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The majority of nematodes are gonochoristic (dioecious) with distinct male and female sexes, but the best-studied species,
Caenorhabditis elegans, is a self-fertile hermaphrodite. The sequencing of the genomes of C. elegans and a second hermaph-
rodite, C. briggsae, was facilitated in part by the low amount of natural heterozygosity, which typifies selfing species.
Ongoing genome projects for gonochoristic Caenorhabditis species seek to approximate this condition by intense inbreeding
prior to sequencing. Here we show that despite this inbreeding, the heterozygous fraction of the whole genome shotgun
assemblies of three gonochoristic Caenorhabditis species, C. brenneri, C. remanei, and C. japonica, is considerable. We first
demonstrate experimentally that independently assembled sequence variants in C. remanei and C. brenneri are allelic. We
then present gene-based approaches for recognizing heterozygous regions of WGS assemblies. We also develop a simple
method for quantifying heterozygosity that can be applied to assemblies lacking gene annotations. Consistently we find
that ;10% and 30% of the C. remanei and C. brenneri genomes, respectively, are represented by two alleles in the assemblies.
Heterozygosity is restricted to autosomes and its retention is accompanied by substantial inbreeding depression, sug-
gesting that it is caused by multiple recessive deleterious alleles and not merely by chance. Both the overall amount and
chromosomal distribution of heterozygous DNA is highly variable between assemblies of close relatives produced by
identical methodologies, and allele frequencies have continued to change after strains were sequenced. Our results
highlight the impact of mating systems on genome sequencing projects.

[Supplemental material is available online at http://www.genome.org.]

Whereas originally large genomes were sequenced using minimal
tiling paths of genomic DNA clones (C. elegans Sequencing Con-
sortium 1998), more recently the whole-genome shotgun (WGS)
method has greatly expedited the sequencing pipeline. An im-
portant step in this approach is the post-sequencing assembly of
relatively short sequence reads. Because assembly critically relies
on finding perfect (or nearly perfect) overlaps between individual
reads, this methodology is most efficient for species with haploid
or nearly homozygous diploid genomes with relatively few re-
petitive sequences. Indeed the first genomes sequenced using the
WGS approach contained little heterozygosity because they were
derived from highly inbred laboratory strains (e.g., mouse [Mouse
Genome Sequencing Consortium 2002]) or selfing hermaphro-
ditic species (e.g., Caenorhabditis briggsae [Stein et al. 2003]). Even
the genomes of non-inbred, outcrossing species (e.g., human) can
be assembled, although with greater difficulty, provided they have
relatively low genetic diversity (Venter et al. 2001; Istrail et al.
2004; Levy et al. 2007).

Reconstructing genomes from WGS reads proves more chal-
lenging for highly polymorphic species. If DNA from a single
outbred individual provides sufficient material for sequencing,
then each haplotype has the same read coverage and can be

assembled independently (e.g., two species of ascidian Ciona
[Vinson et al. 2005; Kim et al. 2007; Small et al. 2007] and the sea
urchin Strongylocentrotus purpuratus [Sea Urchin Genome Se-
quencing Consortium 2006]). But WGS sequencing is now being
applied to genomes from small outcrossing organisms with large
natural effective population sizes and considerable genetic di-
versity (Richards et al. 2005; Drosophila 12 Genome Consortium
2007; Ghedin et al. 2007), and additional approaches may be re-
quired. In particular, genomes that are a mosaic of homozygous
and heterozygous regions are particularly challenging, as paralo-
gous genes and alleles can be easily confused in fragmented WGS
assemblies, especially when the former are recent duplications and
the latter are highly differentiated.

The nematode Caenorhabditis elegans was chosen for genetic
study in part for its mode of reproduction, which combines self-
fertile hermaphrodites and facultative cross-fertile males (Brenner
1974). Vigorous, completely homozygous strains of hermaphro-
ditic nematodes are easily obtained, and this facilitated the se-
quencing and assembly of the genomes of both C. elegans (C. elegans
Sequencing Consortium 1998) and C. briggsae (Stein et al. 2003),
a closely related selfing species. However, C. elegans and C. briggsae
independently evolved selfing from gonochoristic ancestors, which
had distinct male and female sexes (Kiontke et al. 2004; Nayak et al.
2005; Hill et al. 2006), and the majority of extant species in the
family Rhabditidae retain this ancestral mating system (Kiontke
et al. 2007). The Washington University Genome Sequencing
Center is currently in various stages of finishing the WGS assem-
blies of three gonochoristic Caenorhabditis species: C. remanei, C.
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brenneri, and C. japonica. Although anatomically very similar to
their selfing relatives, they are known to have dramatically higher
levels of genetic variation (Graustein et al. 2002; Cutter and Payseur
2003; Haag and Ackerman 2005; Cutter et al. 2006). Therefore, we
sought to analyze the effects of allogamic sexual reproduction on
the sequences and WGS assemblies of otherwise similar genomes of
gonochoristic Caenorhabditis nematodes.

Results

The expected amount of retained heterozygosity
following inbreeding

Because natural isolates of C. brenneri, C. remanei, and C. japonica
were known to harbor high levels of genetic variation, strains se-
lected for sequencing were first inbred. As attempts to establish
inbred lines by strict sibling (sib) mating invariably failed (S. Baird,
pers. comm.), a modified isofemale-line approach was used. Each
generation was founded by a single gravid female that mated with
one or more males; therefore, all individuals were full or, if multiple
matings occurred, half-siblings. Assuming extreme cases of exclu-
sive full or half-sib inbreeding and no selection, we can compute
the expected range of retained heterozygosity. For full sibs, the ex-
tent of expected heterozygosity (ht) is given by ht » 1.17h0 (0.809)t,
when t @ 1, where h0 is the initial heterozygosity and t is the
number of generations of inbreeding (Nagylaki 1992). For half-sibs,
ht » 1.106h0 (0.890)t. After 20 generations of inbreeding, ht is ;1.7%
of h0 in the full-sib case and 10.8% in the half-sib case.

