Exoplanet around a Sun-like Star

Planet Detection Timeline

www.exoplanets.org

Exoplanet around a Sun-like Star They are everywhere!

Diversity of Extrasolar Planets

www.exoplanets.org

New Theories of Planet Formation

Illustration by E. Chiang; Adaptations E. Ford

Hot Jupiters via Disk Migration

Illustration Adapted from E. Chiang

Hot Jupiters via Planet Scattering + Tidal Circularization

Rasio & Ford 1996

Illustration adapted from E. Chiang

Eccentric Giant Planets via Planet Scattering

Rasio & Ford 1996; Weidenschilling & Marzari 1996

Illustration Adapted from E. Chiang

Eccentricity Distribution Predicted by Planet Scattering

Many Planets

Three Planets

Secular Evolution of Ups And

Ford, Lystad, Rasio 2005; see also Malhotra (2002), Chiang et al. (2002); Barnes & Greenberg (2006); Veras & Ford 2009

Measuring Exoplanet Inclinations

- Tidal dissipation in the planet rapidly damps eccentricity
- Search for planets with inclination excited by strong scattering (Chatterjee et al. 2008; Fabrycky & Tremaine 2007; Nagasawa et al. 2007)

Stars & Hot-Jupiter's can be Misaligned

Amaury Triaud; adapted from Winn et al. 2010

Launch of Kepler Mission

NASA/Kepter Mission/Wendy Stenzel

1993

199

Frequency of Earth-like planets

Kepler Solar Orbit

1609

NASA/Burke et al. in prep

Sizes of Planet Candidates

As of January 7, 2013

NASA / Burke et al. in prep

Hot Jupiters are Lonely

- 63 Hot Jupiters
- No other transiting planets
- No TTV signals
- Consistent with eccentricity excitation followed by tidal circularization

Hot Jupiters via Planet Scattering + Tidal Circularization

Rasio & Ford 1996

Illustration adapted from E. Chiang

Illustration Adapted from E. Chiang

Orbital Resonances Among Multi-Planet Systems Disovered via RVs

Fabrycky

Kepler-30: Coplanarity via Spot Crossings

Sanchis-Ojeda+ 2012

Extremely Compact Multi-transiting Planetary Systems

Fabrycky et al. 2012

Extremely Compact Multi-transiting Planetary Systems

Higher solid density close to staridea of minimum mass extrasolar nebula (Laughlin et al. 2012, also see Hansen & Murray 2012)

Inside-out planet formation (Chatterjee & Tan)

Fabrycky et al. 2012

Extremely Compact Multi-transiting Planetary Systems

Chatterjee & Tan 2013

Very Tightly Packed Planetary Systems

Kepler-36b&c: Chaotic due to 29:34 and 6:7 MMRs!

Resonances in Kepler Multi-Planet Systems

- Rarer than in RV systems

 Predicted!
- Most near, but not in resonance
- Near resonant great for TTVs

 – esp. closely spaced pairs!

Rein et al. 2012; Ford & Rasio 2008; Veras et al. 2012

Kepler's Near Resonant Systems

Kepler's Near Resonant Systems

Rein et al. 2012; see also Ford & Rasio 2008; Veras et al. 2012

Kepler's Near Resonant Systems

Rein et al. 2012; see also Ford & Rasio 2008; Veras et al. 2012

Kepler's Near Resonant Systems resonant repulsion

Lithwick et al. 2012; see also Ford & Rasio 2008; Veras et al. 2012

Eccentricities of Transiting Planets via Transit Duration Distribution

- Consistent w/ RV distribution
- Smaller planets have smaller eccentricities
- Subject to uncertainties in stellar properties (A. Moorhead+ 2011)

Testing Planet Formation Theory with Kepler

Orbital eccentricities, inclinations & multiplicity are key probes of planet formation:

