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Abstract

An agent chooses an action after acquiring information about an uncertain state. From

an ex-ante perspective, the agent’s optimal action is an endogenously determined random

variable. We study how the quality of information affects the distribution of the optimal

action. In particular, we study responsiveness, a comparative statics that captures mean-

preserving spreads and second-order stochastic dominance shifts in the distribution of

the optimal action. The higher the quality of information, the more closely the agent

tailors her actions to the state, and consequently, under conditions we derive on payoffs,

the more responsive the optimal action. We extend our results to Bayesian games with

strategic complementarities in which different players have information of varying quality.

We show that a player’s equilibrium actions become more responsive as the quality of an

opponent’s information improves. We apply the comparative statics of responsiveness to

compare the demand for information in covert and overt information acquisition games.
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1 Introduction

An agent faces a decision-making problem under uncertainty with learning: She first observes

a signal from an information structure (also referred to as an experiment) that is informative

about an unobserved state of the world. She then chooses an action. Since her action choice

depends on the signals she receives, from an ex-ante perspective, the agent’s optimal action is

an endogenously determined random variable.

In this paper, we study how the quality of the agent’s information structure affects the

induced distribution of optimal action. Specifically, we consider a setting where the agent’s

action and the state are complements. We study how the mean and dispersion of the optimal

action change when the quality of the information structure increases. We first define two

orders over the distribution of optimal actions we collectively call responsiveness that captures

different notions of dispersion such as mean-preserving spreads and second-order stochastic

dominance relations. We then identify conditions on payoffs and experiments such that more

informative experiments lead to more responsive optimal actions.

To concretely motivate our question, consider a monopolist facing a linear demand curve

P (q) = 1 − q and a quadratic cost function c(θ, q) = (1 − θ)q + q2/2, where q is the number

of units produced and θ ∈ [0, 1] is a cost parameter. Higher values of θ correspond to lower

marginal costs. Consequently, the monopolist would like to produce more units as θ increases.

However, the monopolist does not observe the value of θ and only knows that it is uni-

formly distributed on the unit interval. Prior to any production decision, she observes a signal

realization s from an information structure that fully reveals the state of the world (s = θ) with

probability 0 ≤ ρ ≤ 1 and is completely uninformative (θ ⊥ s ∼ U [0, 1]) with probability 1− ρ.

The quality of the information structure is increasing in ρ: When ρ = 0, signals are always

uninformative; when ρ = 1, signals always fully reveal the state of the world.

From an “interim” perspective, a monopolist that observes a signal realization s from an

information structure of quality ρ optimally produces

qM(s; ρ) =
E[θ]

3︸︷︷︸
Monopoly quantity

based only on the prior

+ ρ

(
s− E[θ]

3

)
︸ ︷︷ ︸
Adjustment based

on observed signal realization

.

The first term on the right-hand-side is the quantity the monopolist produces absent an infor-

mative signal. The second term reflects how the monopolist adjusts her production decisions

when she is able to learn something about her cost parameter. However, from an ex-ante
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perspective, the signal realization is a random variable yet to be observed by the monopolist.

Thus, the induced optimal quantity qM(s; ρ) is also a realization of a random variable whose

distribution is given by H(z; ρ), the probability that the monopolist optimally produces at most

z units given an information structure of quality ρ.1

Our goal in this paper is to characterize how H(·; ρ) changes when ρ increases. Will the

optimal quantity produced increase or decrease on average when ρ increases? Will the quantities

produced become more dispersed? In this example, we can answer these questions by using the

closed-form solution of qM .

Suppose the quality of the monopolist’s information structure increases from ρ′ to ρ′′ > ρ′.

“Good news” (s > E[θ]) from ρ′′ is a stronger evidence of high values of θ than “good news”

from ρ′. As a result, the monopolist produces more when she observes “good news” from ρ′′

than when she observes “good news” from ρ′.2 Symmetrically, “bad news” (s < E[θ]) from ρ′′

is a stronger evidence of low values of θ than “bad news” from ρ′. As a result, the monopolist

produces less when she observes “bad news” from ρ′′ than when she observes “bad news” from

ρ′. In either case, the monopolist makes more extreme decisions under the higher quality of

information. In Figure 1(a), the rotation of the solid red line, qM(·; ρ′), to the dashed blue line,

qM(·; ρ′′), captures the more extreme production decision due to an increase in the quality of

information. This in turn induces a mean-preserving spread in the distribution H as shown in

Figure 1(b).

ρ′′

ρ′

1

qM

s

E[θ]/3

.5

(a) Quantity produced

1

ρ′′

ρ′

H

q

.5

E[θ]/3

(b) Distribution of optimal quantities

Figure 1

1H(z; ρ) = Pr({s : qM (s; ρ) ≤ z}).
2Recall that the higher the value of θ, the lower the marginal cost.
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Now, suppose the monopolist chooses the quality of her information structure. The higher

the quality, the more information the monopolist acquires. Consider a social planner who cannot

regulate quantities or prices but can influence the monopolist’s information acquisition.3 Should

the planner encourage or discourage information acquisition by the monopolist? Equivalently,

do consumers prefer the distributions of quantities induced by more informative experiments?

The consumer surplus for a given quantity q is given by the function CS(q) = q2/2. From the

discussion above, increasing the quality of an information structure induces a mean-preserving

spread in the distribution of optimal quantities produced by the monopolist. The convexity

of the consumer surplus function implies that consumers benefit from such a mean-preserving

spread.4 Hence, the planner should encourage the monopolist’s information acquisition, for

example, by subsidizing information acquisition costs.

In the monopolist example, we made several assumptions, such as linear demand and

quadratic cost functions, to simplify the analysis. This paper builds the tools to address the

comparative statics of a higher quality of information in a more general model with supermod-

ular payoffs, i.e., actions and the state of the world are complements. We present (i) an order

over the distributions of optimal actions that captures changes in the mean and variability,

(ii) an order over information structures that captures quality, and (iii) conditions on payoff

functions that connect the two orders.

Consider two information structures, ρ′ and ρ′′, and compare the distributions of optimal

actions they induce. We say the actions induced by ρ′′ are more responsiveness with higher mean

than those induced by ρ′ if any risk-loving third party (e.g. the social planner in the above

example) prefers the distribution of optimal actions induced by ρ′′. Alternatively, we say the

actions induced by ρ′′ are more responsiveness with lower mean than those of ρ′ if any risk-averse

third party prefers the distribution of optimal actions induced by ρ′. Loosely, responsiveness

with a higher mean corresponds to higher variability and higher actions on average (increasing

convex stochastic order) while responsiveness with lower mean corresponds to higher variability

but lower actions on average (second-order stochastic dominance).

To compare the quality of information structures, we first restrict attention to a class of

experiments in which higher signal realizations lead to first-order stochastic shifts in posterior

beliefs. The restriction is weaker than the common assumption that signals are ordered by

the monotone likelihood ratio property (MLRP). Within this restricted class of experiments,

3Athey and Levin (2001) consider a similar problem. However, in their application, the planner can regulate
prices/quantities as well as information.

4Specifically, the expected consumer surplus, 1
2

∫
z2dH(z; ρ), is increasing in ρ.

4



we then use the monotone information order to capture quality.5 Information structure ρ′′

dominates information structure ρ′ in the monotone information order if, on average, high

signals from ρ′′ are a stronger evidence of high values of the state (than are high signals from

ρ′) and low signals from ρ′′ are a stronger evidence of low values of the state (than are low

signals from ρ′). Intuitively, the signals from ρ′′ are more positively correlated with the state

and thus, ρ′′ is more informative than ρ′.

If ρ′′ dominates ρ′ in the monotone information order, we show that optimal actions in-

duced by ρ′′ are more responsive with a higher mean than the optimal actions induced by ρ′

when payoffs exhibit increasing complementarities between actions and states. Furthermore,

we show that the monotone information order is necessary to characterize responsiveness for all

payoffs that exhibit increasing complementarities between actions and states. We also present

corresponding results linking responsiveness with lower mean and decreasing complementarities

between actions and states.

We then extend our comparative statics results to Bayesian games with strategic comple-

mentarities, which encompass such games as differentiated Bertrand competition and global

games. We consider a setting where different players have information structures of varying

quality. The key observation is that the distribution of a player’s action in a Bayesian Nash

equilibrium become more responsive not only to an increase in the quality of own information

but also to an increase in the quality of other players’ information.

As an application, we study endogenous information acquisition in Bayesian games with

two players. The game is composed of two stages: only player 1 acquires information in the

first stage followed by a second stage in which both players choose actions simultaneously.

Whether or not player 2 observes player 1’s choice of information corresponds to overt and

covert information acquisition games respectively. We define the value of transparency as the

difference in the marginal utility to player 1 between the overt and the covert games and we

show how responsiveness is useful to characterize it. Specifically, we show that the value of

transparency is positive or negative depending on (i) the responsiveness of player 2’s action to

player 1’s information, and (ii) the sign of the externality on player 1 imposed by player 2’s

action. This in turn has implications on how much information player 1 acquires in the two

games.

5The monotone information order is equivalent to the supermodular stochastic ordering, and the positive
dependence ordering when the state is one-dimensional.
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1.1 Related Literature

Our paper is closely related to Jensen (2017) who also studies the comparative statics of distri-

butions. In his paper, the agent observes all relevant parameters when making a decision. His

paper links changes in the distribution of parameters to the changes in the induced distribution

over optimal actions. For instance, in the context of our motivating example, the monopolist

observes the state θ and optimally produces quantity qM(θ).6 The interest is in how different

distributions of θ change the subsequent distribution of qM(θ). In our setting, the monopolist

does not observe the state and the prior distribution of θ is held fixed. Instead, we characterize

how different distributions over the posterior beliefs affect the monopolist’s production decision.

Our work is also closely related to Lu (2016), who studies how informative signals affects

choice from a menu. In particular, he shows that a decision-maker has a more dispersed

willingness-to-pay for any given menu if the quality of information increases. We instead show

that the choice from within a menu becomes more dispersed as the quality of information

increases.7

Our paper is also related to the monotone comparative statics literature of single agent

optimization problems: Topkis (1978), Milgrom and Shannon (1994), Athey (2002), and Quah

and Strulovici (2009). Athey (2002) marks the first milestone on problems involving uncertainty

and shows when optimal actions are increasing as a function of beliefs. We take the next

step and ask how the distribution of optimal actions changes as a function of the distribution

over beliefs.8 Our key conceptual contribution is introducing an ex-ante comparative statics,

responsiveness.

Our work is also related to the literature on the value of information which was studied

by Blackwell (1951), Lehmann (1988), Persico(2000), and Athey and Levin (2001). Athey and

Levin show that in the class of payoff functions that exhibit complementarities between actions

and states, an agent values more information if, and only if, information quality is increasing

in the monotone information order. Our results complement theirs in that we show in the

subclass of payoff functions with increasing/decreasing complementarities, the agent’s optimal

actions are more responsive if, and only if, information quality is increasing in the monotone

6qM (θ) = qM (s; ρ) at ρ = 1: the quantity produced under complete information.
7For instance, there cannot be any meaningful dispersion in choice of action from within a singleton menu.

However, the willingness-to-pay for the singleton menu can vary depending on the decision-maker’s private
information.

8In the context of our motivating example, Athey provides comparative statics results on qM (s; ρ) as a
function of the signal realization s for a fixed ρ. We instead provide comparative statics results for the entire
mapping qM (·; ρ) as a function of ρ.
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information order.

Our comparative statics results to games with strategic complementarities are also a natural

extension of Vives (1990), Milgrom and Roberts (1994), Villas-Boas (1997), and Van Zandt and

Vives (2007). At the same time, our work relates to the literature on information acquisition

in games such as Persico (2000), Hellwig and Veldkamp (2009), Myatt and Wallace (2012),

Colombo, Femminis and Pavan (2014), and more recently Yang (2015), Amir and Lazzati

(2016), Denti (2016), Tirole (2015), and Pavan (2016). None of these papers, however, look at

the dispersion of actions as a comparative static.

Moreover, our analysis of the value of transparency in Bayesian games is related to the

characterization of strategic investment in sequential versus simultaneous games of complete

information in Fudenberg and Tirole (1984) and Bulow, Geanakoplos and Klemperer (1985).