Many loci in the sequenced genomes of C. remanei and C. brenneri
are represented by two alleles

From the individual reads of the WGS sequences of the C. brenneri
genome (not yet assembled at the time), we manually assembled
the orthologs of 23 C. elegans genes (Table 1; Supplemental Table
S1). Among these, nine assembled as two distinct sequence var-
iants. Whereas some of these variants displayed considerable di-
vergence at the nucleotide level, most were over 99% identical at
the amino acid level (Supplemental Table S1). Gene models and
depths of sequence coverage for C. brenneri genes are presented in
Supplemental Figure S1. Because nearly 40% of investigated C.
brenneri loci were found to be dimorphic (i.e., represented by two
similar sequence variants), we sought to confirm these observa-
tions by applying the same methodology to other gonochoristic
nematodes. Indeed, two independent contigs were assembled
from the NCBI sequence traces for a number of C. remanei and C.
japonica genes (Table 2; Supplemental Table S1). We also found
that three C. remanei genes (fem-1, fem-3, and tra-3) exist as two
distinct variants in the assembled sequence.

The pairs of independently assembled variants homologous to
single-copy C. elegans genes could represent either genuine copy-
number differences or residual heterozygosity that was retained de-
spite inbreeding prior to sequencing. Three lines of experimental
evidence indicate that most of these variants are indeed alleles. First,
all three possible genotypes were observed in individual nematodes
for loci tested with variant-specific genotyping assays (Table 3).
Second, for two loci inC. remaneiandone locus inC.brenneri, the two
forms segregated in genetic crosses (Table 4). Third, we found con-
siderable changes in the relative frequencies of variants between the
inbred sequenced strains and their pre-inbreeding ancestors in both
C. brenneri and C. remanei (see below). These results provide experi-
mental confirmation that many sequence variants from nematode
WGS assemblies represent alternative alleles rather than paralogs.

Chromosomal distribution of heterozygous loci in C. brenneri
and C. remanei

Because our initial sample of genes indicated that potentially large
amounts of the gonochoristic nematode assemblies were hetero-
zygous, we sought to verify that heterozygosity was in fact general.
At the time, only the C. remanei assembly had an associated set of
gene predictions, and genetic linkage maps are not available for C.
brenneri and C. remanei. However, all Caenorhabditis nematodes
studied so far have five pairs of autosomes and either one (in males)
or two (in females/hermaphrodites) X chromosomes (Baird 2002;
Hillier et al. 2007). Further, both microsynteny (i.e., that two genes
closely linked in one species are also linked in another) and chro-
mosomal synteny (i.e., that two genes on the same chromosome in
one species are also found on the same chromosome in another
species) are high between C. elegans and C. briggsae (Kuwabara and
Shah 1994; Haag and Kimble 2000; Haag et al. 2002; Hillier et al.
2007). Because the phylogenetic distance between these two species
is the same as that between C. elegans and C. brenneri (Kiontke et al.

Table 1. Manually assembled C. brenneri homologs of
C. elegans queries

Gene name Variants

Diversity Genome position

Exon Noncoding C. elegans C. briggsae

lin-17A 2 0.024 0.118 I: 2.7 I: 4.9
lin-17B 2 NA 0.035 NA NA
fog-1 2 0.017 0.074 I: 3.2 I: 3.2
ric-19 2 0.014 0.086 I: 3.8 I: 1.5
unc-11 2 0.003 0.046 I: 3.8 I: 1.5
ksr-2 1 I: 12.1 I: 10.1
sur-2 2 0.033 0.259 I: 14.8 I: 10.9
F10E7.9 2 0.014 0.031 II: 7.1 II: 0.5
ulp-4 2 0 0.064 II: 8.1 II: 3.1
let-23 1 II: 9.2 II: 0.7
lin-7 2 0.009 0.1 II: 14.3 II: 0.3
acr-20 2 0 (0) 0.011 II: 14.4 II: 0.2
mes-2 2 0.007 0.017 II: 14.4 II: 0.3
par-2 1 III: 1.1 III: 12.2
oig-1 1 III: 6.5 III: 1.4
unc-47 1 III: 10.2 III: 4.4
unc-119 1 III: 10.9 III: 8.1
unc-25 2 0.047 0.377 III: 12.9 III: 0.8
ama-1 1 IV: 4.3 IV: 13.5
flp-13 2 0.027 0.072 IV: 7.7 IV: 5.9
C55F2.2 2 0.014 0.147 IV: 7.9 IV: 10.8
C04G2.1 2 0.028 0.046 IV: 10.1 IV: 7.8
mec-3 1 IV: 10.5 IV: 12.3
lin-3 2 0.006 0.015 IV: 11.1 IV: 5.7
bcc-1 2 0.012 0.03 IV: 11.1 IV: 5.7
let-99 1 IV: 12.6 III: 5.4
lag-2 1 V: 3.2 V: 2.6
unc-46 2 0 0.046 V: 5.1 V: 5.2
snb-1 1 V: 6.7 V: 9.9
unc-42 2 0.020 0.067 V: 9.8 V: 11.3
sel-10 1 V: 13.8 V: 0.2
ssu-1 1 V: 20.1 V: 15.2
sli-1 1 X: 0.7 X: 0.3
gap-1 1 X: 2.2 X: 7.7
lin-18 1 X: 4.0 X: 8.9
cdf-1 1 X: 6.5 X: 11.8
sng-1 1 X: 7.3 X: 12.7
unc-18 1 X: 7.7 X: 13.1
unc-115 1 X: 10.1 X: 7.2
alr-1 1 X: 11.1 X: 5.7
unc-84 1 X: 13.6 X: 19.2
unc-7 1 X: 15.1 X: 18.2
mec-4 1 X: 16.8 X: 1.5
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2004), we used the C. elegans linkage map as a reasonable proxy for
the genomes of both C. brenneri and C. remanei.

