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ABSTRACT

Seismicity in the central United States has dramatically in-
creased since 2008, due in large part to the injection of waste-
water produced by oil and gas extraction. In response to this
phenomenon, the US. Geological Survey (USGS) created a
one-year probabilistic hazard model and map for 2016 to por-
tray the increased hazard posed to the central and eastern
United States. Using the intensity of shaking reported to
the “Did You Feel It?” (DYFI) system during 2016, we assessed
the performance of this model using a metric that compared
the fraction of sites at which the maximum shaking exceeded
the mapped value to the fraction that had been expected. These
fractions are similar for both the central and eastern United
States as a whole, as well as for the region within this area with
the highest amount of seismicity - Oklahoma and its surround-
ing area. We observe the greatest mismatch in northern Texas,
with hazard overstated, presumably because lower oil and gas
prices and regulatory action reduced the water injection vol-
ume relative to that of the previous year. We also assessed the
model using a misfit metric that compares the spatial patterns
of predicted and maximum observed shaking. This hazard map
performs better by both metrics than other hazard maps we
have studied. These results imply that such hazard maps can
be valuable tools for policy makers and regulators in attempt
to manage the seismic risks associated with unconventional oil
and gas production.

INTRODUCTION

Since 2008, seismicity in the central United States has increased
dramatically, largely due to the injection of wastewater produced
by unconventional oil and gas extraction (Ellsworth, 2013; Ker-
anen et al., 2013, 2014; Kim, 2013; Hough, 2014; Rubinstein
and Mahani, 2015; Weingarten ez al., 2015). This increased seis-
mic activity poses a higher hazard than historically experienced
areas that are generally unprepared for the resulting levels of
shaking (Liu ez al, 2014; Ellsworth ez al., 2015).
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The increased likelihood of damage necessitated reassess-
ment of the seismic hazard in the area. Accordingly, the USGS
produced a new seismic hazard map for the central and eastern
United States (Petersen e al., 2016a,b), which portrays the
effects of both induced and natural seismicity (Fig. 1). The
largest change to the most recent version of the map (the
2014 US. national seismic hazard map) that did not incorpo-
rate induced earthquake effects was the significantly increased
hazard that was predicted in the area covering southern Kansas,
Oklahoma, and northeast Texas (Petersen et al, 2015).
Induced scismicity was incorporated into the hazard map by
defining zones where earthquakes do not appear natural, indi-
cated by a noticeable increase in seismicity near injection wells,
both spatially and temporally. Petersen ez al. (2016a) define
separate logic trees for seismicity inside and outside these
zones, which differ largely in the parameters used to describe
catalog duration, smoothing distance, maximum magnitude,
and ground-motion models. Seismicity rates are inferred from
injection rates of the prior year, which are assumed to be un-
changed for 2016. The updated national map shows a prob-
ability of 5% to 12% of shaking at or above modified Mercalli
intensity (MMI) VI in this area for the one-year time window
in 2016, similar to the predicted hazard from natural seismicity
in historically much more active regions such as California
(Petersen et al., 2016b).

The new model is a 1-yr forecast, showing the level of
shaking that should have a 1% chance of exceedance at any
point on the map during the year. The model used in making
this map assumed that earthquake rates would remain relatively
stationary and could be used to forecast shaking during 2016.
This approach includes the effects of nontectonic carthquakes;
this is in contrast to the 2014 model, which excluded nontec-
tonic earthquakes.

Such one-year models are potentially valuable for policy
makers and regulators dealing with the complex question of
how to address the hazard due to induced earthquakes. To this
end, we investigated how well the model forecasted the shaking
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A Figure 1. 2016 One percent in one-year national seismic hazard map, showing the hazard for the central and eastern United States
from induced and natural earthquakes (Petersen et al,, 2016a). The color version of this figure is available only in the electronic edition.

that actually occurred in 2016. We quantified the performance
of the map using two metrics that summarized different aspects
of the map’s performance.