We defer a detailed discussion of the relationship to Section 4.

The remainder of the paper is structured as follows: In section 2, we present the single agent

framework, introduce responsiveness, and provide sufficient and necessary conditions for actions

to become more responsive as information quality increases. Section 3 extends the analysis to

Bayesian games with strategic complementarities. Section 4 applies responsiveness to analyze

the value of transparency in Bayesian games. Section 5 concludes. Any proofs skipped in the

text are in the Appendix.

1.2 Preliminary Definitions and Notation

Let Xi, i = 1, 2, . . . ,m, and Y be compact subsets of R. Let X , ×mi=1Xi be the Cartesian

product endowed with the product order so that for x′, x ∈ X, x′ ≥ x if, and only if, x′i ≥ xi

for i = 1, 2, . . . ,m. Let x′ ∨ x denote the join of x′ and x, the component-wise maximum, and

let x′ ∧ x denote the meet of x′ and x, the component-wise minimum.

A function g : X → R is supermodular (submodular) if g(x′∨x)+g(x′∧x) ≥ (≤)g(x′)+g(x)

for all x, x′ ∈ X. We say that g is modular if it is both supermodular and submodular. We

use the terms ‘increasing’, and ‘decreasing’ in the weak sense, for example, we say a function

f : Y → R is increasing if y′ > y implies f(y′) ≥ f(y). We will be explicit when we refer to

strict monotonicity. A function h : X × Y → R has increasing (decreasing) differences in (x; y)

if for x′ ≥ x, h(x′, y)− h(x, y) is increasing (decreasing) in y.

For a differentiable function, g : X → R, we write gxi(x) as a shorthand for ∂
∂xi
g(x) and

gxixj(x) for ∂2

∂xixj
g(x). If g is differentiable and supermodular, then gxixj ≥ 0 for all i 6= j.
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2 Single Agent Problem

Let A , [a, ā] be the action space and Θ , [θ, θ̄] be the state space. Let ∆(Θ) denote the set

of all Borel probability measures on Θ. An agent (she) has to choose an action a ∈ A before

observing the state of the world θ ∈ Θ. The agent’s prior belief is denoted by µo ∈ ∆(Θ). We

allow for beliefs to be discrete distributions with a finite support in Θ, absolutely continuous

measures on Θ, or a mixture. Payoffs are given by the function u : Θ× A→ R such that

(A.1) u(θ, a) is uniformly bounded, measurable in θ, and twice differentiable in a,

(A.2) for all θ ∈ Θ, u(θ, ·) is strictly concave in a with uaa(θ, ·) < 0,

(A.3) for all θ ∈ Θ, there exists an action a ∈ A such that ua(θ, a) = 0, and

(A.4) u(θ, a) is supermodular.

Supermodularity implies that the agent’s action and the unknown state of the world are

complements. That is, the agent prefers a high action when the state is high. Assumptions

(A.2)-(A.3) allow us to characterize the optimal actions by their first order conditions. Fur-

thermore, the assumptions guarantee that the agent’s problem has an interior solution.9

Given any belief µ ∈ ∆(Θ), define

a∗(µ) = arg max
a∈A

∫
Θ

u(θ, a)µ(dθ).

The compactness of A and the continuity of the utility function guarantee that the solution

exists and is measurable. For any two beliefs µ1, µ2 ∈ ∆(Θ), we say that µ2 first-order stochas-

tically dominates µ1, denoted µ2 �FOSD µ1, if µ1(θ) ≥ µ2(θ) for all θ ∈ Θ. An implication of

(A.4) is that a∗(µ2) ≥ a∗(µ1) whenever µ2 �FOSD µ1.

Prior to decision-making, the agent can observe an informative signal about the unknown

state. Signals are generated by an information structure Σρ , (S, {F (·|θ; ρ)}θ∈Θ) where S ⊆ R
is the signal space, F (·|θ; ρ) : S → [0, 1] is a probability measure over S conditional on a given

state θ, and ρ is an index that is useful when comparing multiple signal structures. For each

s ∈ S, we assume that F (s|θ; ρ) is measurable in θ. Let

FS(s; ρ) =

∫
Θ

F (s|θ; ρ)µ(dθ)

9In Section 2.4, we discuss the difficulties associated with violations of these assumptions.
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denote the the marginal of the signal. We assume that all information structures have the

same marginal on the signal, i.e., FS(·; ρ) = FS(·) for any Σρ. Moreover, FS(·) has a positive

bounded density fS(·). The assumption is without loss of generality: we can apply the integral

probability transform to any signal with a continuous marginal distribution FS(·; ρ) and create

a new signal which is uniformly distributed on the unit interval. The transformed signal still

conveys the same information as the original signal. If FS(·; ρ) is discontinuous, then, as noted

by Lehmann (1988), we can construct a new equally informative signal with a continuous

marginal by appropriately distributing the mass at discontinuity points.10

2.1 Order over Distributions of Optimal Actions

From an interim perspective of the decision problem, the agent first observes signal realization

s ∈ S from information structure Σρ, updates her beliefs to a posterior µ(·|s; ρ) ∈ ∆(Θ), and

then chooses the optimal action a∗
(
µ(·|s; ρ)

)
. Define the measurable function a(ρ) : S → A

given by a(s; ρ) = a∗
(
µ(·|s; ρ)

)
.

From an ex-ante perspective, the signal realizations are yet to be observed. Therefore, the

optimal actions induced by an information structure Σρ are random variables. In particular,

a(ρ) is a random variable that is distributed according to H(·; ρ) defined as

H(z; ρ) , FS
(
{s : a(s; ρ) ≤ z}

)
for z ∈ R. The quantile function is defined as

â(q; ρ) = inf{z : q ≤ H(z; ρ)}

for q ∈ (0, 1).

Our goal is to characterize how information quality affects the distribution of optimal ac-

tions. Thus, the first step is to identify an order over distributions of optimal actions that

appropriately captures changes in the mean and dispersion of actions.

Responsiveness: Given two information structures Σρ′ and Σρ′′ , we say that

i. a(ρ′′) is more responsive with a lower mean than a(ρ′) if, and only if, for any increasing

concave function φ : R→ R
10If FS(·; ρ) is discontinuous at s∗ with FS(s∗; ρ) = q, then construct a new signal s̃ with s̃ = s if s < s∗,

s̃ = s+ qT if s = s∗, and s̃ = s+ q if s > s∗, where T ∼ U(0, 1).
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E
[
φ ◦ a(ρ′)

]
≥ E

[
φ ◦ a(ρ′′)

]
,

and

ii. a(ρ′′) is more responsive with a higher mean than a(ρ′) if, and only if, for any increasing

convex function ϕ : R→ R

E
[
ϕ ◦ a(ρ′′)

]
≥ E

[
ϕ ◦ a(ρ′)

]
In other words, a(ρ′′) is more responsive with a lower mean than a(ρ′) if a(ρ′) second-order

stochastically dominates a(ρ′′). Similarly, a(ρ′′) is more responsive with a higher mean than

a(ρ′) if a(ρ′′) dominates a(ρ′) in the increasing-convex stochastic order. If a(ρ′′) is both more

responsive with a lower mean and more responsive with a higher mean than a(ρ′), then a(ρ′′)

is a mean-preserving spread of a(ρ′). The definitions capture a notion of increased variability

in the optimal actions along with changes in the expectation. As a short hand, we say a(ρ′′) is

more responsive than a(ρ′) if it is either more responsive with a higher mean or more responsive

with a lower mean.

Lemma 1 below provides equivalent characterizations of responsiveness. The first equiva-

lence provides an alternate definition by comparing the distribution functions of the optimal

actions. The second equivalence characterizes responsiveness as a comparison of the quantile

functions. These alternative definitions are particularly useful when the optimal actions are

monotone in the signal realization, a natural consequence when payoffs are supermodular and

beliefs are ordered by first-order stochastic dominance.

Lemma 1 The following are equivalent:

i. a(ρ′′) is more responsive with lower mean than a(ρ′).

ii. For all x ∈ R, ∫ x

−∞
H(z; ρ′)dz ≤

∫ x

−∞
H(z; ρ′′)dz.

iii. For all t ∈ [0, 1], ∫ t

0

â(q; ρ′)dq ≥
∫ t

0

â(q; ρ′′)dq.

Similarly, the following are equivalent:

iv. a(ρ′′) is more responsive with higher mean than a(ρ′).
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v. For all x ∈ R, ∫ ∞
x

H(z; ρ′′)dz ≤
∫ ∞
x

H(z; ρ′)dz.

vi. For all t ∈ [0, 1], ∫ 1

t

â(q; ρ′′)dq ≥
∫ 1

t

â(q; ρ′)dq.

Proof. The equivalence of i. and ii. [iv. and v.] follows from Shaked and Shanthikumar (Stochas-

tic Orders, 2007. Theorem 4.A.2). The equivalence of i. and iii. [iv. and vi.]follows from Shaked

and Shanthikumar (Stochastic Orders, 2007. Theorem 4.A.3).

Figure 2 below plots the quantile functions induced by two information structures Σρ′ and

Σρ′′ . In Figure 2(a), the area under the quantile function â(ρ′) (the solid red curve) is larger

than that of â(ρ′′) (the dashed blue curve) which implies the expectation of the optimal actions

induced by Σρ′ is higher than the optimal actions induced by Σρ′′ . Furthermore, integrating

â(q; ρ′) − â(q; ρ′′) left to right always yields a non-negative value which, by Lemma 1. iii,

implies Responsiveness with a lower mean. In contrast, in Figure 2(b), the area under â(ρ′) is

less than that of â(ρ′′) which implies the expectation of the optimal actions induced by Σρ′ is

less than the optimal actions induced by Σρ′′ . Furthermore, integrating â(q; ρ′′)− â(q; ρ′) right

to left always yields a non-negative value which, by Lemma 1. vi, implies Responsiveness with

a higher mean.

â(ρ′)
â(ρ′′)

a

q

(a) Responsiveness with a lower
mean

â(ρ′)
â(ρ′′)

â

q

(b) Responsiveness with a
higher mean

Figure 2: Quantile Function and Responsiveness
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2.2 The Monotone Information Order

The next step is to determine an appropriate way to compare different information structures.

We first restrict attention to information structures in which higher signal realizations lead

to a first-order stochastic increase in beliefs. This assumption is weaker than the monotone

likelihood ratio property commonly assumed in settings with complementarities.

(A.5) For any given information structure Σρ, s
′ > s implies µ(·|s′; ρ) �FOSD µ(·|s; ρ).

Monotone Information Order: Σρ′′ dominates Σρ′ in the monotone information order,

denoted ρ′′ �MIO ρ
′, if for all q ∈ [0, 1]

µ
(
· |FS(s) ≥ q; ρ′′

)
�FOSD µ

(
· |FS(s) ≥ q; ρ′

)
and

µ
(
· |FS(s) ≤ q; ρ′

)
�FOSD µ

(
· |FS(s) ≤ q; ρ′′

)
.

When ρ′′ �MIO ρ′, the signal and the state are more positively correlated under Σρ′′ than

under Σρ′ . Intuitively, the agent has more faith in the signal realizations from Σρ′′ than the

signal realizations from Σρ′ . By (A.5), high signal realizations are evidence of high states. The

agent considers a signal realization above the qth quantile from Σρ′′ as a stronger evidence that

the state could be high (than a signal realization above the qth quantile from Σρ′). Consequently,

the agent is more optimistic when she observes a signal realization above the qth quantile from

Σρ′′ than from Σρ′ . Similarly, a signal realization below the qth quantile from Σρ′′ is a stronger

evidence that the state could be low (than a signal realization below the qth quantile from Σρ′).

Thus, the agent is more pessimistic when she observes a signal realization below the qth quantile

from Σρ′′ than from Σρ′ .

Example 1: Truth-or-Noise signals

Σρ belongs to a class of information structures such that with probability ρ ∈ [0, 1], the signal

reveals the state (s = θ), and with probability 1 − ρ, the signal and the state are identically

and independently distributed. Thus, with probability 1−ρ, the signal is uninformative. Then,

ρ′′ �MIO ρ
′ if 1 ≥ ρ′′ > ρ′ ≥ 0.