The 23 original C. brenneri loci described above reside on all
six chromosomes in C. elegans, but heterozygous loci were found
only on chromosomes I, II, III, and IV, and absent from V and
X. We also noticed two pairs of closely linked heterozygous
loci—lin-17/ric-19 and flp-13/C55F2.2. To confirm these observa-
tions, we examined 19 additional genes (SOM) (Fig. 1; Table 1;
Supplemental Table S1). Of these, seven that were predicted to be
in close proximity to heterozygous loci were all represented by two
contigs. We next selected 12 genes from previously unsampled
regions of chromosomes IV, V, and X. Of these, unc-46 IV and unc-
42 V were heterozygous, but none of the X-linked loci were. The
fraction of autosomal loci (among the genes selected without
regard to specific chromosomal position) that show evidence of
heterozygosity is ;0.45. Given that none of the 11 X-linked genes
showed evidence of two allelic variants, it is highly unlikely (p »
0.5511 = 1.4 3 10!3) that the X chromosome has the same density
of heterozygous genes as do the autosomes.

Because gene predictions of the preliminary assembly of the
C. remanei genome were available from WormBase (http://ftp.
wormbase.org), we developed a gene-based method to systemati-
cally scan the assembly for likely heterozygous regions. Our ap-
proach began by first defining a set of 14,530 single-copy genes in
C. elegans (62% of the total). We then used these to query the pre-
dicted C. remanei proteome via BLASTP searches. Best hits that
identified a second, very similar protein prediction in C. remanei
(see Methods for details) were retained and further filtered to
remove pairs with low sequence identity and those that resided on
the same contig and thus likely represented tandem duplicates.
Despite these filters some bona fide recently duplicated paralogs

may not be distinguished from alleles based on their sequences
alone. However, separately assembled alleles should differ from
paralogs in having approximately half the WGS read coverage (or
‘‘depth’’), because the total read depth of a heterozygous locus is
distributed between two different alleles. Thus, dimorphic gene
predictions that represent allelic variants should have lower read
depth than those representing homozygous paralogous genes. Fi-
nally, true heterozygosity should exist in blocks defined by re-
combination. The correspondence between regions of high
dimorphic gene density and low WGS read depth thus provides
a simple computational assay for allelism (Fig. 2).

The above analysis indicates that relatively few (6–29) genes
on chromosomes I, II, III, V, and X are heterozygous in the
C. remanei assembly. In contrast, approximately three-quarters of
the total number of dimorphic loci (414) lie in the central part
of chromosome IV (Supplemental Table S2). This approach was
validated by the recovery of all dimorphic genes discovered in
manual analyses. As predicted, a clear depression of read depth was
seen in most of the dimorphic gene predictions matching C. elegans
queries in this region, as well as in smaller regions of LGI and LGV
that also showed high density of dimorphic genes (Fig. 2; Supple-
mental Table S2). This phenomenon is also observed for manually
assembled C. brenneri genes (Supplemental Figs. S1, S2), further
supporting our inference of heterozygosity in that species.

The high concentration of dimorphic genes on the C. remanei
LGIV suggests that most of it was heterozygous in the inbred strain
PB4641 at the time of sequencing. The specific region involved,
that homologous to the central 12 Mb of C. elegans chromosome IV,
comprises roughly 10% of the genome. The extreme apparent
heterozygosity of PB4641 LGIV is not due to a general suppression
of recombination, however. Seventeen of 382 chromosomes scored
for Cr-fem-1 and Cr-fem-3 were recombinant, giving a map distance
of roughly 4.4 cM. This is similar to the 2.2 cM distance between
their C. elegans orthologs, which lie near the center of LGIV.

Species differences in degree of allelic divergence

We observed that some allele pairs differed by single nucleotide
polymorphisms (SNPs), while others had insertion/deletion
(indel) differences of up to 260 bp and nonalignable regions
(Supplemental Fig. S3; Supplemental Table S1). We estimated the
average extent of nucleotide diversity in the coding regions of C.
brenneri and C. remanei as 1.8 3 10!2 and 0.6 3 10!2, respectively,
the vast majority of it being synonymous (Supplemental Table S1),
whereas diversity in the noncoding regions is as much as an order
of magnitude higher (Table 1; Supplemental Table S1). These
estimates are over 20-fold higher than those for the human ge-
nome (Sachidanandam et al. 2001), and are comparable to those
of Drosophila species (Begun et al. 2007).

We found four loci (lin-3, flp-13, C55F2.2, and bcc-1) whose
orthologs are represented by two alleles in both C. brenneri and

Table 2. Manually assembled C. remanei and C. japonica
homologs of C. elegans queries

Gene name Variants

Diversity Genome position

Exon Noncoding C. elegans C. briggsae

C. remanei
sur-2 1 I: 14.8 I: 10.9
tra-2 1 II: 7.0 II: 5.1
acr-14 1 II: 8.2 II: 3.3
par-2 1 III: 1.1 III: 12.2
lin-12 1 III: 9.1 III: 8.7
glp-1 1 III: 9.1 III: 8.7
ama-1 1 IV: 4.3 IV: 13.5
flp-13 2 0.006 0.014 IV: 7.7 IV: 5.9
C55F2.2 2 0.008 0.011 IV: 7.9 IV: 10.8
C04G2.1 1 IV: 10.1 IV: 7.8
lin-3 2 0.002 0.008 IV: 11.1 IV: 5.7
bcc-1 2 0.009 0.019 IV: 11.1 IV: 5.7
odr-3 1 V: 13.2 V: 8.8

C. japonica
sur-2 2 0.047 0.117 I: 14.8 I: 10.9
acr-14 2 II: 8.2 II: 3.3
par-2 1 III: 1.1 III: 12.2
lin-12 1 III: 9.1 III: 8.7
glp-1 1 III: 9.1 III: 8.7
ama-1 1 IV: 4.3 IV: 13.5
flp-13 1 IV: 7.7 IV: 5.9
C55F2.2 1 IV: 7.9 IV: 10.8
C04G2.1 1 IV: 10.1 IV: 7.8
lin-3 1 IV: 11.1 IV: 5.7
lag-2 1 V: 3.2 V: 2.6
odr-3 1 V: 13.2 V: 8.8

Table 3. Genotypes of randomly picked individuals from
C. brenneri PB2801 and C. remanei PB4641

Species Gene AA AB BB

C. brenneri fog-1 38 0 0
C. brenneri sur-2 5 14 6
C. brenneri lin-7 39 6 1
C. remanei fem-1 22 44 26
C. remanei fem-3 30 39 15
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C. remanei. In all four cases allelic divergence was consistently
higher in C. brenneri (Tables 1, 2; Supplemental Table S1). For ex-
ample, when only coding sequences were considered, pairs of C.
brenneri alleles were 1.3- to 4.5-fold more divergent than their C.
remanei counterparts. Interestingly, we find that the sequenced
strain of C. brenneri retained more heterozygosity than its C. remanei
counterpart (see above and below), even though both have been
subjected to similar inbreeding schemes prior to sequencing.

