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ABSTRACT

As a result of wastewater injection from nonconventional oil
and gas production, the central and eastern United States expe-
rienced a dramatic increase in seismicity. To better characterize
the resulting hazard, the U.S. Geological Survey (USGS) began
producing one-year seismic-hazard models intended to capture
both natural and induced seismicity as of 2016. In its first year,
we found that the map performed very well, demonstrating
both a good match between the observed and expected number
of exceedances, and between observed and predicted shaking.
We repeat this analysis for the 2017 map, using “Did You Feel
It?” data to explore the map’s performance in different regions
of the country. We find that the 2017 model performed well,
but not as well as the previous year’s model. We explore the
likelihood of observing the performance seen in 2017, by sim-
ulating earthquake shaking realizations using the assumptions
of the 2017 hazard model, including a- and b-values, locations
of induced earthquakes, and ground-motion models (GMMs).
These simulations indicate a low likelihood of this decrease in
performance happening by chance if the assumptions in the
hazard model were appropriate. Hence, it is likely that the
USGS one-year seismic model’s performance reflects a reduc-
tion in wastewater injection rates, possibly due to regulatory
and economic pressures. Future models could benefit from bet-
ter modeling how seismic rates may change year-to-year with
variations in wastewater injection rates and locations, and
improved GMMs.

INTRODUCTION

Increases in nonconventional oil and gas production in the cen-
tral and eastern United States (CEUS) since 2008 resulted in
significantly increased seismicity, most notably in Oklahoma
and the surrounding regions (Horton, 2012; Ellsworth, 2013;
Keranen et al., 2013, 2014). This region historically has not
experienced high shaking and is generally unprepared for the
increased seismicity (Liu et al., 2014; Ellsworth et al., 2015).

The increased seismicity necessitated reassessment of the
resulting hazard. For this purpose, the U.S. Geological Survey
(USGS) produced a series of hazard maps intended to be used
for one year that focus on the hazard that results from human
activity, namely wastewater injection (Petersen et al., 2016, 2017;
Petersen, Mueller, Moschetti, Hoover, Rukstales, McNamara,
and Llenos, 2018). Developing models for one year of usage,
versus a longer window such as 50 yr as in other maps
(Petersen et al., 2015), allows responses to the changes that may
happen in human activities, a nonsteady state variable.

The USGS’s first one-year map (Petersen et al., 2016)
accounted for the induced seismicity by defining zones where
earthquakes do not appear natural, indicated by a noticeable
increase in seismicity near injection wells, both spatially and tem-
porally. They defined separate logic trees for seismicity inside
and outside these zones that differ largely in the parameters used
to describe catalog duration, smoothing distance, maximum
magnitude, and ground-motion models (GMMs). Seismicity
rates are inferred from injection rates from the prior 2 yr.

The one-year model has an advantage for assessing the
resulting performance of the map; the time necessary to gather
data is not so long that one must resort to historic data instead.
Although hindcasting, using historic data to assess hazard maps
for which catalogs of subsequent shaking do not exist, is useful
(Stein et al., 2015; Brooks et al., 2016), gathering data gener-
ated entirely after the map was made is preferable for assessing
its performance because it is a true test of a model’s forecast.

We found that the 2016 model performed better than pre-
vious maps studied (Stein et al., 2015; Brooks et al., 2016).
Using a similar approach as in this study, Brooks et al. (2017)
used “Did You Feel It?” (DYFI) data to compare seismic inten-
sity observations to the model’s predictions. Both within the
entire CEUS, and in the area surrounding Oklahoma where
induced seismicity is most prevalent, the data were in good
accord with the model’s predictions. We thus concluded that
the 2016 model was a very good model. Other studies looked
at the 2016 model and found general agreement between
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observation and prediction using DYFI and instrumental data
(Petersen et al., 2017; Mostafa Mousavi and Beroza, 2018;
White et al., 2018).

For the following year, another model for 2017 was devel-
oped (Fig. 1a). The 2017 model employs the same logic trees
and GMMs as the 2016 model, but uses an updated earthquake
catalog for the additional year of seismicity observed (Petersen
et al., 2017). A second year of seismic intensity records from
DYFI allowed assessment of the 2017 model’s performance
using the metrics employed in Stein et al. (2015) and Brooks
et al. (2017).