Example 2: Normal additive noise

Σρ belongs to a class of information structures such that conditional on the state θ, the signal

is given by s = θ+ε, where ε ⊥ θ, ε ∼ N (0, ρ−2), and ρ > 0. As ρ increases, the variance of the
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additive noise shrinks (the precision of the signal increases). Then, ρ′′ �MIO ρ
′ if ρ′′ > ρ′ > 0.

Example 3: Uniform signals

Σρ belongs to a class of information structures such that conditional on the state θ, the signal

is distributed according to

s ∼ U
[
θ − ρ, θ + ρ

]
for ρ > 0. As ρ shrinks, the signal becomes more accurate. Then, ρ′′ �MIO ρ

′ if ρ′ > ρ′′ > 0.11

We provide the following lemma that gives alternative characterizations of monotone infor-

mation order.

Lemma 2 Given two information structures Σρ′ and Σρ′′, ρ
′′ �MIO ρ

′ if, and only if,

i. For all θ ∈ Θ and all x ∈ R,∫ x

−∞
µ(θ|s; ρ′′)fS(s)ds ≥

∫ x

−∞
µ(θ|s; ρ′)fS(s)ds,

and ∫ ∞
x

µ(θ|s; ρ′′)fS(s)ds ≤
∫ ∞
x

µ(θ|s; ρ′)fS(s)ds.

ii. For all (integrable) supermodular functions ψ : Θ× S → R,∫
Θ×S

ψ(θ, s)F (dθ, ds; ρ′′) ≥
∫

Θ×S
ψ(θ, s)F (dθ, ds; ρ′)

Proof. Fix any θ ∈ Θ and any x ∈ R. Let FS(x) = q.∫ x

−∞

(
µ(θ|s; ρ′′)− µ(θ|s; ρ′)

)
dFS(s) =

∫ x

−∞
F (θ, ds; ρ′′)− F (θ, ds; ρ′)

=F (θ, x; ρ′′)− F (θ, x; ρ′)

=F (θ, F−1
S (q); ρ′′)− F (θ, F−1

S (q); ρ′)

=
(
µ(θ|FS(s) ≤ q; ρ′′)− µ(θ|FS(s) ≤ q; ρ′)

)
FS(F−1

S (q))︸ ︷︷ ︸
=q

11This is also a class of information structures that are ordered by MIO but not by Blackwell informativeness.
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We then have

ρ′′ �MIO ρ
′ ⇔ µ(θ|FS(s) ≤ q; ρ′) �FOSD µ(θ|FS(s) ≤ q; ρ′′)

⇔
(
µ(θ|FS(s) ≤ q; ρ′′)− µ(θ|FS(s) ≤ q; ρ′)

)
q ≥ 0

giving us the desired result. By Bayes consistency,∫ ∞
−∞

µ(θ|s; ρ′′)fS(s)ds =

∫ ∞
−∞

µ(θ|s; ρ′)fS(s)ds = µ(θ),

which then proves the second expression of Lemma 2.i is also equivalent to MIO. Lemma 2.ii

follows from Müller and Stoyan (2002), Theorem 3.9.5.

There is a close parallel between the characterization of responsiveness in Lemma 1 and the

characterization of monotone information order in Lemma 2. This close connection between

the two definitions provides us a way to link changes in posteriors to changes in the distribution

of actions.

It is natural to ask why the monotone information order is the relevant order to consider.

Athey and Levin (2001) answer this question by showing that all decision makers with super-

modular payoffs prefer a “more informative” signal if, and only if, informativeness is ranked

by the monotone information order. We complement their result by providing conditions on

the marginal utilities of supermodular payoff functions such that, actions are more respon-

sive to “more informative” signals if, and only if, informativeness is ranked by the monotone

information order.

2.3 Monotone Information Order and Responsiveness

The final step is to find a class of payoff functions for which the optimal actions can be ranked

by responsiveness when information quality increases according to the monotone information

order. Let U↑ be the class of payoff functions u : Θ×A→ R that satisfy (A.1)-(A.4) and have

a marginal utility ua(θ, a) that is

i. convex in a for all θ ∈ Θ, and

ii. supermodular in (θ, a).
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Below, we show that payoffs in U↑ are linked to optimal actions that become more responsive

with a higher mean (hence the up arrow) as information quality increases in the monotone

information order.

Let U↓ be the class of payoff functions u : Θ× A→ R that satisfy (A.1)-(A.4) and have a

marginal utility ua(θ, a) that is

i. concave in a for all θ ∈ Θ, and

ii. submodular in (θ, a).

Payoffs in U↓ are linked to optimal actions that become more responsive with a lower mean

(hence the down arrow) as information quality increases in the monotone information order.

Theorem 1 Consider two information structures Σρ′ and Σρ′′.

i. If Σρ′′ dominates Σρ′ in the monotone information order, then for all payoffs payoff u ∈ U↑[
u ∈ U↓

]
, a(ρ′′) is more responsive with a higher [lower] mean than a(ρ′).

ii. Suppose the prior µo is absolutely continuous on Θ. If Σρ′′ does not dominates Σρ′ in the

monotone information order, then there exists a payoff u ∈ U↑
⋂
U↓ such that a(ρ′′) is not

more responsive than a(ρ′).

Before giving the intuition for Theorem 1, it is helpful to first explore why these class

of payoff functions are interesting. We show that a payoff function u ∈ U↑
[
u ∈ U↓

]
leads to

optimal actions that are “convex” [“concave”] in the agent’s posterior belief. We then show how

this convexity/concavity interacts with the informativeness of signals to result in responsiveness.

Proposition 1 Let µ1, µ2 ∈ ∆(Θ) be any two beliefs with µ2 �FOSD µ1. If u ∈ U↑, then for

any λ ∈ [0, 1]

a∗
(
λµ1 + (1− λ)µ2

)
≤ λa∗(µ1) + (1− λ)a∗(µ2)

If u ∈ U↓, the opposite inequality holds.

Henceforth, we focus on payoffs in U↑ but the intuition and the arguments we provide

can be symmetrically applied to payoffs in U↓. Supermodularity of the agent’s payoff function

implies that the state and the action are complements, i.e., for two states θ > θ′, the difference

in the marginal utility ua(θ, a)− ua(θ′, a) is non-negative. However, supermodularity does not

tell us anything about the strength of the complementarities between the action and the state.
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It could be that the complementarities are negligible when a is low but substantial when a is

high. In such a case, the agent’s payoff additionally satisfies increasing supermodularity, i.e.,

the marginal utility ua(θ, a)− ua(θ′, a) is increasing in a. Therefore, when a is high, the agent

is more willing to increase her action if the state is high.

On the other hand, the concavity of the agent’s payoff function implies that she has di-

minishing marginal utility. When a is high, she is less willing to increase her action regardless

of the state. Thus, there are two opposing forces at work. When the agent’s payoff u belongs

to U↑, the rate at which her marginal utility diminishes is less than the rate at which the

complementarities between her action and the state increase.

Figure 3(a) below plots out the expected marginal utility of a payoff function u ∈ U↑ for

different beliefs µi ∈ ∆(Θ), i = 1, 2, 3, 4. Since the payoff is concave in a, the marginal utilities

are downward sloping. The optimal action a∗(µi) is given by the action at which the expected

marginal utility under belief µi intersects the x-axis. The beliefs are ordered by first-order

stochastic dominance with µ4 �FOSD µ3 �FOSD µ2 �FOSD µ1. Supermodularity implies that

the expected marginal utility of µi always lies below the expected marginal utility of µi+1. Thus,

a∗(µ4) ≥ a∗(µ3) ≥ a∗(µ2) ≥ a∗(µ1).

Furthermore, increasing supermodularity implies that the gap between the expected marginal

utilities of µi+1 and µi is increasing as the action increases. We capture this by showing that

the height of the red arrows increases left to right. Finally, the marginal utilities themselves

are convex curves which implies that the marginal utility diminishes at a diminishing rate. All

these properties combined give us the “convexity” property described in Proposition 1. Figure

3(b) depicts this for the case when beliefs can be plotted on a one-dimensional axis.

Figure 4 below shows why increasing supermodularity alone is not sufficient to get the con-

vexity property from Proposition 1. In Figure 4(a), we plot the expected marginal utility of

a payoff function u /∈ U↑ for different beliefs µi ∈ ∆(Θ), i = 1, 2, 3, 4. Once again, beliefs are

ordered by first-order stochastic dominance with µ4 �FOSD µ3 �FOSD µ2 �FOSD µ1. Super-

modularity still holds − the expected marginal utility of µi lies below the expected marginal

utility of µi+1. Thus, a∗(µi+1) ≥ a∗(µi). Furthermore, increasing supermodularity still holds

− the height of the red arrows increases left to right. However, the marginal utilities are now

concave which implies that the marginal utility diminishes at an increasing rate. Figure 3(b)

then depicts the resulting non-convex optimal action as a function of beliefs.

To see how the “convexity” of the optimal action is related to responsiveness, consider a

setting where the prior puts mass only on two states {θL, θH} with θ ≤ θL < θH ≤ θ̄. We abuse

notation and use µo to denote the mass at θH , i.e., µo = µo({θH}). Let Σρ′ be a completely
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Figure 3: Convexity for u ∈ U↑
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Figure 4: Non-convexity for u /∈ U↑

uninformative information structure. Then, Σρ′ induces a∗(µo) with probability one.

Let Σρ′′ be an information structure that induces two posteriors {µ1, µ2} with probability

{λ, 1−λ}. Without loss of generality, assume µ2 > µ1 which implies µ2 �FOSD µ1. Consistency

of Bayes-updating implies µo = λµ1 + (1 − λ)µ2. Σρ′′ induces optimal actions a∗(µ1) with
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probability λ and a∗(µ2) with probability 1 − λ. Furthermore, given the supermodularity of

u(θ, a) and µ2 �FOSD µ1, a∗(µ2) ≥ a∗(µ1).

From Proposition 1, if u ∈ U↑, then λa∗(µ1)+(1−λ)a∗(µ2) ≥ a∗(λµ1 +(1−λ)µ2) = a∗(µo).

In Figure 5(a) below, the average action from the more informative structure Σρ′′ is given by the

point on the dashed red line directly above µo while the average action from the uninformative

structure Σρ′ is given by the point on the black line directly above µo.

Figure 5(b) maps the induced distribution over optimal actions. The dashed blue line,

H(ρ′′), maps the distribution of actions under Σρ′′ with an atom of size λ at a∗(µ1) and another

atom of size 1−λ at a∗(µ2). Similarly, the solid red line, H(ρ′), maps the distribution of actions

under Σρ′ which places all the mass at a∗(µo). Notice the integral
∫∞
x
H(z; ρ′′)−H(z; ρ′)dz ≤ 0

for all x ∈ R which implies that a(ρ′′) is more responsive with a higher mean than a(ρ′).

µ

a∗

µ1 µ2µo

a∗(µ)

(a) Optimal action

H
1

ρ′′

ρ′

a∗(µ1) a∗(µ2)a∗(µo)

(b) Induced distribution

Figure 5: Convexity of a∗ and responsiveness with higher mean

2.4 Non-responsive Optimal Actions

In this section, we explore why a higher quality of information may not lead to more responsive

optimal actions when u /∈ U↑ ∪ U↓. Figure 6 below illustrates why we may fail to rank actions

by responsiveness when the optimal action is neither convex nor concave over posteriors that

are first-order stochastically ordered.

Once again, consider a simplified setting in which the prior puts mass only on two states

{θL, θH}. Let Σρ′′ be an information structure that induces three posteriors {µ1, µo, µ2} with

equal probability such that µ2 �FOSD µo �FOSD µ1. Let Σρ′ induce posteriors {µ1, µ2, µ3, µ4}
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with probability {1/6, 1/6, 1/3, 1/3} such that µ4 �FOSD µ3 �FOSD µ2 �FOSD µ1. Notice that

Σρ′ is a garbling of Σρ′′ and thus, ρ′′ �MIO ρ
′.12

Let a∗(µ) be neither convex nor concave and let the average action under Σρ′′ equal the

average action under Σρ′ . In Figure 6(a) below, this corresponds to the point of intersection

of the dashed red line and the solid black curve at µo. Figure 6(b) maps the distribution

over optimal actions. Σρ′′ induces the dashed blue line while Σρ′ induces the solid red line.