Estimating the overall extent of retained heterozygosity
without gene predictions

When we performed these analyses, only the C. remanei WGS as-
sembly had a set of gene predictions associated with it. However,
our manual searches suggested that the C. brenneri assembly had an
extraordinarily high degree of heterozy-
gosity. To confirm this on a genome-wide
basis, we developed an alternative to the
gene-based method described above for
C. remanei. In this method, we estimated
the copy number for every position of the
gonochoristic WGS assemblies, for the
WGS C. briggsae assembly, and for the
completed, heterozygosity-free genome
of C. elegans. These values were then
converted into assembly-wide pro-
portions of bases present in each copy-
number category. For hermaphroditic
species, all multicopy DNA should stem
from paralogy, whereas for gonochoristic
species it will represent a mixture of
paralogy and independently assembled
alleles. The largest effect of retained
alleles is expected to be the elevation of
the fraction of the assembly present in
two copies relative to a completely ho-
mozygous genome. However, the size of
all multi-copy classes will be inflated
beyond their true (e.g., haploid or
homozygous genome) values to some
extent.

The fractions of bases in the various
assemblies that are present in two through
six copies are shown in Figure 3. As
expected, the two hermaphroditic species
(C. elegans and C. briggsae) have low mul-

ticopy content, almost all of which must reflect paralogy, whereas
the three gonochoristic species have elevated fractions of multicopy
sequences, reflecting an input of independently assembled alleles.
However, the amount of two-copy DNA inferred from this analysis
varies more than fivefold in the gonochoristic species, with C.
brenneri having the largest fraction at 33%, C. japonica lowest at 6%,
and C. remanei lying between the two. These values are consistent
with our previous inference that WGS sequences of C. brenneri have
anespecially large numberof independently assembledalleles, while
the other two species having retained less heterozygosity.

As it would be useful to be able to estimate the amount of
heterozygosity in a WGS assembly without relying on gene pre-
dictions, we investigated how copy number distributions, like those
in Figure 3, could be used for this purpose. Because gonochoristic
WGS assemblies contain both paralogous DNA and two copies of
independently assembled alleles, the total fraction of the genome
assembly composed of sequence found in two copies, d2, is

d2 =
2h2 + p2ð ÞG

A
ð1Þ

In the above equation, h2 is the fraction of the single-copy portion
of the genome that is heterozygous, p2 is the proportion of the
genome that is two-copy due to paralogy, G is the genome size,
and A is the WGS assembly size.

We further note that not all bases of heterozygous regions will
be scored as being present in two copies when alleles are highly
differentiated (in which case apparent copy number, d, will be
one) or contain repetitive elements (d > 2). In recognition of
this possibility, the contribution of h2 to d2 can be corrected by
multiplying h2 by f, the fraction of heterozygous bases that are
recognized as two copy. Doing this and solving for h2, we obtain

Figure 1. Genomic distribution of inferred heterozygous (thick lines) and homozygous (thin solid
lines) regions in the sequenced C. brenneri genome. Chromosomal locations are assigned based on
positions of C. elegans orthologs. Genes represented by two alleles are shown above chromosomes;
homozygous loci are shown below chromosomes. Regions of currently undetermined status are rep-
resented by dashed lines.

Table 4. Segregation of sequence variants in genetic crosses
using the sequenced strains of C. remanei and C. brenneri

Parental
genotypes AA progeny AB progeny BB progeny

Cr-fem-1
(C. remanei)

AB 3 AB 7 18 3
AB 3 BB 0 19 13
AA 3 BB 0 24 0

Cr-fem-3
(C. remanei)

AB 3 AB 10 26 9
AA 3 AB 28 33 0

Cbn-sur-2
(C. brenneri)

AA 3 BB 0 30 0
AA 3 AB 18 12 0
AB 3 AB 5 19 7
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Figure 2. Gene-based, genome-wide survey for heterozygosity in the preliminary C. remanei assembly Cr01. 10,322 single-copy C. elegans genes were used
to query the assembly. The fraction of total queries that identified two distinct yet highly similar gene predictions within a 100-kb sliding window (with 50-kb
steps) along the C. elegans chromosome is plotted at the bottom of each panel. Left scales (red) refer only to these values. The upper portion of each panel depicts
the WGS read depth for queries that have an apparent singleton C. remanei homolog (gray diamonds), and the mean depth for doublet homologs (black
diamonds). Right scales (black) refer only to these values. The small proportion of queries identifying more than two variants are not shown in the depth analysis.
Regions in which doublet homologs occur in clusters and have consistently low mean read depth are inferred to be heterozygous. By this criterion, regions of the
C. remanei genome that are syntenic with C. elegans LGI at 5 Mb, LGV at 9 and 18 Mb, and nearly all of LGIV are heterozygous. The mean WGS read depth for the
singleton homologs in each query chromosome is plotted with a dashed line. The singleton read depth for chromosome X (8.233) lies between the genome-wide 9.23
and the 6.93 expected for equal sex ratio, likely due to the substantially smaller size and genome copy number of males relative to females.
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the following expression for converting the fraction of the WGS
assembly that is computationally recognizable as being present in
two copies (d2) into a fraction of the single-copy portion of the
genome that is present in heterozygous form (h2):

h2 =
d2A

2fG
! p2

2f
ð2Þ

If all copy number classes are affected equally by heterozygosity, h2

is also a reasonable estimate of genome-wide heterozygosity. In
principle, estimates of the contribution of heterozygosity to
higher-copy classes could also be made, but they are complicated
by the possibility of only some members of a gene family being
heterozygous and weakened by the small numbers relative to the
two-copy case.