The first metric, the fractional exceedance metric M0, is

EQ-TARGET;temp:intralink-;df1;40;106M0�f ; p� � jf − pj; �1�

in which p is the predicted fraction of sites for
which the highest shaking is expected to exceed
the model’s predictions, and f is the observed
fraction of sites for which this actually occurs.
The probability p is derived from the fact that
probabilistic hazard models seek to predict a level
of shaking that should be exceeded only with a
certain probability in some time window
(Cornell, 1968; Field, 2010). At any point on the
map, the probability of exceedance is given by an
exponential distribution: p � 1 − exp�− τ

T�. For
one year of observation, τ � 1, and the model
assumes a return period of T � 100 yr. Hence,
the probability of exceedance p for the model is
roughly p � 0:01.

The fractional exceedance metric is implicit
in probabilistic seismic-hazard analysis (PSHA).
This metric is binary, and only considers whether
an observation is over or under the map’s predic-
tion. Thus, we also use a squared misfit metric
M1:

EQ-TARGET;temp:intralink-;df2;370;493M1�s; x� � 1
N

X
�xi − si�2; �2�

in which xi and si are the maximum observed
shaking and predicted shaking at each of the sites
i � 1; 2;…; N . Although not the goal of PSHA,
this metric captures other important aspects of
map performance, notably the spatial match
between prediction and observation. Because a
map can be successful byM0, but less useful over-
all as a map (Stein et al., 2015; Brooks et al.,
2016), we consider both metrics to get a clearer
understanding of map behavior. For both met-
rics, a perfect match between prediction and
observation will yield a score of 0; hence, higher
scores reflect relatively weaker performance.
Uncertainty in the predictions should be
reflected in M0 and M1, so that when uncer-
tainty increases so do the values of M0 and M1,

all other things being equal. Error (or uncertainty) in the obser-
vations (e.g., DYFI) would tend to inflate the values of M0 and
M1 relative to error-free observations, and thus would lead to a
slight inflation in M0 and M1.

SEISMICITY AND FELT GROUND SHAKING IN
2017

The 2017 one-year seismic-hazard model emphasizes the haz-
ard most strongly in Oklahoma and surrounding states, mainly
Texas and Kansas. This emphasis was also present in 2016. To
assess the model’s performance, we use the shaking record from
the DYFI database (Wald et al., 1999; Atkinson and Wald,
2007). A number of studies compared DYFI data to predicted
seismic hazard in recent years (Mak and Schorlemmer, 2016a;

▴ Figure 1. (a) 2017 one-year seismic hazard forecast for the central and eastern
United States (CEUS; Petersen et al., 2017). Shaking levels are communicated in
modified Mercalli intensity (MMI) units. (b) Maximum “Did You Feel It?” (DYFI)
responses in 2017 for the CEUS. Gray regions indicate an absence of DYFI
responses, but do not necessarily imply a lack of shaking. The color version of
this figure is available only in the electronic edition.
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Cremen et al., 2017; White et al., 2018), and
noted DYFI’s utility for broad areal coverage
(Atkinson and Wald, 2007; Hough, 2012; Mak
and Schorlemmer, 2016b). Reports for individual
events are geocoded by zip code, and annual sum-
maries of maximum observed intensities are com-
piled on a 10 km grid (Quitoriano et al., 2017).
Though there can be issues in quality and com-
pleteness in poorly populated areas, we found
that the DYFI database, specifically the annual
maximum data, is one of the most thorough and
robust seismic intensity datasets available, provid-
ing the most observations over the largest area
(Wald et al., 2012).

Figure 1b shows the maximum shaking
reported to DYFI for 2017. The map shows
17,391 sites on the one-year map where at least
one report was made. Though the data are sparse,
there is a match, broadly speaking, between the
expected shaking and the intensity in the reports
made, including the highest shaking congregated
within Oklahoma. The map also features many
reports to the east in the Pennsylvania-Delaware-
Jersey tristate area, and to the west in Montana.
These reports are geographically consistent with
the location of the largest earthquakes observed in the CEUS in
2017 (Fig. 2).