If we start integrating from the right, then
∫∞
x
H(z; ρ′′) − H(z; ρ′)dz ≤ 0 for all x > a∗(µ4)

but the sign changes at some point x∗ ∈ (a∗(µo), a
∗(µ4)). If we integrate from the left, then∫ x

−∞H(z; ρ′′) − H(z; ρ′)dz ≥ 0 for all x < a∗(µ3) but the sign changes at some point x∗∗ ∈
(a∗(µ3), a(µo)).

µ

a∗

µ1 µ2µo µ4µ3

a∗(F )

(a) Optimal action

H

ρ′′

ρ′

1

a1 a2a3 a4aoao

x∗x∗∗

(b) Induced distribution

Figure 6: Non-convexity/concavity and non-responsiveness

We can therefore conclude that a(ρ′′) and a(ρ′) cannot be ordered by responsiveness. In

fact, as the average action under Σρ′′ equals the average action under Σρ′ , we can conclude

that a(ρ′′) and a(ρ′) cannot be ordered by most univariate stochastic variability orders such as

second-order stochastic dominance, mean-preserving spreads, Lorenz order, dilation order, and

dispersive order.13

Figure 7 below illustrates another reason why a higher quality of information may not lead

to more responsiveness; when the interior solution assumption, (A.3), is violated. Figure 7

depicts the optimal action as a function of beliefs. In the interior of the action space, the

optimal action is convex in beliefs. Thus, as long as information structures induce beliefs that

12A garbling is a kernel Q : S × S → [0, 1] so that F (s′|θ; ρ′) =
∫
s∈S Q(s′|s)F (ds|θ; ρ′′)

13Shaked and Shantikumar (2007) provide a thorough treatment of these orders.
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lead to actions in (a, ā), we can apply the same arguments we used in Figure 5 to conclude

actions become more responsive with a higher mean as information quality increases in the

monotone information order.

However, there are some beliefs for which the upper limit on the action space, ā, is a binding

constraint. Suppose the prior is one such belief so that a∗(µo) = ā. Let Σρ′ be a completely

uninformative information structure. Then, Σρ′ induces ā with probability one. Furthermore,

any distribution over actions induced by any other information structure Σρ will be first-order

stochastically dominated, even if ρ �MIO ρ′. Thus, the optimal actions induced by the least

informative information structure are actually more responsive with a higher mean than all

other information structures.

a∗

µ

ā

µo

a∗(µ)

a

Figure 7: Boundary solution and non-responsiveness

2.5 Application: Pigouvian Subsidies and Monopoly Production

In the motivating example of the Introduction, we asked how a social planner, who cannot

regulate prices or quantities, improves welfare by affecting the quality of information a monop-

olist uses to make production decisions. We used highly structured information structures and

payoff functions to conclude the planner should encourage more information acquisition by the

monopolist. In this subsection, we consider the example in a more general setting.

In this section, we consider the example in a more general setting as follows: a monopolist

who produces q ∈ [0, q̄] faces a downward sloping inverse demand curve P (q) and a cost function

c(θ, q) where the parameter θ ∈ Θ is unknown. The monopolist and the planner share a common

prior µo ∈ ∆(Θ). As θ increases, the marginal cost declines, i.e. c(θ, q) is submodular in (θ, q).
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We assume that the monopolist’s profit π(θ, q) = qP (q) − c(θ, q) is strictly concave in q and

admits an interior solution for each θ.

Prior to making any production decisions, the monopolist can acquire an information struc-

ture from a set of experiments {Σρ}ρ∈R at cost k(ρ). We assume the experiments are totally or-

dered by the monotone information order so that ρ′′ > ρ′ implies ρ′′ �MIO ρ
′ and k(ρ′′) ≥ k(ρ′).

Given a choice of information structure Σρ and a signal realization s ∈ S, the monopolist

updates her belief to the posterior µ(·|s; ρ) and produces the monopolist optimal quantity

qM(s; ρ). Thus, the monopolist’s ex-ante problem is to choose an information structure that

maximizes ∫
Θ×S

π
(
θ, qM(s; ρ)

)
µ(dθ|s; ρ)dFS(s)− k(ρ).

In contrast, the social planner takes the consumer surplus into account. Let CS(q) be

the consumer surplus when the monopolist produces q units. The planner’s ex-ante choice of

information structure maximizes∫
Θ×S

π
(
θ, qM(s; ρ)

)
µ(dθ|s; ρ)dFS(s) +

∫
S

CS
(
qM(s; ρ)

)
dFS(s)− k(ρ).

Thus, the planner has a higher demand for information than the monopolist if a higher quality of

information increases the expected consumer surplus, i.e., information is a positive externality

on the consumer even if the unknown parameter θ has no direct effect on consumer welfare.

Proposition 2 Let −qP ′′(q)/P ′(q) ≤ 1 and let the profit function π ∈ U↑, i.e. πq is convex

in q for all θ and supermodular in (θ, q). Then the social planner has a higher demand for

information than the monopolist

Proof. −qP ′′(q)/P ′(q) ≤ 1 implies that CS(q) =
∫ q

0
P (t)dt − qP (q) is an increasing convex

function. If π ∈ U↑, an increase in ρ (higher quality of information by MIO) leads to an optimal

action qM(ρ) that is more responsive with a higher mean. By definition of responsiveness with

a higher mean, E[CS(qM(ρ)] is increasing in ρ.

Intuitively, the assumption that −qP ′′(q)/P ′(q) ≤ 1 implies that as production increases,

the consumers capture more and more of the welfare gains than does the monopolist.14 There-

fore, the consumer surplus is a convex function of the quantity produced, which in turn implies

that consumers benefit as the monopolist production becomes more responsive with higher

14The assumption implies that the gap between the inverse demand curve and the marginal revenue curve is
widening as quantity increases. We can interpret the assumption as saying that the monopolist has diminishing
market power.
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mean. We can then use Theorem 1 to identify sufficient conditions that lead to the desired

responsiveness behavior.

3 Supermodular Games

In this section, we extend our results from the single-agent framework to supermodular games

with incomplete information. This class of games includes beauty contests, oligopolistic com-

petition, games with network effects, search models, and investment games. It is useful to

understand how information quality affects the equilibrium of these games in a general setting.

3.1 Setup

There are n players with N , {1, 2, . . . , n} denoting the set of players. Let Θi , [θi, θ̄i] be the

state space for player i. Let Θ = ×i∈NΘi and Θ−i = ×j 6=iΘj . The players hold a common

prior µo ∈ ∆(Θ). Once again, we allow for beliefs to be discrete measures with finite support

in Θ, absolutely continuous, or a mixture. Additionally, we assume that

(A.6) for all i ∈ N , θ′i > θi implies µo(θ−i|θ′i) �FOSD µo(θ−i|θi)

which is a weaker assumption than affiliation.

Let Ai , [ai, āi] be the action space of player i. Let A = ×i∈NAi and A−i = ×j 6=iAj. The

payoff for each player i = 1, ..., n is given by a utility function ui : Θi × A→ R such that

(A.7) ui(θi, a) is uniformly bounded, measurable in θi, continuous in a, and twice differentiable

in ai,

(A.8) for all (θi, a−i) ∈ Θi × A−i, ui(θi, a−i, ·) is strictly concave in ai,

(A.9) for all (θi, a−i) ∈ Θi × A−i, there exists an action ai ∈ Ai such that uiai(θi, a−i, ai) = 0,

and

(A.10) ui(θ, a) has increasing differences in (θi, a−i; ai).

Similar to the single-agent framework, (A.10) implies that there are complementarities

between the state of the world and a player’s action. Additionally, there are now strategic

complementarities between the players’ actions. Thus, when player j takes a higher action,

player i wants to do the same.
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Notice that our setup accommodates games of independent private values and common

values. For the former, we simply need to impose an additional assumption that the prior is

independent, i.e., µo(θ) =
∏

i∈N µ
o(θi). The latter requires that the prior has support only on

states with θi = θj for all i, j ∈ N .

Following the terminology introduced by Bergemann and Morris (2016), we decompose the

entire game of incomplete information into two components: the basic game and the information

structure. The basic game G , (N, {Ai, ui}i∈N , µo) is composed of (i) a set of players N , (ii)

for each player i ∈ N , an action space Ai along with a payoff function ui : Θi × A → R, and

(iii) a common prior µo ∈ ∆(Θ).

The second component of the Bayesian game is the information structure Σρ = ×i∈NΣρi

where for each player i = 1, ..., n, signals are generated by Σρi ,
(
Si, {F (·|θi; ρi)}θi∈Θi

)
. Si ⊆ R

is the signal space, F (·|θi, ρi) : Si → [0, 1] is a probability measure over Si conditional on a given

state θi, and ρi is an index.15 For each si ∈ Si, we assume that F (si|θi; ρi) is measurable in θi.

Let FSi
(·; ρi) be the marginal of the signal. Once again, we assume without loss of generality

that for any information structure Σρi , FSi
(·; ρi) = FSi

(·). Moreover, FSi
has a positive and

bounded density fSi
.

Let S = ×i∈NSi. An information structure Σρ induces a joint distribution over S×Θ which

we denote by F (s, θ; ρ). The following are working assumptions for this section:

(A.11) For all s ∈ S and θ ∈ Θ, F (s|θ; ρ) =
∏

i∈N F (si|θi; ρi).

(A.12) For all players i ∈ N , s′i > si implies µ(·|s′i; ρi) �FOSD µ(·|si; ρi).

(A.13) For all players i ∈ N , θ′i > θi implies F (·|θ′i; ρi) �FOSD F (·|θi; ρi).

Assumption (A.11) implies that player i can only directly learn about θi. To see this,

first notice that if players cannot directly learn about each other’s signal realizations, then

conditional on the state θ ∈ Θ, F (s|θ; ρ) =
∏

i∈N F (si|θ; ρ) for all s ∈ S. Furthermore, if the

signal si depends only on θi, then F (si|θ; ρ) = F (si|θi; ρi). Assumption (A.12) is an extension

of (A.5) and implies that higher signal realizations lead to a first-order increase in a player’s

belief. Assumption (A.13) implies the converse: higher states are likely to lead to higher signal

realizations. A distribution over the state and signal space that satisfies the monotone likelihood

ratio property also satisfies (A.12)-(A.13).

15There is an implicit assumption in the setup that player i can directly learn only about θi. We make this
assumption explicit in (A.11).
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The full game of incomplete information is given by Gρ , (Σρ, G). Both components of the

game are common knowledge. First, each player i ∈ N privately observes a signal realization

si ∈ Si generated from Σρi and updates her belief to µ(·|si; ρi) ∈ ∆(Θ). Then, the players

participate in the basic game G by simultaneously choosing an action.

Momentarily ignoring existence issues, let a?(ρ) =
(
a?1(ρ), a?2(ρ), . . . , a?n(ρ)

)
be a profile of

pure strategy actions that constitute a Bayesian Nash equilibrium (BNE) of the game Gρ. For

each player i ∈ N , a?i (ρ) : Si → Ai is a measurable function. We interpret a?i (si; ρ) as the

solution to

max
ai∈Ai

∫
Θ×S−i

ui
(
θi, a

?
−i(s−i; ρ), ai

)
F (ds−i|θ; ρ)µ(dθ|si; ρi).

In words, a?i (si; ρ) is the action player i takes in an equilibrium of the game Gρ when she observes

signal si and her opponents use strategies a?−i(ρ). Fixing the basic game G, we are interested

in how a change in the information structure from Σρ′ to Σρ′′ affects the BNEs of the full game

Gρ′ = (Σρ′ , G) and Gρ′′ = (Σρ′′ , G).

We restrict our attention to monotone BNEs, i.e., each player’s equilibrium action, a?i (si; ρ)

is increasing in the signal si.
16 The existence of monotone pure strategy BNE has long been

established by the literature on supermodular Bayesian games. In particular, the existence

result of Van Zandt and Vives (2007) is noteworthy in our setting; their existence result does

not require players to have atomless beliefs when they participate in the basic game G, which is

relevant in our setting as we do not impose any smoothness restriction on the joint distribution

of signals and state.

3.2 Monotone Information Order and Equilibrium Responsiveness

We parallel the single-agent framework as closely as possible. We first extend the responsiveness

order over optimal actions and the monotone information order over information structures into

a multi-player setting using the product order. We then identify the class of payoff functions

for which BNE are ordered by responsiveness when information quality changes according to

the monotone information order.