In practice, evaluation of Equation 2 relies upon a mixture of
known parameter values and estimates. For C. remanei, d2 is 0.163
(Fig. 3), A is 145 Mb, and G is estimated by DNA fluorescence as
;131 Mb (J.S. Johnston, pers. comm.). To estimate f, we first ap-
plied the same method presented in Figure 3 to the set of inferred
alleles in LGIV (Fig. 2). This analysis found that 80% of the bases in
allelic genes were scored as being present in exactly two copies. As
expected, this discrepancy is due to the presence of both diverged
regions and repetitive elements that are found in at least one other
site in the genome (data not shown). The estimate for f, then, is
0.80. The amount of true paralogy, p2, is unknown for C. remanei,
but the C. elegans and C. briggsae d2 values, which are entirely
dependent upon paralogs, are similar to each other. The average of
these values, 0.04, is thus a reasonable estimate of the C. remanei
p2. With these parameter values, h2 for the C. remanei assembly is
8.8%. This is similar to the gene-based estimate of 10% (see above).
We can use a similar procedure to estimate h2 for the C. brenneri
assembly. Using fluorescence measurements for G (150 Mb; J.S.
Johnston, pers. comm.), assembly size for A (190 Mb), and a value
of f calculated from the 42-gene test set described above (0.76), h2

is estimated to be 24.9%, which is somewhat lower than the es-

timate of 40%–45% derived from a man-
ually curated set of genes (see above). It
must be noted that the values of h2 de-
rived above estimate the heterozygous
fraction of the genome (more accurately
the fraction of nucleotides that reside in
heterozygous regions), whereas manually
curated searches estimated the fraction of
genes that are heterozygous. Therefore,
while the two values are expected to be
correlated, they will not necessarily be
the same.

Retention of heterozygosity is caused
by recessive deleterious alleles

Since all strains experienced lengthy
laboratory culture (and therefore de-
creased population size) prior to in-
tentional inbreeding, the observed level
of retained heterozygosity in C. brenneri is
inconsistent with the expectations de-
rived with the assumption of no selec-
tion. For. C. remanei, the overall value is
not substantially different from the all-
half-sib expectation, yet it is surprising
that most of chromosome IV has retained

heterozygosity (Fig. 2). We therefore considered potential selective
mechanisms that may have promoted the maintenance of het-
erozygosity. One would be that deleterious recessive alleles segre-
gating in the natural populations of these species (Cutter et al.
2006; Dolgin et al. 2007) were rendered homozygous by in-
breeding. If the fitness effects of some of these were large, the
fraction of heterozygous individuals in each subsequent genera-
tion would not decline as rapidly as would be expected in the
absence of such selective pressure. Two lines of evidence support
this interpretation.

First, consistent with the expectation of inbreeding de-
pression in the sequenced strains, we found them to have signif-
icantly lower fitness (a combined measure of fecundity and egg
to adult viability) than the ancestral strains from which they
were derived. We measured the fitness of individual strains by
counting the zygotes and subsequent viable adult progeny pro-
duced during the first 24 h after mating between randomly se-
lected male–female pairs. By the viable-adult assay, the sequenced
inbred strain of C. brenneri (PB2801) had suffered a 23% loss of
fitness compared with its ancestral strain LKC28 (Fig. 4A). Simi-
larly, the inbred strain of C. remanei (PB4641) produced 55% fewer
viable progeny than a recently acquired stock of EM464, the strain
from which it was derived (Fig. 4B). We also found that F1 hybrids
between PB4641 and an independent strain with equally low fit-
ness benefit from substantial hybrid vigor (Supplemental Fig. S4),
indicating that inbreeding depression is caused by deleterious re-
cessive alleles.

Second, because the X chromosome is hemizygous in Cae-
norhabditis males, it is expected to have fewer recessive deleterious
alleles and therefore less retained heterozygosity following in-
breeding. Indeed, all 11 X-linked loci examined in C. brenneri were
found to be homozygous, a significantly higher fraction than that
found on autosomes (Fig. 1). Similarly, the X chromosome in C.
remanei contained the fewest loci with independently assembled
variants (Fig. 2). These variants had average read depths close to

Figure 3. Estimated copy number distributions for five genome assemblies. For each species, a sliding
query window of 1000 bp with 500 bp steps was used to identify nonself matches in the assembly. The
percentages reported are relative to the size of the total assembly, not to an inferred actual genome size.
For the hermaphroditic C. elegans (sequenced by a minimum clone tiling path method) and C. briggsae
(sequenced by WGS), all sequences with copy number of two or more likely represent true copy
number variation in the genome. For the three gonochoristic species, however, each bin potentially
represents a mix between truly paralogous DNA and retained alleles. As the apparent single-copy se-
quence is at least 55% in all assemblies, the majority of the unrecognized alleles are expected to lie in
the two-copy category. Single-copy DNA is not shown.
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the roughly 6.93 coverage expected for homozygous X-linked loci
(Fig. 2; Supplemental Table S2).

Sequenced strains are continuing to evolve

Because the sequenced strains were not completely homozygous,
we expected to observe continuing changes in allele frequencies in
both C. brenneri and C. remanei. Such changes may be cased by
inadvertent selection during inbreeding or by genetic drift. For
C. brenneri, we experimentally estimated allele frequencies at fog-1
and sur-2 loci by genotyping individuals of recently obtained
stocks of the LKC28 and PB2801 strains. To estimate allele
frequencies at the time of sequencing, we compared read
depth coverage between the two identified alleles, assuming that
it would reflect the relative frequency of alleles in the popula-
tion of individuals from which the DNA was extracted.
These results indicate that both alleles of C. brenneri fog-1 are found
in the wild isolate LKC28, but had changed substantially in
frequency in the sequenced version of PB2801, and are now
fixed for one of them in a recently obtained stock of PB2801
(Fig. 5A). The frequencies of the two alleles of sur-2 were highly
unequal in LKC28, but were nearly equal in PB2801 at the time of
sequencing, and are currently 1:1 (Fig. 5B). Finally, the two
alleles of lin-7 evident from the genome sequence were at fre-
quencies of 0.6 and 0.4 at the time of sequencing, whereas in the
current strain PB2801 they are at 0.91 and 0.09. Similar shifts in
allele frequencies were observed for Cr-fem-3 in C. remanei (data
not shown).