Figure 2 shows that despite the expected high seismicity in
the greater Oklahoma area, the largest earthquake in the CEUS
in 2017 was anM 5.8 event near Lincoln, Montana (McMahon
et al., 2017). Similarly, the east coast experienced anM 4.1 earth-
quake in December 2017, located in Dover, Delaware, where
seismicity is expected to be low. Conversely, Oklahoma experi-
enced only a few seismic events with magnitude greater than 4,
in contrast to the previous year, when it experienced a number of
high-shaking events, including the largest recorded in its history,
the M 5.8 Pawnee event (Yeck et al., 2017). Because the distri-
bution of these 2017 events differs from the previous year’s, in
which numerous M 4+ events occurred in Oklahoma and
smaller events were located elsewhere, they provide an opportu-
nity to see how well a map performs when a number of “black
swans,” rare and unexpected scenarios, occur (Stein et al., 2012).

DYFI AND MAP PERFORMANCE

Figure 3 illustrates the map’s overall performance. From theN �
17;391 responses, we see that 501 sites reported shaking exceeding
that predicted. This corresponds to f � 0:0288; hence, because
p � 0:01 the map experienced roughly three times the number
of exceedances expected, and thus M0 � 0:0188. Furthermore,
M1 � 5:39, a relatively low score reflecting a reasonable spatial
correlation between the maximum shaking at sites that
responded to DYFI and the predicted maximum shaking there.
Brooks et al. (2017) found that for the 2016 model, the CEUS
had M0 � 0:0073 and M1 � 4:62. Although the previous
year’s lower scores indicate a slightly better performance overall,

in general they are similar. Although this is the first study focus-
ing on successive iterations of maps, our prior studies have found
maps that yield both M0 and M1 orders of magnitude higher
(Stein et al., 2015).

▴ Figure 2. Occurrence of M 4+ earthquakes near the CEUS in 2017. Earthquakes
in Oklahoma, Montana, and Delaware were the primary generators of DYFI
responses. The color version of this figure is available only in the electronic edition.

▴ Figure 3. Comparison of predictions from the 2017 hazard map
to maximum reported intensity for the entire CEUS. The color
version of this figure is available only in the electronic edition.
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For areas where predicted intensity is high (e.g., intensity
VII+), the range of observed shaking spans intensity II–VIII. A
similar trend is present for low-intensity predictions (i.e., inten-
sity III–V). However, between these two regions (e.g., intensity
V–VII), observed shaking levels are predominantly lower. As a
result, most exceedances come from sites where shaking was
predicted to be relatively low. Most of those exceedances cluster
around the red 45° line that marks a perfect match between
observation and prediction, suggesting that most exceedances
are small. Roughly two dozen points are exceedances in which
intensity is VII+. Further insight into spatial variations in map
performance as a function of the DYFI data can be had by
subdividing Figure 1 into smaller geographic regions.

Figure 4a–c shows the predicted and observed shaking,
and metric score for the greater Oklahoma area, the region
where induced seismicity in the United States is the highest.
The greater Oklahoma region contains the majority of loca-
tions where observed shaking is well below the model predic-
tions. There are only eight exceedances from 3410 observations
that leads to an observed exceedance fraction f � 0:0023 and
an M0 � 0:0077, similar to the 2016 model score (in 2016,
M0CEUS � 0:0073, and M0OK � 0:0069). The 2016 model
underpredicted shaking and the Oklahoma region experienced
more exceedances than expected. In 2017, the opposite occurred
and shaking was overpredicted. With so few exceedances in the
area, the significance of a lower M0 score is lessened (Brooks
et al., 2017). In contrast to the similarities in M0 between
2016 and 2017, 2017’s greater Oklahoma M1 � 10:46, sub-
stantially higher than for the entire CEUS in 2017 and the
CEUS and greater Oklahoma area M1 scores for 2016 (in
2016, M1CEUS � 4:62 and M1OK � 5:01).

The effects of the low shaking reported in Oklahoma can
be highlighted by examining the CEUS metrics excluding the
greater Oklahoma area. Figure 4j shows observed versus pre-
dicted shaking for the opposite of the top row, that is, the entire
CEUS without the box in the top of Figure 4. The map lacks
the exceedances that occurred at higher predicted maximum
intensities, because the areas with the highest predicted shaking
due to induced seismicity are removed from the map. Hence,
there are far more exceedances from areas with lower predicted
intensities, largely the Montana and Delaware earthquakes.
Oklahoma shaking was heavily overpredicted, but the map as
a whole underpredicted shaking, so removing Oklahoma from
the dataset yields a larger fraction of site exceedances. Hence,
M0 increases to 0.0253, a decrease in map performance.
However, the large mismatch in the intensity of the shaking
predicted in Oklahoma is reflected by the squared misfit
M1, double the CEUS M1 score. Thus, removing the greater
Oklahoma area from the data improves the map performance
by the squared misfit metric, so M1 � 4:16.