ASSESSING HAZARD MAP PERFORMANCE

Probabilistic seismic hazard models seck to predict a level of
shaking that should be exceeded only with a certain probability
over a given time window (Cornell, 1968; Field, 2010). At any
point on the map, the probability p that shaking will exceed the
value shown on a map during # years of observations with a 7"
year return period is assumed to be described by an exponential
distribution: p = 1 —exp(—¢/T). For the one-year model,
¢t = lyear, and p = 0.01 or 1%; with the given T = 100 yrs.
Equivalently, on average, 1% of the sites should experience
shaking greater than that shown on the map. This approach,
introduced by Ward (1995) and used in many subsequent
analyses (e.g., Albarello and D’Amico, 2008; Fujiwara ¢t al.,
2009; Stirling and Gerstenberger, 2010; Nekrasova ez al., 2014;
Tasan et al., 2014; Mak and Schorlemmer, 2016a), considers
many sites in order to ameliorate the rarity of large motions
at any given site.
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In this study, we assess the performance of earthquake haz-
ard maps, using two metrics to numerically compare a map’s
predictions to records of shaking (Stein ez al., 2015). The first
metric, the fractional exceedance metric MO, is described as
follows:

MO(f,p) = |f —pl,

in which p is the predicted fraction of sites where the highest
shaking during the study period is expected to exceed the mod-
eled predictions, and /" is the observed fraction of sites where
this actually occurred. This metric, which is implicit in the
probabilistic seismic hazard analysis (PSHA) methodology,
is binary (above or below) and does not account for the size
of the difference between predicted and observed shakings. We
thus also use a second metric; this is M1, the squared misfit
metric, which is described as follows:

M1(sx) = ) (x;—5)*/N

in which the maximum observed shaking and predicted shak-
ing (x; and s;) are compared during the study period at each of
the sites i = 1,..., NV (Stein ez al, 2015). For the purposes of
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A Figure 2. Maximum reported shaking recorded from “Did You Feel It?” (DYFI) in 2016 for the central and eastern United States. The

color version of this figure is available only in the electronic edition.

this study, the predicted shaking s; is the level of shaking that
has a 1% chance of exceedance throughout 2016.

For both metrics, a perfect match between prediction
and observation would yield a score of 0. The two metrics
characterize different aspects of map performance; hence, to-
gether they give a fuller picture of map performance than one
measure could (Brooks ez al., 2016, 2017). MO is sensitive to
how well the map predicts average shaking levels. M1 is more
sensitive to how well a map predicts spatial variations in shak-
ing. Visually comparing maps of predicted and observed shak-
ings amounts to using M1. Decomposition of MO into
systematic and random components of error is discussed in
Stein ez al. (2015), along with the attenuating effect of spatial
correlation on the nominal sample size. The expected value of
M1 is equal to the variance of the probability distribution of
the maximum intensity plus 6> + (u — )%, with 6 as the
variance, ¢ as the mean, and 7 as the (100 — p)th percentile
of the probability distribution of maximum intensity over the
time window of length 7'. Unfortunately, we have neither
data for estimating the spatial correlation of the data and
model, nor information about the probability distribution
of the maximum intensity.

COMPARISON TO OBSERVED SHAKING

To assess the performance of the 2016 model, we need a record
of shaking observed in 2016. The best and most extensive data
available are from the “Did You Feel It?” (DYFI) database (Wald
et al., 1999; Atkinson and Wald, 2007). DYFI is an online tool
that allows anyone who experiences ground motion to report it.
Responses are compiled and geocoded by zip code to character-
ize the shaking distribution from an earthquake. After a year of
data are collected, the USGS compiles maps of the annual maxi-
mum shaking at sites reported to the DYFI system, gridded at a
10 km resolution (Quitoriano et al., 2017). Despite possible is-
sues of quality and data completeness, DYFI is considerably
more complete than available instrumental data and has proven
to be one of the most thorough and robust datasets available
(Wald ez al, 2012).