Equilibrium Responsiveness: Given two games of incomplete information Gρ′ and Gρ′′ ,
16By assumptions (A.6), (A.10), and (A.12), player i’s best response is monotone when her opponents use

monotone strategies. While restricting attention to monotone BNEs may be with loss of generality, extremal
equilibria are nonetheless monotone. Specifically, the least and the greatest pure strategy monotone BNEs of a
supermodular Bayesian game bound all other BNEs (Milgrom and Roberts (1990), and Van Zandt and Vives
(2007)).
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a?(ρ′′) is more responsive with a higher [lower] mean than a?(ρ′) if, and only if, a?i (ρ
′′) is more

responsive with a higher [lower] mean than a?i (ρ
′) for all i ∈ N .

Monotone Information Order: Given two information structures Σρ′ and Σρ′′ , Σρ′′ domi-

nates Σρ′ in the monotone information order, denoted ρ′′ �MIO ρ
′ if, and only if, Σρ′′i

dominates

Σρ′i
in the monotone information order for all i ∈ N .

Let P↑ be the class of payoff functions u : Θi × A→ R that satisfy (A.7)-(A.10) and have

a marginal utility uai(θ, a) that, for all j ∈ N ,

i. is convex in aj for all (θi, a−j) ∈ Θi × A−j,

ii. has increasing differences in (θi; aj) for all a−j ∈ A−j and,

iii. has increasing differences in (ai; aj) for all (θi, a−j,−i) ∈ Θi × A−j,−i.

Below, we show that payoffs in P↑ are linked to BNE strategies that become more responsive

with a higher mean (hence the up arrow) as information quality increases in the monotone

information order. Notice that we now require the marginal utility of player i to be convex

not only in player i’s action but also in each opponent’s action. Similarly, we now require the

marginal utility of player i to be supermodular not only in (θi, ai) but also in (θi, a−i) and

(ai, a−i).

Let P↓ be the class of payoff functions u : Θi × A→ R that satisfy (A.7)-(A.10) and have

a marginal utility uai(θ, a) that, for all j ∈ N ,

i. is convcave in aj for all (θi, a−j) ∈ Θi × A−j,

ii. has decreasing differences in (θi; aj) for all a−j ∈ A−j and,

iii. has decreasing differences in (ai; aj) for all (θi, a−j,−i) ∈ Θi × A−j,−i.

Below, we show that payoffs in P↓ are linked to BNE strategies that become more responsive

with a lower mean (hence the down arrow) as information quality increases in the monotone

information order.

Theorem 2 Consider two Bayesian games Gρ′ and Gρ′′.

Suppose for each player i ∈ N , ui ∈ P↑ [ui ∈ P↓]. If Σρ′′ dominates Σρ′ in the monotone

information order, then for any monotone Bayesian Nash equilibrium a?(ρ′) of Gρ′, there exists
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a monotone Bayesian Nash equilibrium a?(ρ′′) of Gρ′′ such that a?(ρ′′) is more responsive with

higher [lower] mean than a?(ρ′).

Each player i faces n sources of uncertainty: the unknown state θi and the random actions

of the remaining n− 1 players which depend on the signal realizations they observe. The proof

for Theorem 2 proceeds in four steps. The first step shows that, holding all else fixed, player

i’s best-reply strategy becomes more responsive when only the quality of information for player

i increases in the monotone information order. As quality of information increases, player i is

more informed about θi. Thus, an application of Theorem 1 from the single-agent setting gives

the result.

The second step shows that, holding all else fixed, player i’s best-reply strategy becomes

more responsive when the quality of information for player j 6= i increases in the monotone

information order. As player j’s information quality increases, player j’s signals become more

correlated to the state θj, which in turn is (weakly) correlated to θi.
17 Thus, by increasing

the quality of information for player j, the signals for player i and j indirectly become more

correlated. Hence, player i can better predict player j’s random action and match it.

The third step shows that, holding all else fixed, player i’s best-reply strategy becomes

more responsive when player j 6= i chooses a more responsive strategy due to the increasing

differences of uiai in (aj; ai). It is of similar spirit to the result that increasing differences of ui

in (aj; ai) imply that the best-reply to a monotone opponent’s strategy is monotone. Finally,

we conclude by applying the main result in Villas-Boas (1997) to get a comparative statics of

responsiveness on fixed points.

4 Overt vs Covert Information Acquisition and the Value

of Transparency

In this section, we illustrate the use of responsiveness to characterize the value of transparency,

as defined below, in the context of Bayesian games with information acquisition. We then

highlight why the value of transparency is of economic interest.

We consider a Bayesian game, G, with two players, and composed of two stages: an in-

formation acquisition stage followed by the stage game G = ({Ai, ui}i=1,2, FΘ), as defined in

Section 3. In the information acquisition stage, only player 1 acquires information by choosing

a signal structure from {Σρ = (S1, {FS1|Θ(·|θ; ρ)}θ∈Θ)}ρ∈P at cost κ(ρ). We assume that ρ′ > ρ

17By weakly correlated, we mean that we allow for θi to be independent of θj .
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implies Σρ′ dominates Σρ in the monotone information order. On the other hand, player 2 has

an exogenously given information structure Σρ′′ = (S2, {FS2|Θ(·|θ; ρ′′)}θ∈Θ).

Whether or not player 2 observes player 1’s choice of information structure corresponds

to the overt and the covert game respectively. After the information acquisition stage, each

player i = 1, 2 privately observes a signal si, updates beliefs, and plays the stage game by

simultaneously choosing an action. Throughout this section, we assume that best-responses in

the stage game are in pure strategies and characterized by their first order conditions. We also

assume that there exists a unique pure strategy BNE.

Consider the following two scenarios as a thought experiment. Suppose both players start

with exogenously given information structures, Σρ̂′ ,Σρ′′ , and there is common knowledge of

the information structure, i.e both players know the Bayesian game is Gρ̂′,ρ′′ = (Σρ̂′ ,Σρ′′ , G).

Suppressing dependence on ρ′′, let a?1(ρ̂′), a?2(ρ̂′) be the pure strategy BNE.

In the first scenario, player 1 is allowed to choose a different information structure. Player

2 (i) is made aware that player 1 can choose a different information structure, and (ii) observes

player 1’s choice. This scenario of the thought experiment mirrors the the overt game. Common

knowledge of information structures still holds; if player 1 chooses Σρ′ , the resulting pure

strategy BNE is a?1(ρ′), a?2(ρ′).

In the second scenario, player 1 is again allowed to choose a different information structure.

However, player 2 (i) is not aware that player 1 can choose a different information structure, (ii)

does not observe player 1’s choice. This scenario of the thought experiment mirrors the covert

game. Player 2 will ignorantly continue playing a?2(ρ̂), even when player 1 chooses Σρ′ . On the

other hand, player 1 best-replies to a?2(ρ̂) by playing the pure strategy a1(ρ′, ρ̂′). Henceforth,

we refer to ρ̂ as player 2’s belief of player 1’s choice, and ρ as player 1’s actual choice. We say

player 2 has correct beliefs when ρ̂ = ρ.

We define the value of transparency as the difference in ex-ante payoffs to player 1 between

the two scenarios. Specifically, let player 1’s ex-ante payoff in the covert game (second scenario),

given actual signal choice ρ, and given player 2’s belief ρ̂ be

U1(ρ, ρ̂) =

∫
Θ×S1×S2

u1
(
θ, a1(s1; ρ, ρ̂), a?2(s2; ρ̂)

)
dF (θ, s1, s2; ρ′, ρ′′).

Player 1’s ex-ante payoff in the overt game (first scenario), given actual choice ρ, is U1(ρ, ρ).

Definition 1 The Value of Transparency from choice of information structure ρ at belief ρ̂ is

given by:

V T (ρ, ρ̂) = U1(ρ, ρ)− U1(ρ, ρ̂)
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Player 1

stage game (ρ′, ρ′′)

ρ′

stage game(ρ′′, ρ′′)

ρ′′

(a) Overt Information Acquisition

Player 1

stage game (ρ′, ρ′′)

ρ′

stage game(ρ′′, ρ′′)

ρ′′

(b) Covert Information Acquisition

Figure 8: The diagrams illustrate the information set of player 2 before signals are realized in
the overt and covert games in a very simple version of the game where player 1 only has two
available signals.

The Marginal Value of Transparency is given by:

MV T (ρ, ρ̂) =
d

dρ

(
U1(ρ, ρ)− U1(ρ, ρ̂)

)
We first show that the marginal value of transparency is key to compare player 1’s demand

for information across the two games. We then characterize when the marginal value of trans-

parency is positive or negative depending on (i) player 2’s responsiveness to a change in player

1’s information structure, and (ii) the sign of the externality imposed on player 1 by player 2’s

responsiveness.

Before we discuss how to characterize the marginal value of transparency, we present why

it is an interesting concept through the following propositions.

Proposition 3 Suppose κ(ρ) = 0 for all ρ ∈ P. If the Marginal Value of Transparency at

correct beliefs (ρ̂ = ρ) is non-negative,

MV T (ρ, ρ) ≥ 0

for all ρ ∈ P, then player 1’s Value of Information in the Overt game, U1(ρ, ρ), is increasing

in ρ.

In covert games, the more information player 1 acquires, the more knowledgeable she is

about the unknown state and can make better decisions in the game. Therefore, if information
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is costless, the Value of Information in Covert games is increasing in the amount of information

she acquires (Neyman, 1989, Amir and Lazzati, 2016).

While acquiring more costless information has the same positive effect in overt games,

there are additional effects to account for. Player 2 can observe how much information player

1 acquires, and respond to it during the stage game. Player 2 may find it optimal to choose

an unfavorable action (punish player 1) in the stage game whenever player 1 acquires more

information in the first stage. If player 2’s unfavorable action is strong enough on average,

player 1’s Value of Information in Overt games may decrease despite becoming more informed.

Proposition 3 provides conditions, fully captured by the marginal value of transparency, for

more information to be beneficial even in overt games.

Furthermore, when the Value of Information in Overt games is concave (for example when

κ(·) is convex enough), Proposition 4 allows us to use the marginal value of transparency to

make comparative statics predictions on the demand of player 1’s information acquisition.

Proposition 4 Let the Value of Information in the Overt game, U1(ρ, ρ), be concave in ρ.

If the MV T (ρ, ρ) ≥ 0 [≤ 0] for all ρ ∈ P, then player 1 acquires more [less] information in the

Overt game than the Covert game.

We now discuss how to characterize the marginal value of transparency. The value of

transparency depends on how the choice of a signal by player 1 affects the actions of player 2.

In Lemma 5, we identify two key components: player 2’s responsiveness to changes in player

1’s information structure, and the externality player 2’s response imposes on player 1.

Proposition 5 Let a?2(s2; ρ) be differentiable in ρ, for all s2 ∈ S2. The Marginal Value of

Transparency at correct beliefs is

MV T (ρ, ρ) =

∫
S2

∂a?2(s2; ρ)

∂ρ


∫

Θ×S1

∂u1
(
θ, a?1(s1; ρ), a?2(s2; ρ)

)
∂a2

dFΘ×S1(θ, s1|s2; ρ, ρ′′)

 dFS2(s2; ρ′′)

When player 2’s actions, a?2(ρ′) is monotone in s2 and monotonically responsiveness (with

a higher mean) in ρ′, the term∫ ∞

t

∂a?2(s2; ρ)

∂ρ
dFS2(s2; ρ′′) ≥ 0, ∀t ∈ R

as it represents player 2’s marginal responsiveness to small changes in player 1’s information

structure. The term in the brackets is the expected externality player 2 imposes on player 1,
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conditional on signal realization s2. The characterization of the marginal value of transparency

depends on how these two terms interact.

Theorem 3 (The Marginal Value of Transparency)

1. For increasing responsiveness:

• If a?2(ρ) is increasing in responsiveness with increasing (decreasing) mean, and the

externality ∂u1

∂a2
is positive, supermodular (submodular) in (a1, θ) and increasing (de-

creasing) in a2.

Then the Marginal Value of Transparency is positive (negative) for all ρ.

• If a?2(ρ) is increasing in responsiveness with increasing (decreasing) mean, and the

externality ∂u1

∂a2
is negative, submodular (supermodular) in (a1, θ) and decreasing (in-

creasing) in a2.