Additional subdivisions illustrate other strengths and weak-
nesses of map performance. Consider responses to the Montana
earthquake in the northwest, shown in Figure 4d–f. Because this
was an unexpectedly large earthquake for the area, it led to a high
number of exceedances. Over 20% of sites reported shaking
exceeding the predicted levels, so M0 � 0:2063. However, this

number may be artificially inflated by a lack of distant responses
in areas where shaking may not have exceeded predictions, per-
haps due to low population. The few reports from distant areas
that do describe shaking are close to the predicted values. As
a result of this strong match, this region of the map scores
M1 � 1:98. This is notably lower than any other M1 scores
generated for 2017, indicating that the map generally succeeds
at matching predictions to observations.

Finally, Figure 4g–i shows the eastern half of the CEUS
map, where the seismicity is largely noninduced. The region
tends to be very aseismic, though there is a history of events
happening along the coast in the past (Hough, 2012; Wolin
et al., 2012). This portion of the map contains 40% of the data
reported in the entire CEUS but hasM0 � 0:0177, similar to
that of the entire region. The data lack large exceedances, and
although there are some instances of overpredicted shaking in
Tennessee and the NewMadrid region, broadly speaking there
is a good visual match between predictions and observations.
Hence, a low-squared misfit arises, with M1 � 2:97.

The metric calculations indicate that data fit the 2017
map’s predictions reasonably well, although not as closely as the
2016 data fit that map. This map performs better than all pre-
vious studies we conducted of hazard maps, with one exception,
the 2016 one-year map. This difference opens questions of how
much variability to expect in performance from year to year, and
whether the poorer performance in 2017 is likely to have arisen
by chance or instead reflects a meaningful change in seismicity.
Furthermore, the decrease in responses that may be a function of
lower shaking, low population at the epicenters of events, or
earthquake fatigue driving down response rates—or a combina-
tion of all three—raises questions regarding data quality and
completeness (Mak and Schorlemmer, 2016b).

Focusing specifically on Oklahoma, between 2016 and 2017
the number of responses cataloged in the maximum shaking
felt per year in the DYFI system dropped by nearly two-thirds.
About 15% of the region had shaking reported in 2017, down
from 40% in 2016. Figure 5 shows the absence of responses
by comparing the DYFI map to what ShakeMap predicted
the intensity of shaking would be (Wald et al., 2005; Brooks et al.,
2017). In the absence of information, ShakeMap is a suitable
approximation of a lower bound for reported shaking.
Although there are some regions where DYFI shaking exceeds
ShakeMap predictions, there are many more areas devoid of
responses that ShakeMap suggests should have felt shaking, par-
ticularly toward the western part of Oklahoma. This is likely
due to issues in population density compounding issues with
decreased response rate. This decrease in reports is also accom-
panied by a decrease in the intensity of shaking reported. The
median maximum annual shaking reported in 2017 is 2.9; down
half an intensity unit from the median in 2016 of 3.4.

SHAKING SIMULATIONS

To address the questions of whether low responses are a func-
tion of low-shaking levels or low-response rates, we use Monte
Carlo simulation to characterize the variability of possible
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▴ Figure 4. (a,d,g) Predicted and (b,e,h) observed shaking maps, and (a–c) predicted–observed plots for the greater Oklahoma area,
(d–f) Montana, and (g–i) the east coast of the United States. (j) Observed–predicted plot for the entire CEUS except the greater Oklahoma
area. The color version of this figure is available only in the electronic edition.
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shaking histories for the greater Oklahoma area in 2017. Our
approach is similar to that of Vanneste et al. (2018). The sim-
ulations can address the likelihood of the observed decrease in
shaking occurring by chance, explore data incompleteness issues,
and give insight into how the metrics used for assessment describe
the map’s performance. For simplicity, we used Oklahoma as the
region of interest, and so did not need to account for multiple
zones of induced seismicity across the CEUS, or the effect of
natural seismicity in areas such as the New Madrid region.