Finally, not only allele frequencies, but also specific pheno-
types have evolved following inbreeding. In early experiments, we
noticed that when C. brenneri females were given less than 8 h to
mature after L4-to-adult molt prior to mating, the ancestral strain
(LKC28) had a higher frequency of mating failure than did its
inbred derivative, PB2801. When females were given less than 1 h
to mature between the L4-to-adult molt and the onset of mating,
8/8 PB2801 crosses produced progeny, while only 2/8 LKC28
crosses had any offspring. It therefore appears that the females of
PB2801 achieve sexual maturation faster than those of the an-

cestral strain. This could be a conse-
quence of inadvertent selection for fast
reproduction applied during inbreeding
(Latter and Mulley 1995) and may rep-
resent one of many traits that distinguish
the two strains. In the C. brenneri fitness
tests reported here, all females were given
sufficient time to mature from L4 to
adult.

Discussion

Implications for Caenorhabditis
genomics

We have presented evidence here that
substantial portions of WGS assemblies
of C. brenneri and C. remanei are hetero-
zygous, despite intense inbreeding. We
infer that the following sequence of
events led to the observed situation.
Highly polymorphic natural populations
were brought into laboratory culture,
resulting in partial loss of heterozygosity.

During 20 generations of inbreeding prior to sequencing, some
deleterious recessive alleles were rendered homozygous, which led
to inbreeding depression. However, some of the deleterious alleles
resided in trans with others in linked loci. This situation gave the
heterozygotes a fitness advantage over homozygotes, and also kept
linked loci lacking deleterious mutations in the heterozygous state
as well. This heterozygote advantage via linkage to a deleterious
allele, known as associative overdominance (Frydenberg 1963),
retarded the accumulation of homozygosity for the remaining
heterozygous regions. Eventual resolution of this balanced het-
erozygosity depends on the relative selective coefficients of the
deleterious alleles in question, the distance between them, and the
effects of genetic drift.

Because the DNA was extracted from populations, not indi-
viduals, the gonochoristic WGS assemblies represent complex mix-
tures of alleles reflecting their frequencies at the time of sequencing.
Therefore, sequences representing retained alleles will not neces-
sarily be found at a frequency of 1/2. Furthermore, because the
strains were not completely homozygous at the time of sequencing,
they are continuing to evolve. For example, the fog-1 locus was bi-
allelic in the C. brenneri strain PB2801 at the time of sequencing, but
has since become homozygous in the version of this strain currently
available from the Caenorhabditis Genetics Center (Fig. 5).

Our results are important for refinement of assembly and bi-
ological understanding of the C. remanei and C. brenneri genomes.
Their sequences were sought in large part to facilitate the functional
annotation of the C. elegans genome (Sternberg et al. 2003), as well
as to develop Caenorhabditis as a system for the study of genome
evolution. Fundamental to these goals is the establishment of
accurate gene counts, gene orthologies, syntenic regions, and the
genome size. We note that the total assembly size for C. remanei is
145 Mb, or about 14 Mb larger than the direct measurement based
on DNA fluorescence ( J.S. Johnston, pers. comm.). Our analysis
indicates that all, or nearly all, of the excess sequence is due to
independent assembly of alternative allelic forms, primarily on
LGIV. This conclusion will produce a downward revision of the
number of C. remanei genes and an upward adjustment of the
number of genes with 1:1 C. elegans orthologs, with important

Figure 4. Persistent heterozygosity is associated with inbreeding depression. (A) Comparison of
C. brenneri strains LKC28 (founder) with PB2801 (inbred for sequencing). The number of viable adults
produced by PB2801 is significantly lower than those produced by LKC28 (p < 0.04; Kolmogorov–
Smirnov test). (B) Comparison of C. remanei strains EM464 (founder) with PB4641 (inbred for se-
quencing). PB4641 has significantly lower fitness (p < 0.001, Kolmogorov–Smirnov test). Thick vertical
lines indicate the median, boxes represent upper and lower quartiles, and whiskers the entirety of the
distributions.
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consequences for whole-genome multispecies comparisons. Sim-
ilarly, since as much as 40% of the C. brenneri genome may have
been heterozygous at the time of sequencing, the correct genome
size may be over one-third smaller than assembly-based estimates.

Our results also indicate that experimental biologists accus-
tomed to working with self-fertile species will need to pay partic-
ular attention to the abundant natural genetic variation that
segregates in related gonochoristic species, even after lengthy
laboratory culture. Not only do genotypes vary, but we have
demonstrated that phenotypes as basic as reproductive fitness will
vary greatly, even within the poorly defined populations known as
‘‘strains.’’ A strain, therefore, has a more precise genetic meaning
for hermaphroditic species than for gonochoristic ones. In light of
these concerns, Caenorhabditis geneticists will benefit from estab-
lishing distinct stocks that are managed carefully to maintain ge-
netic diversity. Such stocks are a mainstay of Drosophila research
(Latter and Mulley 1995; Wu et al. 1995).

Limitations to computational inference of heterozygosity

We used a simple computational search to detect specific candi-
date heterozygous regions in the WGS assembly (Fig. 2). The key
element of our approach was to identify genomic regions that
have high proportions of dimorphic genes and also show a de-
crease in average sequence read coverage. Several features made

our search conservative and therefore it likely underestimated the
actual amount of retained heterozygosity in the sequenced ge-
nome of C. remanei. First, the set of single-copy C. elegans query
genes used to identify potentially allelic gene predictions in C.
remanei did not include the roughly one-third of genes that are
part of families with recent duplications. Second, C. remanei
sequences with complex orthology/paralogy relationships to their
C. elegans counterparts were also excluded. Some of these are likely
to be genuine bi-allelic genes. Third, WGS assemblies for species
like the Caenorhabditis nematodes in this study are based on DNA
samples prepared from thousands of individuals. Thus, allele fre-
quencies at different loci can vary considerably. Rare alleles, rep-
resented by relatively few reads, may provide insufficient coverage
to reconstruct the sequence of the entire locus (Supplemental Fig.
S2). Finally, there is an added difficulty of distinguishing two
alleles that have particularly similar sequences.