Then the Marginal Value of Transparency is negative (positive) for all ρ.

2. For decreasing responsiveness:

• If a?2(ρ) is decreasing in responsiveness with decreasing (increasing) mean, and the

externality ∂u1

∂a2
is positive, supermodular (submodular) in (a1, θ) and increasing (de-

creasing) in a2.

Then the Marginal Value of Transparency is negative (positive) for all ρ.

• If a?2(ρ) is decreasing in responsiveness with decreasing (increasing) mean, and the

externality ∂u1

∂a2
is negative, submodular (supermodular) in (a1, θ) and decreasing (in-

creasing) in a2.

Then the Marginal Value of Transparency is positive (negative) for all ρ.

To gain some intuition on this result it is useful to observe that the combined assumptions on

the externality together with the assumptions on Σρ and Σρ′′ imply that the average externality

conditional on the information of player 2

E
(
∂u1

∂a2

∣∣∣∣ s2

)
is monotonic in player 2’s belief. For example, if the externality ∂u1

∂a2
is supermodular in (a1, θ)

and increasing in a2, then E
(
∂u1

∂a2

∣∣∣ s2

)
is increasing as a function of s2. Then the table in figure

9 summarizes theorem 3.
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A Taxonomy of Transparency
a?2(ρ) externality Marginal Value

responsiveness mean ∂u1

∂a2
E
(
∂u1

∂a2

∣∣∣ s2

)
of Transparency

↗ ↗ + ↗ +
↗ ↘ + ↘ −
↗ ↗ − ↘ −
↗ ↘ − ↗ +
↘ ↘ + ↗ −
↘ ↗ + ↘ +
↘ ↘ − ↘ +
↘ ↗ − ↗ −

Figure 9: The table summarizes theorem 3 by stating some assumptions and combining others
into the monotonic average externality condition.

Perhaps the most direct way to interpret the results is through Figure 8. Looking at

columns 2 and 3, one can say that if the expectation of a?2(ρ) is increasing in ρ and there is

a positive externality the marginal value of transparency is positive. However, one has to be

careful making this assertion since it is only a necessary condition. Looking at row 1 and 6 in

the table, the conclusion also depends on columns 1 and 4.

More in general, whenever the marginal value of transparency is positive columns 2 and

3 have to ‘match’ (in the sense that they are either increasing and positive or decreasing and

negative), and columns 1 and 4 have to match too (both increasing or both decreasing). Notice

that of the possible 24 = 16 combinations of assumptions one could possibly fit in the table the

characterization only includes 8. For the other 8 cases the result is ambiguous and the marginal

value of transparency can be positive or negative.

4.1 Relation to the Taxonomy of Strategic Behavior

The application of responsiveness to characterize the value of transparency is related to the

taxonomy of strategic behavior in Fudenberg and Tirole (1984), and Bulow, Geanakoplos and

Klemperer (1985). For a thorough treatment of different examples and applications we recom-

mend Shapiro (1986). For a more recent treatment using the tools of supermodular games see

Vives (2000). Here we follow the textbook treatment of Tirole (1988).

To make the comparison transparent, we look only at the case of entry accommodation in

duopoly. There are 2 firms and 2 periods; in the first period firm 1 can make an investment K1,

in the second period both firms compete either in quantities (strategic substitutes) or prices
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(strategic complements). The term investment is used in a very broad sense and can represent

for example an action that lowers firm 1’s marginal costs or the action of capturing a share

of the market. For the taxonomy, the relevant feature of the investment is the effect on the

subgame perfect equilibrium payoff of firm 2: if the effect is positive, the investment makes firm

1 look soft. On the contrary, if the effect is negative, the investment makes firm 1 look tough.

Fudenberg and Tirole show

sign
dU1

dK1

= sign

(
da2

da1

)
∗ sign

(
∂U2

∂a1

da1

dK1

)
where on the right hand side the first term is positive in the case of strategic complements

(price competition) and negative in the case of strategic substitutes (quantity competition).

The second term is the perception of toughness or softness . They proceed to give a taxonomy

based on the 4 possible combinations of the right hand side signs.

strategic complements strategic substitutes

tough − (puppy dog) + (top dog)

soft + (fat cat) − (lean and hungry)

In our model, the investment K1 corresponds to the player 1’s information structure ρ′. Un-

der the symmetric payoff assumption in Fudenberg and Tirole (1984) sign
(
∂U2

∂a1

)
= sign

(
∂U1

∂a2

)
.

Therefore,

sign
dU1

dK1

= sign

(
da2

da1

)
∗ sign

(
∂U2

∂a1

da1

dK1

)
= sign

(
∂U1

∂a2

)
∗ sign

(
da2

dK1

)
.

The second line above is the deterministic version of the marginal value of transparency

we derived in Lemma 5. It is therefore related to the characterization in Theorem 3, and

corresponds to columns 2 and 3 in the Figure 8: the sign of the externality and the effect of K1

on a2.

Given the uncertanity in our model, we need to also account for responsiveness. The reason

we do not use the Fudenberg and Tirole model as an analogy to derive our characterization

is that responsiveness is not necessarily related to the strategic complementarities sign
(
da2
da1

)
.

We showed in Theorem 3 that when there is full complementarities between a1, a2 and the state

θ, increasing the quality of player 1’s information will increase responsiveness of player 2, but

this is not true in general.
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Therefore, although there is a clear connection between this section and Fudenberg and

Tirole (1984), the fact that now we have uncertainty shifts the focus from strategic complemen-

tarities to responsiveness. We have found that responsiveness is not characterized by strategic

complementarities or substitutabilities but there is certainly a relationship that needs to be

further explored. We leave the task for future work.

a1

a2

R2

R′1 R1

(a) Strategic Complements

a1

a2

R2

R1 R′1

(b) Strategic Substitutes

Figure 10: A decrease in the marginal cost for firm 1 shifts her reaction inwards in the case
of price competition and shifts the reaction outwards in the case of quantity competition. In
Fudenberg and Tirole’s terminology investment (in lowering costs) makes firm 1 look tough
which is beneficial in the case of strategic substitutes but firm 1 would rather look soft in the
case of strategic complements.

5 Conclusion

We have advanced the Monotone Comparative Statics program in several directions. First of all

we conceptualized how from an ex-ante perspective the optimal actions of an informed decision

maker are endogenous random variables. A natural question then was comparing optimal

actions as a function of the quality of the information the decision maker had, therefore we

introduced the notion of “responsiveness” and characterized how it captures changes in the

mean and dispersion of actions.

Furthermore, we gave sufficient conditions on payoffs so that actions are more responsive to

higher quality of information. The conditions had an interpretation as risk sensitivity increasing

with the state of the world. After that we extended the conditions to show that actions are

more responsive to higher quality of information in games with complementarities.
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In the final section we provided a taxonomy of the value of transparency in overt vs covert

information acquisition games using the concepts and results of ‘ex-ante comparative statics’,

showing in the way to the last result a variety of applications.

We expect that the methods of ‘ex-ante comparative statics’ will be specially fruitful when

studying bayesian persuasion with restricted information structures, signal jamming games, and

models of rational inattention and search. Moreover, methods based on monotone responses

have been particularly useful in the intersection of industrial organization and econometrics.
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6 Appendix

6.1 Proofs from Section 2

Proof of Proposition 1

Proof. Let ai = a∗(µi) for i = 1, 2, aλ = λa1 + (1 − λ)a2, and µλ = λµ1 + (1 − λ)µ2. By the

first order condition, we have that
∫

Θ
ua(θ, ai)µi(dθ) = 0. Let u ∈ U↑.∫

Θ

ua(θ, aλ)µλ(dθ) ≤ λ

∫
Θ

ua(θ, a1)µλ(dθ) + (1− λ)

∫
Θ

ua(θ, a2)µλ(dθ)

= λ2

∫
Θ

ua(θ, a1)µ1(dθ) + (1− λ)2

∫
Θ

ua(θ, a2)µ2(dθ)

+ λ(1− λ)

[∫
Θ

ua(θ, a2)µ1(dθ) +

∫
Θ

ua(θ, a1)µ2(dθ)

]
= λ(1− λ)

∫
Θ

[ua(θ, a1)− ua(θ, a2)] (µ2(dθ)− µ1(dθ))

≤ 0

where the first inequality follows from the convexity of ua. As already noted, supermodularity of

the utility u(θ, a) along with µ2 �FOSD µ1 implies a2 ≥ a1. By supermodularity of the marginal

utility ua, we have ua(θ, a1) − ua(θ, a2) is a decreasing function of θ. The last inequality then

follows from the definition of first-order stochastic dominance. Since the marginal value of aλ

is non-positive at µλ, we must have a∗(µλ) ≤ aλ. A symmetric argument establishes that if

u ∈ U↓, then a∗(µλ) ≥ aλ.

Proof of Theorem 1.i.

Proof. The payoff u(θ, a) is supermodular in (θ, a) and the information structure Σρ has the

property that s > s′ implies µ(·|s; ρ) �FOSD µ(·|s′; ρ). From monotone comparative statics, the

optimal action a(ρ) : S → A is a monotone function of s. Hence, from an ex-ante perspective,

the optimal action coincdes with the quantile function we used to define responsiveness in

Lemma 1, i.e., a(ρ) = â(ρ) almost surely.

Without loss of generality, we assume that the marginal on signals is uniformly distributed on

the unit interval.18 For any two information structures ρ′′ �MIO ρ′′ and any signal realization

18As mentioned in the text, we can apply the integral probability transformation to signals.
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s ∈ [0, 1], the first order conditions imply that∫
Θ

ua(θ, a(s; ρ′′))µ(dθ|s; ρ′′)−
∫

Θ

ua(θ, a(s; ρ′))µ(dθ|s; ρ′) = 0

which we rewrite as∫
Θ

(
ua(θ, a(s; ρ′′))− ua(θ, a(s; ρ′))

)
µ(dθ|s; ρ′′) +

∫
Θ

ua(θ, a(s; ρ′))
(
µ(dθ|s; ρ′′)− µ(dθ|s; ρ′)

)
= 0

If u ∈ U↑, then ua(θ, a) is convex in a for all θ. Thus,

ua(θ, a(s; ρ′′))− ua(θ, a(s; ρ′)) ≥ uaa(θ, a(s; ρ′))
(
a(s; ρ′′)− a(s; ρ′)

)
and(
a(s; ρ′′)− a(s; ρ′)

)∫
Θ

uaa(θ, a(s; ρ′))µ(dθ|s; ρ′′) +

∫
Θ

ua(θ, a(s; ρ′))
(
µ(dθ|s; ρ′′)− µ(dθ|s; ρ′)

)
≤ 0.

For each t ∈ [0, 1],∫ 1

t

(
a(s; ρ′)− a(s; ρ′′)

)
ds

≤
∫ 1

t

(
−
∫

Θ

uaa(θ, a(s; ρ′))µ(dθ|s; ρ′′)︸ ︷︷ ︸
,B(s)

)−1 ∫
Θ

ua(θ, a(s; ρ′))
(
µ(dθ|s; ρ′)− µ(dθ|s; ρ′′)

)
ds

=

∫
[0,1]×Θ

ua(θ, a(s; ρ′))B(s)−1
1[s≥t]

(
F (dθ, ds; ρ′)− F (dθ, ds; ρ′′)

)
,

where 1[s≥t] is the indicator function that equals 1 if s ≥ t and 0 otherwise.

Define ψ(θ, s; t) , ua(θ, a(s; ρ′))B(s)−1
1[s≥t]. For any θ > θ′, ψ(θ, s; t)−ψ(θ′, s; t) = 0 for s < t

and

ψ(θ, s; t)− ψ(θ′, s; t) = B(s)−1
(
ua(θ, a(s; ρ′))− ua(θ′, a(s; ρ′))

)
≥ 0

for s ≥ t. The inequality follows from the supermodularity of u in (θ, a) and the strict concavity

of u in a. Since u ∈ U↑, ua is also supermodular in (θ, a), i.e., ua(θ, a)− ua(θ′, a) is increasing

in a. Since a(s; ρ′) is increasing in s, ua(θ, a(s; ρ′))− ua(θ′, a(s; ρ′)) is also increasing in s.