We considered four random processes that define the
maximum shaking experienced in a year:
1. where the earthquakes occur;
2. how many earthquakes occur;
3. the magnitude of the earthquakes; and
4. uncertainties in the GMMs that describe shaking.

The first three processes control the distribution of earth-
quakes in the region and can be described simply. Petersen et al.
(2016) define regions where wastewater injection is expected to
lead to induced seismicity. We consider this area to be uni-
formly susceptible to induced earthquakes.

In the models, the rate of induced seismicity is defined for
an upcoming year as a weighted average of the past 2 yr, with
weights of 0.8 and 0.2 for the most recent year and the previous
year, respectively (Petersen et al., 2014, 2017). For 2017, given a
minimum magnitude of completeness of 2.7, we observe 162
independent (e.g., declustered, with no aftershocks) earthquakes
in 2016 and 152 earthquakes in 2015 for the Oklahoma induced
zone (Petersen, Mueller, Moschetti, Hoover, Rukstales,
McNamara, et al., 2018); hence, we set the expected number

of earthquakes λ � 160 and model the number of possible
earthquakes that can occur as a Poisson random variable with
this mean.

Earthquake magnitudes are assigned based on the
Gutenberg–Richter relationship, assuming b � 1, as the 2017
model does (Petersen et al., 2017). To simulate artificial event
magnitude using a given b-value, we follow a method given by
Zhuang and Touati (2015) using inverse transform sampling.
An event’s magnitude m is randomly generated, assuming that

EQ-TARGET;temp:intralink-;df3;311;319m � −
1

b ln 10� � lnU �m0; �3�

in which b is the model’s b-value,U is a value obtained randomly
from a uniform distribution on [0,1], and the minimum mag-
nitude for completeness is m0 � 2:7.

For a more accurate characterization of the 2017 earth-
quake record, this process of simulating earthquake occurrence
is repeated a second time, using λ � 4, to include earthquakes
that happened outside the defined box of induced seismicity.

By simulating these first three random processes, we gen-
erate many realizations of seismicity in Oklahoma in 2017. We
describe the resulting ground shaking using the GMMs used by
Petersen et al. (2017). Nine different models with varying
weights (Petersen et al., 2014) are used and then aggregated to
describe ground shaking (Frankel et al., 1996; Silva et al., 2002;
Toro, 2002; Campbell, 2003; Tavakoli and Pezeshk, 2005;
Atkinson and Boore, 2006; Atkinson, 2008, 2015; Pezeshk
et al., 2011). Because the resulting shaking is given as peak
ground acceleration (PGA) and the model we are assessing

▴ Figure 5. Comparison between shaking reported to (a) DYFI and (b) predictions from ShakeMap. M 4+ earthquakes in Oklahoma are
marked with circles on (a). They are excluded on (b) to not obscure contour changes, but are located at the center of each local maximum
in the ShakeMap predictions. The color version of this figure is available only in the electronic edition.
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predicts shaking as modified Mercalli intensity (MMI), we use
techniques in Petersen et al. (2017) to convert PGA to MMI
(Worden et al., 2012). Each GMM, as well as the conversion
from PGA to MMI, has an error term in the form of a
Gaussian random variable. The error terms for ground motion
are treated as uncorrelated at each site and can be treated as
representing the uncertainty in each model, as well as the influ-
ence of site effects, directivity, or other modifiers to shaking.
The PGA to MMI conversion error is correlated and assumed
to be equal at all sites. Using the GMMs, the shaking from each
earthquake in a given realization is calculated. After calculation
for all events’ shaking, the maximum observed shaking at each
site, gridded on a 10 km scale, is selected and used to calculate
the metrics for map performance.

We calculated 10,000 simulations to explore the full range
of outcomes. We call this model, which allows for full variance
of all parameters, unconstrained. Figure 6a shows nine of these
realizations, and the metric calculations associated with each.
Intensity is calculated at each site within the greater Oklahoma
region. Hence, the metrics here show performance that would
arise with a 100% response rate.

