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Behaviour and physiology are altered in reproducing animals, but neuronal
circuits that regulate these changes remain largely unknown. Insights into
mechanisms that regulate and possibly coordinate reproduction-related
traits could be gleaned from the study of sex pheromones that can improve
the reproductive success of potential mating partners. In Caenorhabditis
elegans, the prominent male pheromone, ascr#10, modifies reproductive be-
haviour and several aspects of reproductive physiology in hermaphrodite
recipients, including improving oocyte quality. Here we show that a circuit
that contains serotonin-producing and serotonin-uptaking neurons plays a
key role in mediating effects of ascr#10 on germline development and egg
laying behaviour. We also demonstrate that increased serotonin signalling
promotes proliferation of germline progenitors in adult hermaphrodites.
Our results establish a role for serotonin in maintaining germline quality
and highlight a simple neuronal circuit that acts as a linchpin that couples
food intake, mating behaviour, reproductive output, and germline renewal
and provisioning.
1. Introduction
Males and females of the same species employ a rich repertoire of signals to
improve reproductive success, including sex pheromones that can modulate
behaviour and reproductive physiology of potential mates [1]. The case of the
most abundant male-biased ascaroside pheromone in Caenorhabditis elegans,
ascr#10 [2], is instructive. This small molecule alters several behaviours.
Hermaphrodites exposed to physiological concentrations of ascr#10 reduce
exploratory movement [3]. A shift from global to local exploration is generally
associatedwith increased exploitation of local resources [4]. ascr#10 also increases
mating receptivity in hermaphrodites and promotes egg laying in already
reproducing animals [3].

In addition to these behavioural changes, ascr#10 alters hermaphrodite repro-
ductive physiology. It improves sperm guidance [5] and affects several aspects of
development of the oogenic germline. Exposure to ascr#10 increases mitotic pro-
liferation of germline precursor cells (GPCs) [6]. In C. elegans hermaphrodites,
GPCs proliferate and, following the irreversible switch from spermatogenesis to
oogenesis, differentiate into oocytes; oocyte production can continue well into
adulthood as long as sperm is available for fertilization [7]. The increased GPC
proliferation in the presence of ascr#10 has no fewer than two consequences.
First, it increases stores of GPCs as theworms age [8]. Second, it improves quality
of the oogenic germline. The improvement is manifested in a more youthful
oocyte morphology, decreased rates of chromosomal nondisjunction, and lower
embryonic lethality both in the wild-type and mutant genetic backgrounds [6].
A likely mechanism responsible for the improved oocyte quality on ascr#10 is
that the majority of the extra-generated GPCs undergo physiological cell death,
and the salvaged components (nutrients, metabolites, organelles, etc.) are used
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Figure 1. Serotonin signalling is required for the beneficial effects of ascr#10 on the oogenic germline. (a) Unlike wild-type N2 hermaphrodites [6], tph-1 her-
maphrodites show no increase of germline precursor divisions in the presence of ascr#10. Germline proliferation was quantified as ‘mitotic events’ detected using
phospho-Histone 3 ( pH3) staining (magenta puncta indicated by an arrow in the inset) during day 2 of adulthood. Germline stained with DAPI, shown in blue. (b)
Unlike wild-type N2 hermaphrodites [6], tph-1 hermaphrodites show no increase of germline cell death in the presence of ascr#10. Quantified using SYTO12 staining
(indicated with an arrow in the inset) during day 3 of adulthood. In (a,b), black bars denote means. In (a,b), scale bars in the insets are 10 µm. (c) Percentage of
unhatched embryos on versus off ascr#10 in the progeny of N2, tph-1 and mod-1 self-sperm depleted hermaphrodites mated on day 5 of adulthood to young males.
(d ) Percentage of unhatched embryos on versus off ascr#10 in the self-progeny of N2, tph-1 and mod-1 hermaphrodites during days 4 and 5 of adulthood. In (c,d ),
total numbers of tested embryos are indicated inside relevant bars. In (d ), dots represent percentage of embryonic lethality in independent experiments. Asterisks
indicate levels of statistical significance (* for p < 0.05, *** for p < 0.001). Kolmogorov–Smirnov test in (a,b), binomial test in (c,d ). See electronic supplementary
material, table S1 for primary data and details of statistical analyses. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20220913

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

30
 N

ov
em

be
r 

20
22

 

to improve the quality of the surviving oocytes [6]. That an
external signal can elicit these effects demonstrates that the
nervous system can regulate germline quality, but the specific
circuits are not known.

