Exoplanet around a Sun-like Star

Planet Detection Timeline

Exoplanet around a Sun-like Star

They are everywhere!

Diversity of Extrasolar Planets

New Theories of Planet Formation

Illustration by E. Chiang; Adaptations E. Ford

Hot Jupiters via Disk Migration

Hot Jupiters via

Planet Scattering + Tidal Circularization

Eccentric Giant Planets via Planet Scattering

Eccentricity Distribution Predicted by Planet Scattering

Many Planets
Three Planets

Juric \& Tremaine 2007
Chatterjee et al. 2007

Secular Evolution of Ups And

Ford, Lystad, Rasio 2005; see also Malhotra (2002), Chiang et al. (2002); Barnes \& Greenberg (2006); Veras \& Ford 2009

Measuring Exoplanet Inclinations

- Tidal dissipation in the planet rapidly damps eccentricity
- Search for planets with inclination excited by strong scattering (Chatterjee et al. 2008; Fabrycky \& Tremaine 2007; Nagasawa et al. 2007)

Stars \& Hot-Jupiter's can be Misaligned

Amaury Triaud; adapted from Winn et al. 2010

Launch of Kepler Mission

Frequency of Earth-like planets

 KeplerSolar Orbit

NASA/Burke et al. in prep

Sizes of Planet Candidates

As of January 7, 2013

+21\%

Super Earth-size - 816 (1.25-2 R_{\oplus})

+43\%

Earth-size - 351 (<1.25 R R_{\oplus})

$$
202 \text { - Jupiter-size, (6-15 } R_{\odot} \text {) }
$$

$$
\left.81 \text { - Larger, (> } 15 \mathrm{R}_{\oplus}\right)
$$

$$
+14 \%
$$

Hot Jupiters are Lonely

- 63 Hot Jupiters
- No other transiting planets
- No TTV signals
- Consistent with eccentricity excitation followed by tidal circularization
(Steffen et al. 2012 PNAS;
see Szabo et al. arxiv)

Hot Jupiters via

Planet Scattering + Tidal Circularization

Hot Jupiters via Disk Migration?

Orbital Resonances Among

 Multi-Planet Systems Disovered via RVs

Kepler-30: Coplanarity via Spot Crossings

Extremely Compact Multi-transiting Planetary Systems

Fabrycky et al. 2012

Extremely Compact Multi-transiting Planetary Systems

Higher solid density close to staridea of minimum mass extrasolar nebula (Laughlin et al. 2012, also see Hansen \& Murray 2012)

Inside-out planet formation
(Chatterjee \& Tan)

Extremely Compact Multi-transiting Planetary Systems

Chatterjee \& Tan 2013

Very Tightly Packed Planetary Systems

Kepler-36b\&c: Chaotic due to 29:34 and 6:7 MMRs!

Carter et al. 2012; Deck et al. 2012

Resonances in Kepler Multi-Planet Systems

- Rarer than in RV systems
- Predicted!
- Most near, but not in resonance
- Near resonant great for TTVs
- esp. closely spaced pairs!

Kepler's Near Resonant Systems

Fabrycky et al. 2012;
see also Rein et al. 2012; Ford \& Rasio 2008; Veras et al. 2012

Kepler's Near Resonant Systems

Rein et al. 2012; see also Ford \& Rasio 2008; Veras et al. 2012

Kepler's Near Resonant Systems

Rein et al. 2012; see also Ford \& Rasio 2008; Veras et al. 2012

Kepler's Near Resonant Systems

 resonant repulsion

Lithwick et al. 2012; see also Ford \& Rasio 2008; Veras et al. 2012

Eccentricities of Transiting Planets via Transit Duration Distribution

- Consistent w/ RV distribution
- Smaller planets have smaller eccentricities
- Subject to uncertainties in stellar properties (A. Moorhead+ 2011)

Testing Planet Formation Theory with Kepler

Orbital eccentricities, inclinations \& multiplicity are key probes of planet formation:

- Eccentricity distribution (+ stellar densities) \rightarrow Transit duration distribution
- Inclination distribution + Frequency of multiple planet systems (+ period distribution) \rightarrow

Frequency of multiply transiting systems \& transit duration variations

- Frequency of multiple planet systems + Eccentricity distribution (+ period distribution) \rightarrow Distribution of TTV signatures
One complex inverse problem!
(Observables, Desired Distributions, Both)

