g) Solve for the gas azimuthal velocity vφ,gas as a function of the
Keplerian velocity vK , the sound speed cs, and n, where P =

P0

(
r
r0

)−n
. P0 and r0 are normalization constants. Sound speed is

related to pressure and density by P = ρc2
s. 8

(h) What is the fractional difference between vφ,gas and vK assuming
cs/vK = 0.05, and n = 3? 2

(i) What is the relative velocity between decoupled particles traveling
in gas at a distance of 1 AU from a star of mass 1M�? 2
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4. After planets are fully formed, interactions between planets and the gas
disk lead to changes in the planets’ orbital properties. These changes
are regularly called migration since the planets move from their birth
places. (Total 10)

(a) What are the different types of disk-driven migration? 3

(b) What are the dominant mechanisms for driving each of the above
migration types? 4

(c) What disk properties can lead to outward migration via which
type of migration? 3
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5. After formation, planetary orbits can change via two major ways: planet-
gas disk migration, and planet-planet scattering. There are clear dif-
ferences in the observable final planetary orbital properties created via
either mechanism. The following questions relate to our understand-
ing of these two very different migration mechanisms and planet-planet
scattering. (Total 15)

(a) Compare the expected orbital properties of planets if they are
created via planet-disk migration vs planet-planet scattering. 4

(b) Planet-planet scattering is a chaotic process and there are very
few things that can be estimated analytically. This is one of the
few. Consider a two planet system. The inner and outer planet
masses are m1 and m2, respectively. The inner and outer planets
are orbiting at a semimajor axes a1 and a2, respectively. Write
down an expression for the maximum change in a2 possible via
scattering between the two planets. 7
Hint: Semimajor axis determines the orbital energy. For a max-
imum change in semimajor axis, you need the maximum allowed
change in orbital energy. Gladman stability criteria for two plan-

ets is δa/a > 2.4
(
m1+m2

M?

)1/3
, where δa is the mutual distance

between the planets, M? is the mass of the star.

(c) Now consider planet-planetesimal scattering. Assume that a planet
of mass mp is scattering with planetesimals of mass δm. Assume,
mp � δm. Show that to obtain δa

a
∼ 1 (order one change) the

total mass in the planetesimal disk must be at least ∼ mp. 4
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