Some effects of ascr#10 are known to require the function
of a specific serotonin circuit that contains NSM and HSN
neurons that signal via the mod-1 receptor [3,9], the same
circuit that regulates exploratory behaviour [10]. We therefore
tested whether the same serotonin signalling regulates
quality of the oogenic germline.
2. Results and discussion
(a) The serotonin circuit that is required for ascr#10

improvement of oocyte quality
There are five classes of serotonergic neurons in C. elegans
hermaphrodites; three of them (NSM, ADF and HSN) express
a serotonin biosynthetic enzyme TPH-1 and can therefore
produce serotonin, whereas two (AIM and RIH) can only
uptake serotonin synthesized elsewhere [11]. Of the six anno-
tated high-affinity and two low-affinity serotonin receptors,
only one, MOD-1, is required for the known effects of
ascr#10 [3,9,12]. Exposure to ascr#10 leads to increased sero-
tonin signalling from two classes of producing neurons, NSM
and HSN, that acts via the MOD-1 receptor [3,12] expressed
in 40 classes of neurons [13]. We sought to test whether
the NSM/HSN/MOD-1 neuronal circuit also mediates the
beneficial effects of ascr#10 on the oogenic germline.

Exposure to ascr#10 (see Methods for details) increased
GPC proliferation in wild-type N2 hermaphrodites [6], but
no increase was seen in tph-1 (figure 1a) or mod-1 (electronic
supplementary material, figure S1a) mutants. In the presence
of ascr#10, incidence of physiological cell death in the germline
increased only if GPC proliferation was increased [6]. Consist-
ent with this results, tph-1 mutants showed no increase of
germline cell death, likely because theywere unable to increase
germline proliferation in the presence of ascr#10 (figure 1b).
The ultimate effect of ascr#10 on oocyte quality is increased
probabilityof successful embryonic development [6]. Exposure
to ascr#10 nearly halved embryonic lethality in broods of wild-
type hermaphrodites that were mated just after exhausting
their self-sperm supply (figure 1c). The same was the case in
self-broods of older wild-type hermaphrodites (figure 1d ).
Because improvements occurred regardless of the source of
sperm, these findings further support the idea that ascr#10
improves oocyte quality [6]. Loss-of-function alleles of tph-1
or mod-1 precluded this quality improvement by
the pheromone (figure 1c,d). We concluded, that pheromone
effects on the oogenic germline require serotonin signalling,
specifically acting via the MOD-1 receptor.

(b) Increased serotonin signalling promotes germline
proliferation

Serotonin signalling is increased following exposure to
ascr#10 [3,12] and is required for ascr#10 effects on the oogenic
germline (figure 1). Can increased serotonin signalling alone,
without exogenous male pheromone, affect the hermaphrodite
germline as does ascr#10? Loss of function mutations in the
serotonin transporter gene mod-5 reduce serotonin uptake
and therefore increase the amount of serotonin available at
synapses effectively increasing serotonin signalling [14]. We
first examined several strains for the number of GPCs, a
measure that is a convenient proxy for elevated germline
proliferation [6]. The number of GPCs in the otherwise
untreated hermaphrodites carrying mod-5(lf ) mutations was
significantly higher than in the wild-type (average approx.
equal to 61 [15]) or in any of the 31 other mutant strains we
tested (figure 2a), suggesting that higher levels of serotonin sig-
nalling lead to the increase in the number of GPCs. The mod-5
gene is expressed in four classes of serotonin neurons including
producing (NSM and ADF) and uptaking-only (AIM and RIH)
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Figure 2. Increased serotonin signalling increases the number of germline precursors. (a) GPC counts from 39 experiments using 31 mutant strains tested in [3] and
shown in the electronic supplementary material, table S2. Three experiments involving mod-5 hermaphrodites—two experiments using mod-5(n822), averages =
66.7 and 66, and one experiment using mod-5(n3314), average =64.6. Two experiments in which in mod-5(n3314) mutants MOD-5 function was restored in
neurons including the absorbing AIM and RIH (AN::mod-5), and two experiments in which in mod-5(n3314) mutants MOD-5 function was restored in neurons
including the producing NSM and ADF (PN::mod-5). Each diamond represents the mean value from one experiment. Dashed lines delimit three standard deviations
above and below the mean of all strains except mod-5. See electronic supplementary material, figure S1b for more detail. (b) Representative images of pH3 staining
(magenta) of gonads (DAPI stain in blue) in wild-type N2 and mod-5 hermaphrodites aged to mid-L4 (40 h), pre-reproductive adult (52 h) and day 2 of adulthood
(72 h). Scale bars are 20 µm. (c) Quantification of cell divisions ( pH3 staining) in the Progenitor Zone in the germlines of N2 and mod-5 hermaphrodites. In none of
the experiments in this figure, were hermaphrodites treated with ascr#10. Asterisks indicate levels of statistical significance (* for p < 0.05, ** for p < 0.01;
Kolmogorov–Smirnov test). See electronic supplementary material, table S1 for primary data and details of statistical analyses. (Online version in colour.)
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cells [11,13]. Whereas expressing MOD-5 in the producing
NSM and ADF neurons did not rescue the mod-5 defect,
expression in a set of cells that included AIMs and RIH, but
no serotonin-producing neurons, restored the wild-type GPC
numbers (figure 2a).