The above features of gonochoristic nematode WGS assem-
blies make it difficult to unequivocally identify all genes repre-
sented by two alleles with high-throughput computational
methods alone. We examined the inferred heterozygous loci on C.
remanei chromosome IV to estimate the fraction of computational
‘‘false-negatives.’’ We found that in some regions nearly 50% of bi-
allelic genes were not recognized as such in whole-genome anal-
yses (data not shown). In all such cases however, several of their
nearest neighbors were identified as heterozygous using manual
searches. Because retained heterozygosity extends over closely
linked loci (Fig. 1), this combined approach can be used to identify
most heterozygous regions in genome sequences. We suggest that
rapid computational searches like those described here can be used
to identify the overall extent and likely localization of retained
heterozygosity, which could be subsequently confirmed (or in
some cases rejected) after more detailed computational and ex-
perimental investigation.

In addition to the gene-based method used for C. remanei,
we also present a more generally applicable method for quanti-
fying heterozygosity in newly assembled genomes that lack gene
predictions and/or a closely related reference genome. This method
combines a whole-genome estimate of sequence copy number
distribution (Fig. 3) with a model for how heterozygous DNA con-
tent affects this distribution (Equations 1, 2). For C. remanei, the
agreement between the gene-based method and the annotation-
free method is good, suggesting that when heterozygosity is rel-
atively low our simple model may provide an easy way to estimate
its extent. However, application of the model to C. brenneri pro-
duced a value for h2 that is substantially lower than that expected
from the test set of 42 genes analyzed manually. As pointed out
above, the two methods estimate different values: The former is
the fraction of nucleotides that reside in heterozygous regions,
whereas the latter is the fraction of heterozygous genes.

Potential causes for the above discrepancy may be sampling
error in the gene-based analysis, or an unappreciated ascertain-
ment bias imposed by the choice of genes included in the test set,
most of which have developmental functions. Alternatively, the
gene-based estimate may be closer to the true value, and our
whole-genome computational analysis is underestimating h2.
Possible reasons for this might include underestimation of as-
sembly size (A), overestimation of genome size (G), and/or over-
estimation of the extent to which heterozygous DNA can be
recognized (f ). A general caveat, then, is that the heterozygous
fraction of a WGS assembly may become increasingly difficult to
estimate as the extent of heterozygosity and the degree of allelic
divergence become extreme.

Figure 5. Changes in allele frequencies in (A) fog-1 and (B) sur-2 loci in
C. brenneri. Gray represents allele ‘‘A’’ and black represents allele ‘‘B.’’
Frequencies in LKC28 and ‘‘PB2801 present’’ were obtained by PCR
genotyping of individual animals from these strains—44 and 76 for fog-1
and 57 and 50 for sur-2. Allele frequencies in the strain PB2801 at the time
of sequencing were inferred from the average number of sequence reads
through each of the two alleles.
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Implications for other genome projects

Our results indicate that the presence of numerous deleterious
recessive alleles is responsible for preserving heterozygosity in the
genomes of inbred gonochoristic nematodes. Such mutations
should exist in most gonochoristic species (Haag-Liautard et al.
2007), and both our work and that of others (Rumball et al. 1994;
Richards et al. 2005) suggest that even after many generations,
considerable heterozygosity will remain. This effect will be exac-
erbated if the DNA is extracted from a population. A major nega-
tive consequence of unrecognized heterozygosity is that it reduces
the effective genome coverage (Fig. 2; Supplemental Fig. S2),
which creates more frequent assembly gaps compared with a ho-
mozygous version of the same genome. Another is the inadvertent
inflation of the apparent genome size and gene set, with detri-
mental effects on subsequent analysis.

One simple way to eliminate allelic variants is to relax as-
sembly criteria so that they are placed into single contigs. How-
ever, this will have the unintended consequence of eliminating
many bona fide gene duplicates. This will be particularly prob-
lematic in organisms with highly differentiated alleles, such as
gonochoristic Caenorhabditis, as very recent (and therefore nearly
identical) gene duplicates are also the most abundant (Lynch and
Conery 2000). We therefore argue that strict assembly combined
with post-assembly methods for recognizing heterozygosity like
those described here will produce the most biologically accurate
reference genomes. The independently assembled allelic forms of
many genes can then be seen as a bonus source of information on
polymorphism. As an example, our study revealed that C. brenneri
alleles are more diverse than those of C. remanei.

Methods

Strains and sequence data
The genomes of C. brenneri, C. remanei, and C. japonica were
sequenced by the Genome Sequencing Center at Washington
University, St. Louis, and will be described in detail elsewhere. The
inbred strains used for DNA extraction—PB2801 for C. brenneri,
PB4641 for C. remanei, and DF5081 for C. japonica—were derived
by inbreeding of the natural isolates LKC28, EM464 and DF5080,
respectively. The inbreeding of C. brenneri and C. remanei was
carried out by S. Baird (Wright State University), while inbreeding
of C. japonica was conducted by K. Kiontke (New York University).
Following 20 generations of single-female inbreeding, the DNA
was extracted from mixed populations and 6–93 coverage WGS
sequences were produced. For C. brenneri and C. remanei, this ex-
traction was done on three separate occasions, while it was done
twice for C. japonica (E. Schwarz and J. Spieth, pers. comm.). In-
dividual sequence reads are publicly available at the NCBI trace
archive, and the preliminary C. remanei PCAP assembly and gene
predictions, Cr01, is available at http://ftp.wormbase.org/genomes/
remanei. C. elegans data were obtained from WormBase genome release
WS174 (ftp://ftp.wormbase.org/pub/wormbase/genomes/elegans/)
and its cognate WormPep protein database (ftp://ftp.sanger.ac.uk/
pub/databases/wormpep/wormpep).