Planet Multiplicity \& Mutual Inclinations

Mean Number of Planets per Star (λ)

Period-Normalized Transit Duration Ratio

$$
\xi \equiv\left(D_{i n}\right.
$$

R. Morehead; see poster 343.04

R. Morehead in prep.; see also Fabrycky et al. 2012; Fang et al. 2012; poster 343.04

Testing Planet Formation Theory with Kepler

Orbital eccentricities, inclinations \& multiplicity are key probes of planet formation:

- Eccentricity distribution (+ stellar densities) \rightarrow Transit duration distribution
- Inclination distribution + Frequency of multiple planet systems (+ period distribution) \rightarrow

Frequency of multiply transiting systems \& transit duration variations

- Frequency of multiple planet systems + Eccentricity distribution (+ period distribution) \rightarrow Distribution of TTV signatures
One complex inverse problem!
(Observables, Desired Distributions, Both)

Long-Term TTVs

Kepler's Multiple Planet Systems

Kepler's Multiple Planet Systems

Kepler 48	Kepler 49	Kepler 50	Kepler 51	Kepler 52	Kepler 53	Kepler 54	Kepler 55	Kepler 56	Kepler 57
0	V	0		D	0	0	0		0
Kepler 4xb	$\mathrm{KO1}-248.03$	Kepler 50b	Kepler 51b	Kepler 52h	KOI-829,02	Kepler 54b	KOI-904.81	Kepler 56b	Kepler 57\%
				\bigcirc		0	0		0
Kepler 48c	Kepler 49b	Kepler S0c	Kepler Sle	Kepler 52c	Kepler 53b	Kepler Ste	KOI-904.04	Kepler 56e	Kepler $\mathbf{5 7}$
				\bigcirc		\bigcirc	0		
KOI-148.03	Kepler 498		KOI-620.02	KOI-775.03	Kepler 53e	KOI-886.93	KOI-904.05		

KOI-248.04

Kepker s5b

Kepler S5e

Kepler's Multiple Planet Systems

Kepler's Multiple Planet Systems

Kepler 5sb	Kepler 5\%	Kepler 60b	KO1-152b	K01-500.05	KOI-869.04	K01-877b	K01-880.04	K01-s88.02	KOI-15s9.04
	0			\bigcirc		\bigcirc	0		\bigcirc
Kepler S\%e	Kepler 5se	Kepler 601k	KOI-153e	KOI-500.03	K01-869.01	KOI-877e	KOI-8s0.03	K01-s8st	KO1-15ssb
				\bigcirc				\bigcirc	\bigcirc
		Kepler 6od	KOI-152.01	KOI-500.04	K01-869\%		KOI-8sob	KOI-s98c	KOI-158\%
									0
				KOI-501b	KOI-869c		KOI-ssoc		K01-15sy.n3
									\bigcirc
				KOI-S00k					K01-1589.05

How Common are TTVs?

- First 16 months of Kepler data (Ford+ 2012): - 39-175 TTV candidates
$-8 \%-18 \%$ of suitable KOls show TTVs - More for multis \& long period planets
- Planets Confirmed by TTVs: 73 of ~105
- Sensitivity to long-term TTVs grows ~t5/2
- Many more KOls w/ TTVs in extended mission

Super-Earths or Mini-Neptunes?

Future Prospects for Measuring Masses via TTVs

1 Earth-mass, 3:2MMR, Kp=13
2 Earth-mass, 3:2 MMR, Kp=13

Detecting Small Planets w/ Large TTVs

Ford+ 2012

Testing Planet Formation Theory with Kepler

Must combine many elements simultaneously:

- Detection efficiency/completeness
- Planetary systems (not just superposition of individual planets)
- Variety of observational constraints (e.g., RV, TTV, spectra, imaging, seismology)
- Observational uncertainties
- How planets were chosen for follow-up observations or more detailed analyses

Future Space Missions

Direct Imaging \& ALMA

Boley et al. 2012
ALMA: ESO/NAOJ/NRAO + HST: NASA/ESA

NASA, ESA, \& Kalas (UC, Berkeley \& SETI Institute)

Invite Students to Join the Hunt!

PlanetHunters.org

Invite Students to Join the Hunt!

PlanetHunters.org

Questions

Movie of Collapse \& Fragmentation