Proliferation of the germline precursor cells is reduced in
adult C. elegans hermaphrodites compared to late larvae [16].
The untreated mod-5(lf ) adult hermaphrodites showed increa-
sed germline proliferation (figure 2b,c) that was comparable
to that of wild-type worms exposed to ascr#10 [6].

(c) The NSM/HSN/MOD-1 circuit regulates egg laying in
response to ascr#10

Caenorhabditis elegans hermaphrodites continuously produce
embryos as long as oocytes and sperm remain available. If the
rate of egg laying is lower than the rate of fertilization, embryos
accumulate in the uterus (figure 3a). Serotonin signal fromHSN
neurons stimulates egg laying [18], while the loss of tph-1
reduces egg laying and thus increases the number of embryos
retained in the uterus [19]. Exposure to ascr#10 increases seroto-
nin signalling fromNSM and HSN neurons and stimulates egg
laying [3]. We tested the role of the NSM/HSN/MOD-1 circuit
in the pheromone effect on egg laying. The loss of the TPH-1
function in all neurons expressing this enzyme or specifically
in NSM or HSN neurons completely negated the stimulating
effects of ascr#10 on egg laying (figure 3b). Loss-of-function
mod-1 mutants retained about the same number of embryos
as the wild-type, as reported previously [20], but were unable
to increase egg laying on ascr#10.

(d) A model for coordinated effects of serotonin on
Caenorhabditis elegans reproduction

Our results implicate NSM, HSN and AIM/RIH (i.e. the
majority of serotonin neurons) in mediating reproductive
functions in C. elegans hermaphrodites (figure 3c). Increased
signalling from the serotonin-producing NSM and HSN
promotes several reproductive traits, whereas AIM/RIH
limit this signalling by removing serotonin. Downstream of
the serotonin balance established by the NSM/HSN versus
AIM/RIH antagonism is the MOD-1 receptor that is expres-
sed in 40 classes of neurons. We infer that further
downstream signalling from a currently unknown subset of
these neurons modulates, via currently unknown but presum-
ably neurotransmitter and/or neuropeptide signals, several
reproductive traits described here. Determiningwhich neurons
and signals are involved in these processes promises to
advance understanding of how the nervous system controls
reproduction and reveal the extent to which reproductive
processes are coordinately regulated.

The roles of NSM and HSN neurons in reproduction are
particularly interesting. Serotonin release from HSN neurons
stimulates egg laying [18]. Here we showed that increased
serotonin signalling (due to the loss of serotonin uptake via
MOD-5) increases germline proliferation. This suggests that
the signal that promotes egg laying episodes also promotes
production of germline precursors, presumably to replenish
oocyte stores depleted by offspring production. The pharyn-
geal NSM are enteric sensory neurons that detect food
ingestion and release serotonin as a signal [21]. Therefore,
increased serotonin signalling from NSM likely promotes
processes associated with greater food ingestion. Consistent
with this idea, ascr#10 reduces exploration in a manner that
depends on serotonin signalling from NSM [3,12].