- Eccentricity distribution (+ stellar densities) → Transit duration distribution
- Inclination distribution + Frequency of multiple planet systems (+ period distribution) → Frequency of multiply transiting systems & transit duration variations
- Frequency of multiple planet systems + Eccentricity distribution (+ period distribution) → Distribution of TTV signatures

One complex inverse problem! (Observables, Desired Distributions, Both)

Planet Multiplicity & Mutual Inclinations

Ragozzine

see also Lissauer+ 2011; Tremaine & Dong 2011; Fang et al. 2012

Period-Normalized Transit Duration Ratio

R. Morehead; see poster 343.04

R. Morehead in prep.; see also Fabrycky et al. 2012; Fang et al. 2012; poster 343.04

Testing Planet Formation Theory with Kepler

Orbital eccentricities, inclinations & multiplicity are key probes of planet formation:

- Eccentricity distribution (+ stellar densities) → Transit duration distribution
- Inclination distribution + Frequency of multiple planet systems (+ period distribution) → Frequency of multiply transiting systems & transit duration variations
- Frequency of multiple planet systems + Eccentricity distribution (+ period distribution) → Distribution of TTV signatures

One complex inverse problem! (Observables, Desired Distributions, Both)

0.04	enler-10b	Nonler-11b	Vooler-19h Kenler-20h	• KOLOGI 02 Kook	KOL 1102 04	Kanler-955 VOL-95	A 02 Kenler-77h	Vanlar-28h Vanlar	-90h Kanlar-90h	NOL-035 DA KOL	
Kep	ler 58	Kepler 5	9 Kepler 60	KOI-0152	KOI-0500	KOI-0869	KOI-0877	KOI-0880	KOI-0898	KOI-1589	
		•		۲			۲		۲	•	
Kep	er 58b	Kepler 590	Kepler 60b	KOI-152b	KOI-500.05	KOI-869.04	KOI-877b	KOI-880.04	KOI-898.02	KOI-1589.04	
		۲	۲	۲	٠	۲	۲	۲	۲	٠	
Kep	er 58c	Kepler 5%	Kepler 60c	KO1-152c	KOI-500.03	KOI-869.01	KOI-877c	KOI-880.03	KOI-898b	KO1-1589b	
			۲		۲	۲			۲		
			Kepler 60d	KOI-152.01	KOI-500.04	KO1-869b		KOI-880b	KOI-898c	KOI-1589c	
					۲					۲	
					KO1-500b	KOI-869c		KO1-880c		KOI-1589.03	
					۲					۲	
					KOI-500c			кериег ээс		KOI-1589.05	

How Common are TTVs?

- First 16 months of Kepler data (Ford+ 2012):
 <u>-39 175 TTV candidates</u>
 - -8% 18% of suitable KOIs show TTVs
 - More for multis & long period planets
- Planets Confirmed by TTVs: 73 of ~105
- Sensitivity to long-term TTVs grows ~t^{5/2}
 Many more KOIs w/ TTVs in extended mission

Super-Earths or Mini-Neptunes?

Eric Lopez

Future Prospects for Measuring Masses via TTVs

1 Earth-mass, 3:2 MMR, Kp=13

2 Earth-mass, 3:2 MMR, Kp=13

Detecting Small Planets w/ Large TTVs

Testing Planet Formation Theory with Kepler

Must combine many elements simultaneously:

- Detection efficiency/completeness
- Planetary systems (not just superposition of individual planets)
- Variety of observational constraints (e.g., RV, TTV, spectra, imaging, seismology)
- Observational uncertainties
- How planets were chosen for follow-up observations or more detailed analyses

Future Space Missions

Direct Imaging & ALMA

Boley et al. 2012 ALMA: ESO/NAOJ/NRAO + HST: NASA/ESA

NASA, ESA, & Kalas (UC, Berkeley & SETI Institute)

planethunters.org CLASSIEY **Invite Students to Join the Hunt!**

www.planethunters.org/classify#

Invite Students to Join the Hunt!

PlanetHunters.org

Questions

Movie of Collapse & Fragmentation