Assembly of genomic contigs corresponding to
individual genes
Individual sequence reads corresponding to the putative C. bren-
neri, C. remanei, and C. japonica orthologs of individual C. elegans
genes were identified by BLAST searches of the NCBI trace archive
(http://www.ncbi.nlm.nih.gov/BLAST/), using exon sequences as

queries. Contigs were assembled using the STADEN software
package. Whenever possible, contigs were extended up to 1-kb
upstream of translation initiation signal and 1-kb downstream of
the termination signal. The assemblies were manually inspected
for discrepancies (e.g., errors in base calling), and cases of putative
heterozygosity were identified and divided into variants using the
‘‘diploid graph’’ and ‘‘SNP candidates’’ options in STADEN (SOM).

Genome-wide assessment of heterozygous loci in C. remanei

We first created a data set of 20,099 unique C. elegans genes by
eliminating all but the longest splice variants. We then defined
a set of 14,530 single-copy C. elegans genes by all-against-all
BLASTP and FASTA searches, retaining only genes that satisfied the
single-copy criteria of either Stein et al. (2003) or Gu et al. (2002),
respectively. This set was then used to query the 25,595 unique
predicted C. remanei proteins in Cr01 via BLASTP. The highest-
scoring hits were themselves used as queries, and resulting gene
pairs with the following alignment attributes were retained: (a) be
each other’s reciprocal best hit; (b) have an overall BLASTP E-value
of <!10; (c) have both $e_component <!70 and ($e_component!
$minimum_ecomp < 30); (d) have an alignment length of at least
0.63 the query length; and (e) satisfy minimum sequence iden-
tity, based on a modification of the method of Gu et al. (2002)
and Rost (1999), of 30% for alignments greater than 150 residues
or, for shorter alignments, percent identity of at least 6 +
480L!0.32(1 + e ! L/1000), where L is the length of the alignment. We
tested these rules using known allelic genes to get the modified
length and percentage identity requirement of empirical formula.

The above procedure yielded 1080 candidate allelic pairs of C.
remanei peptides corresponding to a single-copy C. elegans gene.
We then eliminated pairs with <90% amino acid sequence iden-
tity, pairs with overlapping membership, and those residing on
the same genomic contig, which are likely to be tandem duplica-
tions. Assuming conserved synteny, these latter steps dispropor-
tionately eliminated pairs on chromosomes I, II, III, V, and X
(Supplemental Table S2), resulting in 487, most of them on the
central 80% of chromosome IV. For the plots in Figure 2, C.
remanei read depths were determined from the assembly output
Ace format files for all contig positions. The reads were aligned to
form a contig using their clear (i.e., good) quality portions of the
reads, and each gene’s average read depth was calculated by di-
viding the total of read depths for all base pairs by the total gene
length.

Genome-wide copy number analysis
For the estimates of the genome-wide copy number presented in
Figure 3, we used the cross_match program (P. Green, unpubl.)
with parameter values of !minmatch 20, !minscore 250,
!masklevel 101, and !penalty ! 3. To test for possible under-
counting of highly diverged allelic DNA in the C. brenneri assem-
bly, we repeated this analysis with a –minscore of 80. This only
affected the copy number distributions slightly (e.g., d2 rose from
36% to 38%). Estimates of the parameter f for C. remanei were
based on cross_match analyses of the 487 genes that were inferred
to be heterozygous in the analysis shown in Figure 2. For C.
brenneri, we estimated f from the heterozygous subset of the 42
manually assembled genes.

Analysis of sequence divergence between manually
assembled variants
To eliminate artifacts from poor base calling during sequencing,
we required potential variants to: (1) differ at several sites within
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the length of a single sequence read, and (2) be supported by at
least three independent reads. In practice, for most bi-allelic loci
each variant was substantiated by many more than three in-
dependent reads. Depths of read coverage are shown in Supple-
mental Figure S1. In several heterozygous loci, regions of
divergence between two variants are so distant that no individual
sequence reads span both. Therefore, it was not always technically
possible to reconstruct the linkage phase between clusters of di-
vergent sites. Alignments of variants were generated using BIO-
EDIT software (SOM).

We used the intron-exons boundaries as annotated in
C. elegans and C. briggsae genomes to designate orthologous exons
in C. brenneri, C. remanei, and C. japonica. Divergence between
pairs of variants was calculated independently for coding and
noncoding regions, excluding contig ends for which confi-
dence was low. Indels were not counted in these measures of di-
vergence; however, large indels are documented independently
(column ‘‘Comments’’ in Supplemental Table S1). Highly
divergent and nonalignable regions were included in the calcu-
lations of divergence and documented in the ‘‘Comments’’
column. Calculations of Ka/Ks were performed using codeML
(Yang 1997).

PCR genotyping
Genotyping of heterozygous C. brenneri genes was based on PCR
assays for polymorphic indel polymorphisms (693 bp vs. 398 bp
for fog-1, 416 bp vs. 156 bp for sur-2, 460 bp vs. 408 bp for lin-7).
For C. remanei, primers EH31 and EH32 distinguish a 120 nt indel
polymorphism in Cr-fem-1, and Rf3F1 (Haag et al. 2002) and EH30
allow amplification of a 450 nt product containing EcoRV re-
striction site polymorphism in Cr-fem-3. Primer sequences are
given in SOM.

Single worm PCR was performed as described (Haag et al.
2002), with the modification of using 10 mL for lysis and a total
reaction volume of 40 mL. Males were genotyped immediately
after mating, whereas females were genotyped after 24 h of egg
laying. Residual sperm from mating did not appear to interfere
with the inference of the maternal genotype.

Fitness measurements
Worms were incubated at 20°C on standard NGM plates (Wood
1988). Fitness was measured as the number of zygotes and viable
progeny generated within 24 h following mating. For each strain,
male–female mating pairs were established from randomly picked
young virgin adults, which had been allowed to mature for 6–24 h
following the last larval (L4) stage. Males were removed after 1 h of
mating, and females were allowed to lay eggs for 24 h in three
8-h (for C. brenneri) or two 12-h (for C. remanei) windows. Embryos
and live progeny were counted for up to 24 h after removal of the
female.
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