Additionally, u ∈ U↑ implies that −ua is submodular in (θ, a) and concave in a. Hence,
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−uaa(θ, a) is decreasing in both θ and a. Since higher signal realizations lead to higher actions

and to first-order stochastic shifts in beliefs,

−
∫

Θ

uaa(θ, a(s; ρ′))µ(dθ|s; ρ′′)

is a decreasing function of s. Thus B(s)−1 is increasing in s. We can therefore conclude that

ψ(θ, s; t)−ψ(θ′, s; t) is increasing in s. In other words, ψ(θ, s; t) is supermodular in (θ, s). Thus,

for each t ∈ [0, 1], ∫ 1

t

(
a(s; ρ′)− a(s; ρ′′)

)
ds

≤
∫

[0,1]×Θ

ψ(θ, s; t)
(
F (dθ, ds; ρ′)− F (dθ, ds; ρ′′)

)
≤ 0

where the last inequality follows from the characterization of monotone information order in

Lemma 2.

Proof of Theorem 1.ii.

Proof. From Lemma 2, if ρ′′ �MIO ρ
′, there exists a θ∗ ∈ Θ and a t∗ ∈ [0, 1] such that∫ t∗

0

µ(θ∗|s; ρ′)dFS(s) >

∫ t∗

0

µ(θ∗|s; ρ′′)dFS(s)

By continuity of µ, there is a neighborhood Θ∗ ⊆ Θ around θ∗ such that for all θ ∈ Θ∗∫ t∗

0

µ(θ|s; ρ′)dFS(s) >

∫ t∗

0

µ(θ|s; ρ′′)dFS(s).

Let [θ∗, θ̄∗] ⊆ Θ∗ be a compact selection. We want to construct a payoff function u : Θ×A→ R

such that u ∈ U↑
⋂
U↓ and admits a solution that is not ordered by responsiveness.

Define the function v : Θ→ R as

v(θ) =


a+ µ(θ∗)(ā− a) if θ < θ∗

a+ µ(θ)(ā− a) if θ∗ ≤ θ ≤ θ̄∗

a+ µ(θ̄∗)(ā− a) if θ > θ̄∗

.

Note that v(θ) is bounded, measurable, increasing in θ, and absolutely continuous. Define a
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payoff

u(θ, a) = v(θ)a− a2

2
.

The payoff u(θ, a) satisfies (A.1)-(A.4): It is continuous, twice differentiable, and strictly con-

cave in a for each θ ∈ Θ. It is supermodular in (θ, a). For each θ ∈ Θ, the marginal utility

ua(θ, a) = 0 if a = v(θ) ∈ [a, ā]. Furthermore, the marginal utility ua(θ, a) = v(θ)− a is

i. linear in a for all θ ∈ Θ

ii. modular in (θ, a).

Therefore, u ∈ U↑
⋂
U↓.

For any given Σρ, notice that a(s; ρ) = E[v(θ)|s; ρ]. Then given Σρ′ and Σρ′′ ,∫ t∗

0

(
a(s; p2)− a(s; ρ′)

)
dFS(s)

=

∫ t∗

0

∫
Θ

v(θ)
(
µ(dθ|s; ρ′′)− µ(dθ|s; ρ′)

)
dFS(s)

=

∫ t∗

0

∫
Θ

v′(θ)
(
µ(θ|s; ρ′)− µ(θ|s; ρ′′)

)
dθdFS(s)

=(a− ā)

∫ θ∗∗

θ∗

∫ t∗

0

(
µ(θ|s; ρ′)− µ(θ|s; ρ′′)

)
dFS(s)︸ ︷︷ ︸

>0

µ(dθ) > 0

where the second equality follows from integration by parts. The third equality follows by

changing the order of integration after noticing that v′(θ) = 0 for all θ /∈ [θ∗, θ̄∗]. The inequality

follows by the construction of the subset [θ∗, θ̄∗] and the absolute continuity of µ. Therefore,

a(ρ′′) is not more responsive with a lower mean than a(ρ′).

Notice that

E[a(ρ′′)] = E
[
E[v(θ)|s; ρ′′]

]
= E[v(θ)] = E

[
E[v(θ)|s; ρ′]

]
= E[a(ρ′)].
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Thus, ∫ 1

t∗

(
a(s; p2)− a(s; ρ′)

)
dFS(s)

=

∫ 1

0

(
a(s; p2)− a(s; ρ′)

)
dFS(s)︸ ︷︷ ︸

=0

−

∫ t∗

0

(
a(s; p2)− a(s; ρ′)

)
dFS(s)︸ ︷︷ ︸

>0

 < 0

and thus, a(ρ′′) is not more responsive with a higher mean than a(ρ′).

6.2 Proofs from Section 3

Proof of Theorem 2

Proof. To simplify exposition, let n = 2. Once again, we assume without loss of generality that

for each player i = 1, 2, the marginal on signals, FSi
, is the uniform distribution on the unit

interval. Fix a Bayesian game Gρ. For each player i, let αi : Si → Ai be an arbitrary measurable

and monotone strategy. Let Ai be the set of all such monotone and measurable strategies and

let A = A1 ×A2. Given opponent strategies α−i ∈ A−i, let aBRi (α−i, ρ) : Si → Ai be player i’s

best response strategy. Specifically,

aBRi (si;α−i, ρ) = arg max
ai∈Ai

∫
Θ×S−i

ui
(
θi, α−i(s−i), ai

)
F (ds−i|θ−i; ρ−i)µ(dθ|si; ρi).

By (A.6), (A.10), and (A.11)-(A.13), aBRi (α−i, ρ) ∈ Ai for i = 1, 2.19

For any given arbitrary monotone strategies α ∈ A, denote the profile of best-response strategies

by aBR(α, ρ) , {aBRi (α−i, ρ)}i=1,2. Then, a BNE of Gρ, a?(ρ), is given by the fixed point

aBR(a?(ρ), ρ) = a?(ρ).

The proof to Theorem 2 proceeds in four steps:

1. Player i’s best response strategy increases in responsiveness when player i’s information

quality increases (Lemma 3)

2. Player i’s best response strategy increases in responsiveness when player −i information

quality increases (Lemma 4)

19By the monotonicity of the best response, aBR
i is equivalent to the quantile function almost everywhere.

We can then apply Lemma 1 and directly use aBR
i to characterize responsiveness.
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3. Player i’s best response strategy increases in responsiveness when player −i’s strategy

increases in responsiveness (Lemma 5)

4. Given 1-3, apply comparative statics on fixed points to get desired result.

We only prove the case for ui ∈ P↑. A symmetric argument establishes the result for the case

of ui ∈ P↓.

Lemma 3 Fix some arbitrary strategy α−i ∈ A−i. Consider two information structures (Σρ′i
,Σρ−i

)

and (Σρ′′i
,Σρ−i

) with ρ′′i �MIO ρ′i. If ui ∈ P↑, then aBRi (α−i, ρ
′′
i , ρ−i) is more responsive with a

higher mean than aBRi (α−i, ρ
′
i, ρ−i).

Proof. Given Σρ−i
and α−i ∈ A−i, let

ũi(θi, ai) =

∫
Θ−i×S−i

ui
(
θi, α−i(s−i), ai

)
F (ds−i|θ−i; ρ−i)µo(dθ−i|θi)

and notice that

aBRi (si;α−i, ρi, ρ−i) = arg max
ai∈Ai

∫
Θi

ũi(θi, ai)µ(dθi|si; ρi).

We have mapped this problem to the single-agent framework where the payoff is given by

ũi : Θi × Ai → R. Thus, if ũi ∈ U↑, then aBRi (α−i, ρ
′′
i , ρ−i) is more responsive with a higher

mean than aBRi (α−i, ρ
′
i, ρ−i) by Theorem 1.

First, notice that ũi(θi, ai) inherits the measurability, boundedness, and smoothness properties

of ui. In particular uiai,ai(θi, a−i, ai) < 0 for all (θi, a−i) ∈ Θi×A−i implies that ũiai,ai(θi, ai) < 0

for all θi ∈ Θi. Similarly, uiai(θi, a−i, ai) is convex in ai for all (θi, a−i) ∈ Θi × A−i implies that

ũiai(θi, ai) is convex in ai for all θi ∈ Θi.
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To see supermodularity of ũi, let θ′i > θi. Then,

ũiai(θ
′
i, ai)− ũiai(θi, ai)

=

∫
Θ−i×S−i

uiai

(
θ′i, α−i(s−i), ai

)
F (ds−i|θ−i; ρ−i)µo(dθ−i|θ′i)

−
∫

Θ−i×S−i

uiai

(
θi, α−i(s−i), ai

)
F (ds−i|θ−i; ρ−i)µo(dθ−i|θi)

=

∫
Θ−i×S−i

(
uiai

(
θ′i, α−i(s−i), ai

)
− uiai

(
θi, α−i(s−i), ai

))
F (ds−i|θ−i; ρ−i)µo(dθ−i|θ′i)

+

∫
Θ−i×S−i

uiai

(
θi, α−i(s−i), ai

)
F (ds−i|θ−i; ρ−i)

(
µo(dθ−i|θ′i)− µo(dθ−i|θi)

)

Since ui(θi, a−i, ai) is supermodular in (θi, ai) for each a−i ∈ A−i and since supermodularity is

preserved under integration, the first term

∫
Θ−i×S−i

(
uiai

(
θ′i, α−i(s−i), ai

)
− uiai

(
θi, α−i(s−i), ai

))
F (ds−i|θ−i; ρ−i)µo(dθ−i|θ′i) ≥ 0.

Furthermore, since ui(θi, a−i, ai) is supermodular in (a−i, ai) for each θi ∈ Θi, u
i
ai

(θi, a−i, ai) is

increasing in a−i. As α−i is a monotone strategy, by (A.13) and (A.6), the second term

∫
Θ−i×S−i

uiai

(
θi, α−i(s−i), ai

)
F (ds−i|θ−i; ρ−i)

(
µo(dθ−i|θ′i)− µo(dθ−i|θi)

)
≥ 0.

Hence, ũi(θi, ai) is supermodular in (θi, ai). A similar argument establishes that ũiai(θi, ai) is

supermodular in (θi, ai). Thus, ũi ∈ U↑. The desired result in the statement of the lemma

follows by Theorem 1.

Lemma 4 Fix some arbitrary strategy α−i ∈ A−i. Consider two information structures (Σρi ,Σρ′−i
)

and (Σρi ,Σρ′′−i
) with ρ′′−i �MIO ρ

′
−i. If ui ∈ P↑, then aBRi (α−i, ρi, ρ

′′
−i) is more responsive with a

higher mean than aBRi (α−i, ρi, ρ
′
−i).
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Proof. Following the same first order condition argument we used in Theorem 1.i, we get the

expression(
aBRi (si;α−i, ρ

′)− aBRi (si;α−i, ρ
′′)
)∫

Θi×S−i

−uiaiai
(
θi, α−i(s−i), a

BR
i (si;α−i, ρ

′)
)
F (dθi, ds−i|si; ρ′′)︸ ︷︷ ︸

,B̂(si)

+

∫
Θi×S−i

uiai
(
θi, α−i(s−i), a

BR
i (si;α−i, ρ

′)
)(

F (dθi, ds−i|si; ρ′′)− F (dθi, ds−i|si; ρ′)
)
≤ 0.

Then, for each t ∈ [0, 1],∫ 1

t

(
aBRi (si;α−i, ρ

′)− aBRi (si;α−i, ρ
′′)
)
dsi

≤
∫ 1

t

B̂(si)
−1

∫
Θi×S−i

uiai
(
θi, α−i(s−i), a

BR
i (si;α−i, ρ

′)
)(

F (dθi, ds−i|si; ρ′)− F (dθi, ds−i|si; ρ′′)
)
dsi

=

∫
Θi×S

uiai
(
θi, α−i(s−i), a

BR
i (si;α−i, ρ

′)
)
B̂(si)

−1
1[si≥t]

(
F (dθi, ds; ρ

′)− F (dθi, ds; ρ
′′)
)
.