The metrics calculated for the 10,000 unconstrained sim-
ulations—in which uncertainties in earthquake count, loca-
tion, magnitude, GMMs, and PGA to MMI conversion are
allowed to vary—are shown in Figure 6b. The results show
generally low M0 scores, reflecting a tendency for f ≈ p. A tail
drops off for larger M0 scores, showing the small possibility
of achieving a very large score, indicative of scenarios in which
f ≫ p. Counts of M0> 0:02 decrease substantially and are
shown by an extra plot beneath the heatmap. Though the values
reach as high as M0 � 0:8, most simulations have M0 ≤ 0:02.
About 80% of the simulations fall below this cutoff, 95% of the
simulations result in metrics in which M0 ≤ 0:15. Generally
speaking, this distribution agrees with the 2017 DYFI result
(M0 � 0:0077). The squared misfit metric M1 is roughly
characterized by a normal curve centered around a mean
M1 � 2:09, a very low score compared with the 2017 DYFI
data (M1 � 10:46). The standard deviation for this curve is
0.41. There is an inverse correlation between the fraction of sites
that exceed predicted shaking andM1. This can be observed by
the two trend lines that grow out of the dense grouping of
points centered around M0; M1� � � 0; 2:09� �, which is
where f � p � 0:01. The sharp upward trend terminates at
M0 � 0:01, the point where no exceedances are observed
(f � 0). The shallow downward trend continues for all M0
values in the heatmap and outlier plot. Hence, as f increases, the
squared misfit decreases. Although only the fractional exceed-
ance metric is implicit in the definition of this hazard map, this
result suggests it should be possible to minimize both metrics for
a given set of predictions and expected number of exceedances.

The metrics obtained with DYFI data for 2017
(M0 � 0:0077 and M1 � 10:46) do not fall within the sim-
ulation’s distribution due to the high-squared misfit metric
M1, though they are in reasonable accord with the distribution
of the fractional exceedance metric M0. However, the discrep-
ancy between the metrics for DYFI and the simulations may

result from incompleteness in the DYFI data. Some of the larg-
est earthquakes in Oklahoma in 2017 have few DYFI responses
(Fig. 5), and some of the neighboring responses report MMI II
intensities, which seem far too low for their proximity to some
events’ epicenters. It appears there is an issue with the response
rate of the DYFI data, resulting in many inconsistent and miss-
ing responses.

It is not a fair comparison to compare the metrics for the
DYFI data, given the low-response rate, to those for simulated
data, in which data coverage is perfect. Brooks et al. (2017)
found an inverse relationship between response rate and M1.
Thus, although both DYFI and simulation can be used to assess
performance individually, it is unclear whether a comparison
between the two is useful for comparing aspects of map perfor-
mance, or the relationship between M1 and the number of
responses.

Hence, to better address data discrepancies and generate a
more consistent comparison of map performance, we fixed earth-
quake count, location, and magnitude to the values for declus-
tered events that occurred in 2017, and repeated the simulation
procedure considering only the uncertainties in ground motion
and PGA to MMI conversion. By repeating this analysis with
these fixed parameters, we create a comparable dataset of “obser-
vations” to contextualize the results of the simulation. This
approach is analogous to using ShakeMap data (Brooks et al.,
2017) and approximates having DYFI data with a 100% response
rate for the earthquakes observed in 2017, but has the added
benefit of also incorporating the uncertainty in the GMMs.

Figure 7a shows some of the 5000 shaking simulations
calculated with the observed earthquake catalog in Oklahoma
in 2017. We halve the number of simulations to reduce com-
putation time, because we expect substantially smaller variance
in the output when there are many fewer input variables. We
term these simulations the constrained model, whereas we term
the original simulations the unconstrained model. The variance
in shaking output between simulations appears to be much
smaller, because they simulate the same events so ground motion
varies less between simulations. Figure 7b shows the variability in
the metrics for the constrained simulations, which is due only to
GMM uncertainty. M0 is tightly clustered between 0.008 and
0.01, differing strongly from the distribution of M0 ’s for the
unconstrained model. About 97% of the simulations have
M0 ≤ 0:02. M1 in the constrained simulation has a slightly
larger standard deviation than the unconstrained model, with
a wider normal curve centered at the mean M1 � 2:33. The
standard deviation of the M1 distribution is 0.48. The outliers
M0> 0:02 are far fewer in number, because the lower shaking
produces fewer exceedances.