The 2016 maximum DYFI response map (Fig. 2) shows
large areas of the central and eastern United States with no
responses, with clusters of responses in the most seismically
active regions. Absence of response can occur either because
no shaking was felt, or because no one responded to DYFI after
an earthquake, perhaps due to low population or earthquake

Seismological Research Letters Volume , Number 3



Number of Points = 25,454
VIIl + Probability of Exceedance p = 0.01
Observed Fraction Exceeded f= 0.0173
Fractional Exceedance Metric MO = 0.0073
Squared Misfit Metric M1 = 4.62

=

=<

Observed Maximum Intensity
= < <

| | 1} v \' \'l Vil VIl IX
Predicted Intensity

A Figure 3. Comparison plot of 2016 map predictions and 2016
DYFI observations for all points with a DYFI response in the cen-
tral and eastern United States. The color version of this figure is
available only in the electronic edition.

fatigue following numerous events (Mak and Schorlemmer,
2016b). The assumption that all regions without a response
did not experience shaking is unrealistic, especially given the
low populations in portions of the study area. Furthermore,
such treatment would incorrectly imply that the map severely
overpredicts shaking. Instead, we treat regions lacking re-
sponses as null or missing values and exclude them in evalu-
ating the metrics.

Across the entire central and eastern United States,
roughly 10% (25,454 out of 236,578 points) of the map ex-
hibits a DYFI response. We use all the points, keeping in mind
that spatial correlation among the shaking at these points vastly
reduces the effective sample below the nominal 25,454. The
comparison between the predicted and the observed maximum
shakings is plotted in Figure 3. The fractional exceedance met-
ric MO compares the fraction of points /* above the diagonal
line (the region in which the largest observed shaking exceeds
prediction) to the expected fraction p. About 1% of all sites
should be above this line, and the actual fraction is 1.73%, lead-
ing to a fractional exceedance of M0 = 0.0073. The squared
misfit metric M1 is 4.62, reflecting the visual similarity be-
tween the hazard map predictions and the map of maximum
observed shaking (Figs. 1 and 2).

The difference between 1% and 1.73% site exceedances
results from a few hundred more exceedances than expected.
In order to see how large of a mismatch this is, we considered
how much of an increase in predicted shaking would make p =
f = 0.01 and thus M0 = 0. This would occur if the average
predicted shaking were 0.24 MMI units, or 5% higher, than
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that predicted. This would decrease the number of exceedances
observed to exactly that predicted.

THE GREATER OKLAHOMA AREA

When considering these results, it is important to note that the
data are sparse on a national scale. We thus also examined the
most seismically active portion of the mapped arca. Figure 4
shows the predicted shaking and the maximum observed shak-
ing for this greater Oklahoma area. Here, data completeness is
improved relative to the entire region, with 45% (10,160 out of
22,560) of sites having DYFI responses.

Figure 5 shows the metrics for this smaller area. The frac-
tional exceedance metric M0 = 0.0069 shows that the fraction
of sites in this area experiencing higher than expected shaking is
about the same as for the entire area A0 = 0.0073. The squared
misfit metric increases slightly from M1 = 4.62 to 5.01.

The only notable difference between observation and pre-
diction occurs for the Dallas area, where the map overpredicts
the amount of shaking. Despite a maximum shaking of inten-
sity VII, enough for moderate damage, that was forecasted, the
highest shaking widely reported is of intensity III. This differ-
ence explains the increase in the squared misfit metric relative
to the map as a whole, because a larger percentage of the local
map is misfit; this portion covers roughly 15% of the greater
Oklahoma region both in area and number of DYFI reports.

The mismatch in Dallas could be most easily explained in
two different ways. The simplest is that the DYFI data reflect
the actual shaking that the map overpredicted. Alternatively,
perhaps fewer people in Dallas responded to DYFI, leading to
underreporting of the maximum shaking. However, investiga-
tion into the DYFI data refutes the latter explanation. As
shown in Figure 6, there appears to be a strong relationship
between the number of reports that contribute to the maxi-
mum observed shaking and population, but not the intensity
of the maximum shaking. The DYFI system seems to be well
enough known to yield good reporting from a large population,
even without intense shaking (Mak and Schorlemmer, 2016b).