For a given information structure Σρ,

F (dθi, ds; ρ) =F (dθi, dsi|s−i; ρ)dFS−i
(s−i)

=

∫
Θ−i

F (dθi, dsi|θ−i, s−i; ρ)F (dθ−i, ds−i; ρ−i)

=

∫
Θ−i

F (dθi, dsi|θ−i; ρ)F (dθ−i, ds−i; ρ−i)

=

∫
Θ−i

F (dsi|θi; ρi)µo(dθi|θ−i)F (dθ−i, ds−i; ρ−i)

where the last two equalities follows from (A.11). Let

ψ̂(θ−i, s−i; t) =

∫
Θi×Si

uiai
(
θi, α−i(s−i), a

BR
i (si;α−i, ρ

′)
)
B̂(si)

−1
1[si≥t]F (dsi|θi; ρi)µo(dθi|θ−i)
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so that ∫ 1

t

(
aBRi (si;α−i, ρ

′)− aBRi (si;α−i, ρ
′′)
)
ds

≤
∫

Θ−i×S−i

ψ̂(θ−i, s−i; t)
(
F (dθ−i, ds−i; ρ

′
−i)− F (dθ−i, ds−i; ρ

′′
−i)
)
.

Take s′−i > s−i. Then, ψ̂(θ−i, s
′
−i; t)− ψ̂(θ−i, s−i; t) is increasing in θ−i because

1. uiai has increasing differences in (θi, ai), (θi, a−i) and (a−i, ai),

2. 1[si≥t] is increasing in si,

3. F (dθi, dsi|dθ−i; ρ) is increasing in FOSD as θ−i increases, and

4. F (dθi, ds−i|dsi) is increasing in FOSD as si increases.

Thus, ψ̂(θ−i, s−i; t) is supermodular in (θ−i, s−i). By Lemma 2, ρ′′−i �MIO ρ
′
−i implies∫

Θ−i×S−i

ψ̂(θ−i, s−i; t)
(
F (dθ−i, ds−i; ρ

′
−i)− F (dθ−i, ds−i; ρ

′′
−i)
)
≤ 0,

giving us the desired result.

Lemma 5 Fix Σρ. Let α′′−i, α
′
−i ∈ A−i such that α′′−i is more responsive with higher mean than

α′−i. If ui ∈ P↑, then, aBRi (α′′−i, ρ) is more responsive with a higher mean than aBRi (α′−i, ρ).

Proof. Suppress the dependence on ρ as it is held fixed. For any t ∈ [0, 1], we use the first order

conditions argument (similar to the proof of Lemma 4) to get the expression∫ 1

t

(
aBRi (si;α

′
−i)− aBRi (si;α

′′
−i)
)
dsi

≤
∫ 1

t

{(
−
∫

Θi×S−i

uiaiai

(
θ, α′′−i(s−i), a

BR
i (si;α

′
−i)
)
F (dθi, ds−i|si)︸ ︷︷ ︸

,B̃i(si)

)−1

×
∫

Θi×S−i

[
uiai

(
θi, α

′
−i(s−i), a

BR
i (si;α

′
−i)
)
− uiai

(
θi, α

′′
−i(s−i), a

BR
i (si;α

′
−i)
)]

F (dθi, ds−i|si)

}
dsi.
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Since uiai is continuous and increasing in a−i (by supermodularity of ui in (ai, a−i)), it is differ-

entiable in a−i almost everywhere. By convexity of uiai in a−i,

uiai

(
θi, α

′
−i(s−i), a

BR
i (si;α

′
−i)
)
− uiai

(
θi, α

′′
−i(s−i), a

BR
i (si;α

′
−i)
)

≤uiaia−i

(
θi, α

′
−i(s−i), a

BR
i (si;α

′
−i)
)(
α′−i(s−i)− α′′−i(s−i)

)
.

Thus,∫ 1

t

(
aBRi (si;α

′
−i)− aBRi (si;α

′′
−i)
)
dsi

≤
∫
S−i

(
α′−i(s−i)− α′′−i(s−i)

) ∫
Θi×Si

uiaia−i

(
θi, α

′
−i(s−i), a

BR
i (si;α

′
−i)
)
B̃(si)

−1
1[si≥t]F (dθi, dsi|s−i)ds−i.

We make use of the following result from Quah and Strulovici (2009)

Lemma 6 Let g : [x′, x′′] → R and h : [x′, x′′] → R be integrable functions. If g is increasing

and
∫ x′′
x
h(t)dt ≥ 0 for all x ∈ [x′, x′′], then

∫ x′′
x′
g(t)h(t)dt ≥ g(x′)

∫ x′′
x′
h(t)dt.

Proof. Quah and Strulovici (2009) Lemma 1

By using the definition of responsiveness in Lemma 1 and the equivalence of the monotone

strategy α−i with its quantile function, α′′−i is more responsive with a higher mean than α′−i if,

and only if, ∫ 1

t

(
α′−i(s−i)− α′′−i(s−i)

)
ds−i ≤ 0, ∀t ∈ [0, 1].

Furthermore,∫
Θi×Si

uiaia−i

(
θi, α

′
−i(s−i), a

BR
i (si;α

′
−i)
)
B̃(si)

−1
1[si≥t]F (dθi, dsi|ds−i)

is an increasing function of s−i because

1. uiai has increasing differences in (θi, ai), (θi, a−i) and (a−i, ai),

2. uiai is convex in a−i for all (θi, ai),

3. 1[si≥t] is increasing in si,

4. F (dθi, dsi|ds−i) is increasing in FOSD as s−i increases, and
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5. F (dθi, ds−i|dsi) is increasing in FOSD as si increases.

Applying Lemma 6, we have∫ 1

t

(
aBRi (si;α

′
−i)− aBRi (si;α

′′
−i)
)
dsi

≤
∫
S−i

(
α′−i(s−i)− α′′−i(s−i)

) ∫
Θi×Si

uiaia−i

(
θi, α

′
−i(s−i), a

BR
i (si;α

′
−i)
)
B̃(si)

−1
1[si≥t]F (dθi, dsi|s−i)ds−i

≤
∫
S−i

(
α′−i(s−i)− α′′−i(s−i)

)
ds−i

∫
Θi×Si

uiaia−i

(
θi, α

′
−i(s−i), a

BR
i (si;α

′
−i)
)
B̃(si)

−1
1[si≥t]F (dθi, dsi|0)

≤0

for each t ∈ [0, 1] where the last inequality follows because∫
S−i

(
α′−i(s−i)− α′′−i(s−i)

)
ds−i ≤ 0

by responsiveness with a higher mean and because

uiaia−i

(
θi, α

′
−i(s−i), a

BR
i (si;α

′
−i)
)
B̃(s)−1

1[si≥t] ≥ 0

by the supermodularity of ui in (ai, a−i) and the concavity of ui in ai. We will now tackle

the last step in the proof: comparative statics of the BNEs. We apply the comparative statics

of fixed points provided by Villas-Boas (1997). To do so, we will need the following definition.

Definition 2 (Contractible Space) Let X be a topological space. Let Φ : X → X be the

identity map with Φ(x) = x,∀x ∈ X. We say that X is a contractible space if there exists a

map Γ : X × [0, 1]→ X, and a function Ψ : X → X such that, for all x ∈ X,

1. Γ(x, λ) is continuous in λ

2. Γ(x, 0) = Φ(x) and Γ(x, 1) = Ψ(x)

3. Ψ(x) is a constant function

Intuitively, X is contractible if it can be continuously shrunk into a point inside itself.
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Theorem 6, Villas-Boas (1997): Consider a subset of a Banach space X, continuous map-

pings T1 : X → X and T2 : X → X, and a transitive and reflexive order � on X. For all

x ∈ X, let the upper-set {x′ ∈ X : x′ � x} be a compact and contractible subspace. Let both

T1 and T2 have a fixed point on X. Let x′ � x⇒ T1(x′) � T1(x), and let T1(x) � T2(x) for all

x ∈ X. Then for every fixed point x?2 of T2, there is a fixed point x?1 of T1 such that x?1 � x?2.

The remaining few steps prove that our setting satisfies the assumptions needed to apply the

Villas-Boas result. For each player i ∈ N , any αi ∈ Ai is both uniformly bounded and is of

bounded variation as it is a monotone function from [0, 1] to [ai, āi] = Ai. Therefore, Ai is

a subset of BV ([0, 1], Ai), where BV ([0, 1], Ai) is the space of functions of bounded variation

from [0, 1] to Ai.

Consider any sequence {α̃i,k}∞k=1 ∈ Ai such that α̃i,k → α̃i point-wise. The point-wise limit

of monotone functions is monotone. Similarly, the point-wise limit of measurable functions is

measurable (Corollary 8.9, Measure, Integrals, and Martingales, Schilling, 2005). So, α̃i ∈ Ai,
which implies that Ai is a closed subset of BV ([0, 1], Ai). Therefore, Ai equipped with the

sup-norm metric || · ||∞, is a Banach space.20

Define a partial order over Ai by α′i �i αi if, and only if, α′i is more responsive with a higher

mean than αi.

Lemma 7 For all αi ∈ Ai, the upper-set {α′i ∈ Ai : α′i �i αi} is a compact and contractible

set.

Proof. For some αi ∈ Ai, the upper-set, U(αi) = {α′i ∈ Ai : α′i �i αi}, is a closed subset of Ai
(follows from the Dominated Convergence Theorem). Consider a sequence {α̃i,k}∞k=1 ∈ U(αi).

Using, Helly’s Selection Theorem, there exists a subsequence {α̃i,km}km ∈ U(αi) that converges

point-wise to a limit α̃i ∈ Ai. As U(αi) is closed, α̃i ∈ U(αi). Therefore, U(αi) is (sequentially)

compact.

Next we show that U(αi) is contractible. Let αci : [0, 1] → Ai be the constant function with

αci(s) = āi for all s ∈ [0, 1]. We have αci ∈ Ai. For all α′i ∈ Ai, αci(s) ≥ α′i(s) for all s ∈ [0, 1],

and thus αci �i α′i ⇒ αci ∈ U(αi).

Define the mappings Ψ : Ai → Ai and Φ : Ai → Ai such that Ψ(αi) = αci and Φ(αi) = αi

for all αi ∈ Ai. For each αi ∈ Ai, defne the mapping Γ : U(αi) × [0, 1] → U(αi) such that

20For αi, α
′
i ∈ Ai, ||αi − α′i||∞ = sups∈[0,1] |αi(s)− α′i(s)|
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Γ(α′i, λ) = (1− λ)Φ(α′i) + λΨ(α′i). Γ(α′i, λ) is continuous in λ. As λ increases on [0, 1], Γ maps

any point in U(αi) to αci , which is itself in U(αi). Therefore, U(αi) is contractible.

We therefore have an order on a Banach space Ai that generates compact and contractible

upper-sets. We extend these properties to A = ×Ii=1Ai by the product order: given α, α′ ∈ A,

α′ � α if, and only if, α′i �i αi for all i ∈ N . Along with the product topology, � is an order

on a Banach space A that generates compact and contractible upper-sets.21

Consider a Bayesian game Gρ = (Σρ, G). Define an operator Tρ : A → A with

Tρ(α) =
(
aBR1 (α−1, ρ), aBR2 (α−2, ρ), . . . , aBRn (α−n, ρ)

)
.

Tρ is continuous in α as utility functions are continuous in opponent’s actions. A monotone

BNE of Gρ is a fixed point of Tρ. We know such a fixed point exists (Van Zandt and Vives

(2007).

Now consider two different games, Gρ′′ = (Σρ′′ , G) and Gρ′ = (Σρ′ , G), with ρ′′ �MIO ρ′. From

Lemma 5,

α′ � α⇒ α′i �i αi,∀i ∈ N ⇒ aBRi (α′−i, ρ
′′) �i aBRi (α−i, ρ

′′), ∀i ∈ N ⇒ Tρ′′(α
′) � Tρ′′(α).

From Lemma 3 and 4,

ρ′′ �MIO ρ
′ ⇒ aBRi (α−i, ρ

′′) �i aBRi (α−i, ρ
′),∀i ∈ N ⇒ Tρ′′(α) � Tρ′(α)

for all α ∈ A. We can now directly apply Theorem 6: Villas-Boas to conclude that, for every

fixed point a?(ρ′) of Tρ′ , there is a fixed point a?(ρ′′) of Tρ′′ such that a?(ρ′′) � a?(ρ′).

21A is a Banach space equipped with the metric, d(α′, α) =
∑

i ||α′i − αi||∞.
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