The results from both sets of simulations are superim-
posed in Figure 8. Counts are normalized to show relative fre-
quency, illustrating the likelihood of getting a specific metric
result from the unconstrained and constrained simulations,
and comparing the distributions of the two. Through this com-
parison, we examine the likelihood that the higher misfit
observed in 2017 could be attributed to either bad luck, or a
flawed assumption in the underlying model (Stein et al., 2011).
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▴ Figure 6. (a) Simulation outputs, illustrating shaking and metric results, for nine different realizations of 2017. The shaking model is fully
unconstrained, with randomness in earthquake count, location, magnitude, and in the ground-motion models (GMMs). Intensity is reported in
MMI. (b) Heatmap of distribution of metric scores for 10,000 realizations of 2017 seismicity. The x axis is the fractional exceedancemetricM0,
and the y axis is the squared misfit metric M1. Each axis has a histogram of each metric’s distribution, independent of the other. Outliers,
defined by M0 > 0:02, are plotted in the bottom left. The color version of this figure is available only in the electronic edition.
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▴ Figure 7. (a) Sample of simulation outputs, illustrating shaking and metric variability for the observed earthquake record in 2017. These
constrained simulations have randomness only due to the GMMs. (b) Heatmap of distribution of metric scores from for 5000 realizations of
2017. The x axis is the fractional exceedance metric M0, and the y axis is the squared misfit metric M1. Each axis shows a histogram of
each metric’s distribution, independent of the other. Outliers, defined byM0 > 0:02, are plotted in the bottom left. The color version of this
figure is available only in the electronic edition.
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We would expect a model that can accurately forecast the shak-
ing for a given year to have a metric score that falls within the
range of metric scores achieved from a fully unconstrained
simulation.

In essence, we would expect what we observe to be one of
the scenarios predicted by the unconstrained model. However,
the contours of the constrained model, representing 50% and
80% bounds on the data, are displaced upward for both metrics,
giving higher scores, indicating weaker performance than what
might be expected from a random scenario from the uncon-
strained simulation. Though it is possible, based on the distri-
bution of the unconstrained simulation, to have an expected
earthquake scenario result in poor map performance (as indi-
cated by the simulations that yielded very high metric scores,
indicative of even weaker performance), there is little overlap
between the constrained (contours) and the unconstrained
(heatmap) simulation results. Hence, from this comparison, we
conclude that the poorer performance of the 2017 map arises
not from bad luck, but a flawed assumption. Some physical

aspect of shaking is not accurately described by the model
for the map; otherwise, we would expect to see the constrained
simulations overlap with the unconstrained output. Specifically,
the tight clustering of the fractional exceedance metric around
the predicted number of exceedances (p � 0:01) seems to sug-
gest that the earthquakes that occurred in 2017 were insufficient
to generate shaking large enough to cause exceedances. This lack
of large shaking can also explain the upward shift in the squared
misfit metric M1. There were too few large events in 2017.
Larger events would generate lower scores for both M0 and
M1. This conclusion is reinforced by the issues in the DYFI
data, which similarly suffer due to the lack of large shaking events
necessary to generate a broad response of quality reports.

Beyond assessing the performance of this specific model,
these results have implications for the general issue of how to
assess and improve earthquake-hazard maps’ performance. The
simulations approach is useful for filling in gaps in data and
exploring the uncertainty in a map’s predictions. Furthermore,
the metrics defined in Stein et al. (2015) were intended to be

▴ Figure 8. Superposition of unconstrained (background heatmap) and constrained simulations (white contour lines). Contour lines
represent where 50% and 80% of the data reside. Histograms show relative frequencies in the distribution of each metric. Outliers
(M0 > 0:02) are plotted on the bottom left. The color version of this figure is available only in the electronic edition.
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used as a comparative tool to assess the performance of multiple
different maps. Through work on many maps, a general under-
standing of what constitutes high- and low-metric scores may
arise, though it is harder to assess a map’s performance with
no basis for a comparison. Simulation is a tool to address this
problem, allowing for comparison of many different shaking real-
izations. The simulations allow better understanding of map per-
formance if there are no comparisons to be made, and for a better
understanding of the likelihood of observing a single outcome
(Vanneste et al., 2018). This is important for better using metrics
to assess map performance, by moving from assessing relative per-
formance to assessing absolute performance. In other words, we
would go beyond asking if a map is better than another map, to
asking if a map is good. Such advances will help researchers better
understand how and why maps perform the way they do and
thus how to better use them for earthquake-hazard mitigation.