It thus appears that the mismatch between observation and
prediction in the Dallas region reflects a decrease in seismicity.
The 2016 model assumed a constant level of human activity,
meaning wastewater injection rates remaining unchanged. How-
ever, unconventional oil development is tied closely to economic
factors (Campbell and Laherrére, 1998; Murray, 2016). Perhaps
due to changing oil prices, or in response to seismicity assumed
to be associated with wastewater injection, injection rates in
northern Texas diminished in 2016 rather than staying stable
(Hornbach ez al., 2016; Kuchment, 2017). As a result, the model
overpredicted the shaking in 2016. A similar but smaller decrease
in seismicity is also occurring in Oklahoma (Murray, 2016).

SUPPLEMENTING MISSING DATA

The fact that DYFI only has responses from about half of the
greater Oklahoma area prompts the question of how the data
set can be supplemented for a more thorough picture. Null
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A Figure 4. (a) 2016 one-year seismic hazard model for induced and natural earthquakes for the greater Oklahoma region (Petersen et al.,
[ 2016). (b) Maximum reported shaking recorded from DYFI in 2016 for this region. The color version of this figure is available only in the
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responses do not necessarily imply that no shaking has oc-
curred, and gaps between regions with reports of high shaking
where reports of shaking are low or missing are likely to reflect
a low population rather than a low amount of shaking. One
approach is to set nonreporting regions to intensity I, which is
“not felt” (Boatwright and Phillips, 2017). However, setting
null points to intensity I is similar to setting them to 0 in that
it also unfairly penalizes the map.
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A Figure 5. Comparison of 2016 map predictions and DYFI obser-
vations for all points with a DYFI response in the greater Okla-
homa region. The color version of this figure is available only
in the electronic edition.

One alternative is to use models of expected shaking
following known earthquakes to fill in sites without reported
DYFI intensities. The USGS ShakeMap program predicts
ground shaking following an earthquake, taking into account
its magnitude, location, and geologic setting (Wald ez i,
2005). Although it is a model, as opposed to the direct obser-
vations provided by DYFI, ShakeMap provides reasonably
accurate data augmentation in null regions and regions where
the reported shaking is surprisingly low given their locations
(Wald e al., 2012).

In 2016, 21 carthquakes with magnitude 4.0 or greater
occurred in the greater Oklahoma region. We selected a mini-
mum magnitude of 4.0 in order to reduce the difficulty of
assembling a dataset; this was done with the assumption that
the distribution of earthquakes across the region was suffi-
ciently spread out, such that smaller events would not produce
higher shaking than from the larger events. Figure 7a shows the
highest shaking modeled from the 21 earthquakes. ShakeMap
predicts no exceedances relative to the hazard map, but the
squared misfit is reasonably close to the original reported value.
Hence, we conclude that there is no extreme bias toward high
or low values in the ShakeMap predictions, and we treat the
latter as minimum estimates of the maximum shaking at points
without data.

Figure 7b shows the result of combining the ShakeMap
predictions and DYFI data. In this combined dataset, almost
60% of the sites have a shaking value (13,427 sites out of
22,560). Figure 8 shows the metrics based on this combined
dataset. Although the number of exceedances remains con-
stant, the number of sites increases, decreasing the fraction of
sites that exceed the predicted shaking. As a result, the fraction
of sites exceeding the map predictions is 1.28%, yielding
MO = 0.0028. The squared misfit decreases to M1 = 4.31.
These reductions suggest that the missing data, as well as
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anomalously low reports in areas of high shaking, made the
map appear to perform more poorly than it actually did.

TRENDS IN DATA

In addition to calculating metrics, comparing the maximum
observed and the predicted shakings (Figs. 3, 5, and 8) can
highlight trends in the data and show how the map perfor-

mance varies. The original DYFI data, in addition to maxi-
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had a different magnitude, the maximum DYFI
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given a known epicenter, and an epicentral dis-
tance from the site to each can be calculated. Fig-
ure 9b shows the predicted—observed plot as a
function of distance for the sites where epicentral distance is
known (96% of all DYFI observations). Both the predicted
and the observed shaking decrease with distance, as expected.
Exceedances arise primarily where the map predicts intensity
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Finally, we analyzed the spatial distribution of exceedances.
We grouped sites in the greater Oklahoma region into a coarse
1.2° x 1.4° grid, such that the expected number of exceedances
in each grid square was at least five. At this small scale, exceed-
ances cluster (Fig. 10). Many regions have zero exceedances,
leading to an incalculable fractional exceedance metric. The
lack of exceedances in the south shows the overprediction
in Dallas and north Texas. The high number in the northeast
portion of the map shows where predictions were lower than

the observed shaking.