These functions of NSM and HSN neurons suggest a
model for the role of serotonin in orchestrating multiple repro-
duction-related events. On the one hand, increased serotonin
signalling on ascr#10 reduces exploration leading to a focus
on consumption of local resources and greatermating receptiv-
ity [3]. On the other hand, increased serotonin signalling
increases egg laying and proliferation of germline precursors.
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The physiological cell death of the majority of extra germline
precursors liberates nutrients, organelles, etc. that are used to
improve the quality of surviving oocytes. In thisway, the circuit
that consists of the serotonin-producing NSM and HSN neur-
ons, the MOD-5 transporter in AIM/RIH neurons, and the
MOD-1 receptor coordinates resource consumption required
for greater reproductive output, with reproduction-promoting
behaviours, and matches quality and quantity of produced
oocytes to demands imposed by germline expenditure and
the presence of potential mates. As such, this circuit may
serve as an important regulator of the trade-off between
somatic maintenance and germline investment. As discussed
elsewhere [6], ascr#10 promotes greater resource allocation to
progeny production at the expense of the soma—although
this pheromone improves the quality of the oogenic germline
[6], it shortens the lifespan [8,22]. It is not currently clear
whether male signalling to hermaphrodites via ascr#10 reflects
sexual conflict or cooperation.
(e) Is serotonin a conserved regulator of reproduction?
Evidence indicates that serotonin regulates reproduction-
related traits in different species in ways that may be
conserved. For example, serotonin signalling reduces explora-
tory movement in C. elegans [10], D. melanogaster [23] and
mice [24]. InD. melanogaster, serotonin is involved in regulating
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a dietary switch that occurs in females following mating and
manages the balance of nutrients, a role that may be conserved
in other animals [25]. In Drosophila females, mating causes
changes in the levels and distribution of serotonin in the
termini of neurons that innervate reproductive organs [26].
In mosquitoes, serotonin promotes ovarian development
[27]. In mammals, serotonin exerts complex effects on the
germline [28] and on reproduction-related behaviours [29].
Some, of these effects may be shared with other vertebrates
[30]. Future comparative work will benefit from standardizing
experimental paradigms across species. We also suggest that
precise definition of the circuits (sources of signal, receptors
and sites of action) involved in regulating specific behaviours
and physiological processes, as we reported here, will be par-
ticularly important for inferring conserved roles of serotonin
in regulating reproductive functions in animals.
Soc.B
289:20220913
3. Materials and methods
The following stains were used: wild-type N2 (CGC), MT15434
tph-1(mg280) (CGC), MT9668 mod-1(ok103) (CGC), AN::mod-5
mbr-1p::mod-5;mod-5(n3314) (Sze lab), PN::mod-5 tph-1p::mod-5;
mod-5(n3314) (Sze lab), MT8944 mod-5(n822) (Koelle lab),
MT9772 mod-5(n3314) (CGC), CX13576 tph-1(mg280) II; kySi56
IV; kyEx4107[egl-6::nCre] (aka tph-1(lf ) in HSN) (Bargmann lab)
and CX13572 tph-1(mg280) II; kySi56 IV; kyEx4057[ceh-2::nCre]
(aka tph-1(lf ) in NSM) (Bargmann lab). Standard, previously
published methods were used [3,6,9,12,15]. All experimental
treatments were processed in parallel with matched controls.
Worms were synchronized by hypochlorite treatment and over-
night incubation in M9, after which the synchronized L1 larvae
were placed (in small populations, 10 or 30 worms, depending
on the experiment) on agar plates seeded with E. coli OP50.
Pre-reproductive adults (48 h post-release from L1 arrest) were
transferred to OP50-seeded plates that were either control or con-
ditioned with synthetic ascr#10 (gift of F. C. Schroeder). This
protocol ensured that hermaphrodites were exposed to phero-
mone after the switch from spermatogenesis to oogenesis and
during their pheromone-sensitive age [6]. For assessing embryo-
nic lethality following mating, day 5 hermaphrodites (these have
exhausted self-sperm) were singled and mated to one young
male for 2 h. Numbers of live and dead progeny were counted
for 3 days thereafter. For assessing embryonic lethality in self-
broods, progeny produced during the last day of self-fertility
(end of day 4 through day 5 of adulthood) was considered.
More detailed protocol can be found in [6]. For quantifying
germline proliferation, gonads were dissected and stained with
Anti-Histone H3 (phospho S10) antibodies following a modified
protocol of [31], as described in [6], and only prophase nuclei
were counted. For counting cell death events, we used SYTO12
(Invitrogen) and the protocol by [32] as detailed in [6]. For
GPC counts, on day 5 of adulthood, hermaphrodites were
stained with DAPI (40,6-diamidino-2-phenylindole) as described
[8] and the germline precursor cells were counted. The boundary
between the Progenitor Zone and the more proximal Transition
Zone is defined by the appearance of crescent-shaped nuclei
that have progressed to leptotene/zygotene stages of meiotic
prophase [33,34]. The AN::mod-5 (absorbing neurons) and PN::
mod-5 (producing neurons) strains (gift of J. Y. Sze) were
reported in [11]. In these mod-5 mutant strains, the expression
of the wild-type MOD-5 was restored under control of heter-
ologous promoters. The expression of the AN::mod-5 was
directed by a mbr-1 promoter. The expression of the mbr-1 gene
can be detected in 28 classes of neurons [13], but the only overlap
with the pattern of mod-5 expression is in AIM and RIH neurons.
The expression of the PN::mod-5 was directed by the BCD region
of the tph-1 promoter [35]. The overlap between the expression
pattern of this promoter and the mod-5 gene is in two neurons:
NSM and ADF. To quantify the number of embryos in the
uterus, 72 h adult hermaphrodites were transferred to either con-
trol or ascr#10 plates for 1 h. After that time, the worms were
placed individually in domed PCR caps containing 20 µl of
hypochlorite solution and allowed to dissolve. After the her-
maphrodite body disintegrated, the number of fertilized
embryos was counted. Some strains were also tested at 96 h
post-release from L1 arrest. The strains in which the tph-1 was
deleted in either NSM or in HSN neurons were reported in [10].
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