CONCLUSIONS

Comparison of shaking observed in 2017 to that predicted by
the 2017 hazard model shows an overprediction of shaking.
The shaking record for 2017 contained so little shaking that
it generated essentially no exceedances. This is in stark contrast
with 2016 that had many exceedances throughout the greater
Oklahoma area, due to numerous large events, specifically three
M 5+ episodes, including theM 5.8 Pawnee earthquake. These
large events, and moderate-to-large shaking episodes in general,
dominate the maximum shaking record.

The greatest mismatch between prediction and observation
for the 2016 model was in northern Texas (Brooks et al., 2017).
Substantial shaking in Dallas did not occur as predicted and
maximum DYFI reports in the area were linked to distant larger
earthquakes in Oklahoma. Wastewater injection has been found
to be linked strongly with Texan seismicity (Hornbach et al.,
2016), and though earthquakes may persist after wastewater
injection has halted, rates decline following the closure of an
injection site (Ogwari et al., 2018). We believe the change in
seismicity that follows a reduction in wastewater injection rates
cause an increase in metric scores. Hence, future models may
benefit from better including information about wastewater
injection sites and rates.

This observation suggests that past one-year forecasts may
have had caused a reduction in the hazard in Oklahoma, where
a similar effect leading to a decrease in large events may be
going on. Regulatory efforts capped wastewater injection rates
in Oklahoma, leading to a gradual decline in the number of
larger earthquakes. Furthermore, oil prices and earthquake rates
are correlated (Roach, 2018), so the sharp decline in prices
since 2014 (Prest, 2018) may influence rates. Combined eco-
nomic and regulatory pressures thus led to the decrease in the
maximum shaking observed in Oklahoma.

It appears the parameters used to predict seismicity in the
2017 hazard model did not fully account for these changes.
The b-values in induced zones may appear higher due to the
earthquake swarms that occur, which may be occurring presently
(Goertz-Allman and Wiemer, 2012). An increase of the b-value

in this setting would decrease the likelihood of observing higher
magnitude events, a possible explanation for what was observed
in 2017. Despite this, the b-value for the 2017 model, as well as
prior years, was 1. Further gains in performance can come from
improving GMMs. Many of the GMMs used for the 2017 map
—all but Atkinson (2015) that received 75% of the weighting
for GMMs—are derived for scenarios that may not apply to the
Oklahoma region, including noninduced seismicity and the tec-
tonic setting of the western United States. More localized
GMMs may reduce the very large uncertainty that contributes
to the misfit in model performance (Moschetti et al., 2018;
Novakovic et al., 2018).

Although there is room for improvement in the hazard
model, the resulting map is still useful as a whole. The metric
scores, as calculated with the DYFI data, tend to be similar to
the performance of the previous year’s model, with only slightly
worse fractional exceedance metrics than for the 2016 model.
All regions except Oklahoma, where seismic rates are assumed
to be better known and stable, have consistently small squared
misfit metric values. As a whole, these results are better than
many maps we analyzed by this approach (Stein et al., 2015;
Brooks et al., 2016). Hence, despite weaker performance com-
pared with the 2016 map, we believe the 2017 model is a good
map. This conclusion is reinforced by the results of our seis-
micity simulation, which shows performance weaker than the
previous year’s map, but stronger than performance from our
other studies (Stein et al., 2015; Brooks et al., 2016). Although
the mismatch in simulated metric distributions appears to reflect
assumptions that could be improved, the model’s performance is
still better, with a much smaller discrepancy between observed
and predicted shaking, than that of many of other maps for
natural seismicity assessed previously. For the purposes of mit-
igating risk and anticipating shaking in the future, the 2017
model, and all one-year hazard models, can still inform users
about the hazards posed by wastewater injection and other seis-
mically inducing activities.

DATA AND RESOURCES

The 2017 one-year seismic hazard model for the central
and eastern United States (CEUS) from induced and natural
earthquakes was downloaded from https://www.sciencebase
.gov/catalog/item/5a85dc1de4b00f54eb36679d (last accessed
December 2018). Maximum intensity “Did You Feel It?” data
were provided by David Wald and Gregory Smoczyk, and can
be viewed at http://usgs.maps.arcgis.com/apps/webappviewer
/index.html?id=9310990e7ce84e3b8567109616b0944d (last
accessed January 2019).
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