CONCLUSIONS

The 2016 one-year national seismic hazard map for the central
and eastern United States performed very well. It predicted the
observed shaking well, as measured by both metrics. Because
hazard map assessment is a relatively new enterprise, with only
a few cases having been assessed thus far, there is currently no
defined threshold for good scores on M0 and M1 metrics.
This, along with the related question of how well a model
could realistically be expected to describe observations, remains
a question to be addressed in future work. However, the M0
fractional exceedance scores for the 2016 map are far lower
than those for maps in our past studies (Stein ez al, 2015;
Brooks et al, 2016). In our view, M0 = 0.0073 on the
national level and 0.0069 for the greater Oklahoma region
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indicate strong performance. The reduction to an even smaller
MO = 0.0028 when supplementing with ShakeMap data fur-
ther reinforces the supposition that with additional informa-
tion and a more thorough coverage of data, the hazard map
succeeds in what is trying to do.

As noted, a 5% increase in the average predicted shaking
for the national map would yield a perfect match between pre-
dicted and observed fractional exceedances. Such a small differ-
ence could easily occur by chance, related to which earthquakes
occur in the short time period sampled (Vanneste ez al., 2017).
The M1 squared misfit metric also demonstrates strong spatial
(and hence visual) similarities between the predicted and the
observed shaking maps. A map with a score of M0 = 0 may
not be perfect, as there can easily be regions of overprediction
balanced by areas of underprediction. However, when both
metrics were combined, they suggested strong performance
both in terms of fulfilling PSHA objectives and spatial accu-
racy. The model benefited from the fact that the 2016 seismic-
ity rates across this region were generally similar to those
observed during 2015 in Oklahoma.

The largest misfit occurred in northeastern Texas, where
shaking was substantially overpredicted. This appears to reflect
the limitations of the map’s assumption that carthquake rates
would remain relatively stationary, which would not be the case
if water injection rates change due to regulatory or economic
forces. Although this change highlights a limitation of the
model, it indicates the value of making hazard maps for such
short timescales in areas where induced seismicity is a major fac-
tor; economic and regulatory factors can change wastewater in-
jection rates rapidly (Petersen e al., 2017). This situation differs
from natural seismicity hazard maps, where any time-dependent
(earthquake cycle) effects occur on longer timescales.

8 Seismological Research Letters Volume , Number

Independently assessing successive one-year maps offers
the prospect of improving the models used to generate them,
in that the factors contributing to the map’s performance (spa-
tial variability, magnitude, ground-motion prediction model,
ctc.) can be evaluated. Similarly, as more is learned about the
mechanisms of induced seismicity, this information can be
included in the modeling. If successive models continue to per-
form well, or potentially even improve, they can be valuable
tools for policy makers in managing the seismic risks associated
with unconventional oil and gas productions.

DATA AND RESOURCES

The 2016 One-Year Seismic Hazard Model for the Central and
Eastern United States from Induced and Natural Earthquakes
was downloaded from https://www.sciencebase.gov/catalog/
item/571a8e0ee4h071321fe22e7a. Maximum intensity “Did
You Feel It?” (DYFI) data were provided by David Wald and
Gregory Smoczyk and can be viewed at http://usgs.maps.arcgis.
com/apps/webappviewer/index.htm(?id=9310990e7ce84e3b85671
09616b0944d. ShakeMap data were found on the U.S. Geological
Survey (USGS) ShakeMap archives available at https://
earthquake.usgs.gov/data/shakemap/ (Quitoriano ez 4/, 2017).
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