INDIVIDUALS AND THEIR CONCEPTS

Sergey Blok, George Newman, and Lance J. Rips ${ }^{1}$

Northwestern University

INDIVIDUALS AND THEIR CONCEPTS

Nearly all research on concepts in cognitive psychology is research on categories of objects - categories of teapots or turnips, for example. But when it comes to things that are important to us - people, pets, works of art, special places - we also represent the individuals themselves, not just the categories they belong to. Proper nouns, such as Herman Melville, Toto, Broadway Boogie-Woogie, or Hudson Bay, can denote these individuals, but you can also represent individuals for whom you have no conventional names, like the bed you usually sleep in or your neighbor's mulberry tree.

It is Doug Medin who is mainly responsible for calling category researchers' attention to the importance of individual concepts. Medin and Schaffer's (1978) Context Model proposed that much of what we know about categories we determine from our memories of their exemplars. It's hard to overestimate the importance of this model: Not only has it produced generations of similar theories of categorization (e.g., Kruschke, 1992; Nosofsky, 1986), but it has also influenced fields as diverse as the psychology of attention (Logan, 2002), social psychology (Smith \& Zarate, 1992), and phonology (Pierrehumbert, 2001), to name just a few. In more recent work, Doug has stressed the more abstract information that concepts afford (e.g., Medin, 1989; Medin \& Ortony, 1989), but he still retains a fondness for exemplars. In fact, this tension in Doug's thinking about concepts is characteristic of a special turn of mind, a form of reasoning that we're tempted to call "modus medins" and that the following schema approximates:
P.

Not-P.
I still think there's something right about P .
Not only is modus medins completely valid in classical logic, its conclusion also anticipates our own conclusion about exemplars. Although we may not be able to reduce the representation of categories to the representation of exemplars, we do, nevertheless, have representations of exemplars whose properties are worth exploring in their own right.

Certainly, concepts of individuals and concepts of categories must interconnect in our thinking. Your neighbor's mulberry tree is a member of the mulberry tree category, a member of the tree category, and so on; we typically represent individuals as category instances. There may, however, be less obvious dependencies than this
membership or exemplar relationship. According to certain ancient and modern theories, the concept of an individual depends so tightly on the concept of its categories that the individual's very persistence, identity, and distinctness derive from the category. ${ }^{2}$ The concept of a tree, for example, may dictate when your neighbor's mulberry tree begins its life and finishes it, where the mulberry tree's spatial extent ends and the ground begins, and whether the mulberry-as-a-sapling is the numerically same item as the mulberry-as-a-mature-tree. The aim of the present paper is to examine this doctrine, which we will call sortalism, and its implications for the psychology of concepts.

Sortalism

A sortal is a general term that, roughly speaking, denotes a kind of thing or category. Many common count nouns, especially basic-level nouns, such as tree, person, or book, are sortals in good standing (see Rosch, Mervis, Gray, Johnson, \& Boyes-Braem, 1976, for the classic account of basic-level concepts). According to the doctrine that we are examining here, the meaning of a sortal differs from the meaning of other natural-language predicates in including certain principles that apply to objects falling under them. Sortalists believe that both general terms like tree and predicates like wooden have meanings that specify which objects qualify as instances (a principle of application). The meanings of both tree and wooden, for example, determine that the neighbors' mulberry tree is an instance of both. However, sortals (but not other predicates) also determine the identity of individual instances across times and situations (a principle of identity). Knowing the meaning of tree, for example, entails knowing in theory not only that certain things are trees, but also that a particular tree at time t_{1} is the same as one at time t_{2} (e.g., Dummett, 1981; Geach, 1962; Gupta, 1980; Wiggins, 1980). Wooden, however, yields no such information about its instances.

Sortals are important because they support crucial aspects of our knowledge of individuals. The ability to count objects, for example, is supposed to depend on the presence of a sortal to individuate the objects in a definite way. "To see the logical role sortals play in our thought, first consider that we cannot simply count what is in this room. Before we begin counting, we must be told what to count. We must supply a sortal..." (Carey, 1995, p. 108). In a similar way, we can't count things that the predicate wooden applies to, since wooden doesn't supply a principle of identity. In a given amount of wooden stuff - say, the stuff comprising a wooden table - do we have one
wooden thing (the table), five (the legs and the top), six (the legs, the top, and the table), or more? Sortals such as table or leg seem to resolve this ambiguity and allow counting to take place.

Sortalists also hold that the meaning of proper names presupposes a sortal to which the denoted individual belongs. According to Macnamara (1986), for example, a child who correctly learns the name Cat-astrophe for the family cat must know a basic-level sortal (e.g., cat or some synonym in the language of thought) that denotes a category for Cat-astrophe. The sortal's principle of identity guides the child's recognition that the name applies to the same individual over the animal's incidental changes in position, perceived shape (during movement), size (during growth), activities, and other properties. The principle of identity for cat supplies the notion of sameness that allows the child to ignore these temporary characteristics and to attend to ones that matter for identifying Catastrophe. As Dummett (1981, p. 179) puts it, "Mill wrote as though the world already came to us sliced up into objects, and all we have to learn is which label to tie on to which object. But it is not so: the proper names which we use, and the corresponding sortal terms, determine principles whereby the slicing up is to be effected, principles which are acquired with the acquisition of the uses of these words."

If the principle of identity is an essential part of the meaning of words like cat or fridge, then children who haven't mastered this principle haven't attained a complete understanding of these terms' meanings. Xu and Carey (1996) have taken this idea as a touchstone for infants' knowledge of basic-level concepts. These investigators found no evidence that infants younger than about 10 months notice the difference between a display in which a toy elephant disappears behind a screen and later reappears from it and a second display in which a toy elephant disappears behind a screen and a toy truck emerges from it. Xu and Carey argue on these grounds that the infants have no (correct) principle of identity for the elephant or truck and that they therefore have no concept corresponding to elephant or truck. The empirical evidence behind this conclusion is a point of current controversy (see Wilcox \& Baillargeon, 1998, and Xu, in press, for a review). To our knowledge, however, recent psychological accounts have not questioned the assumption that understanding the principle identity is necessary for understanding the meaning of common category nouns (general terms) such as tree or toaster.

Psychosortalism

Our concern in this paper is whether adults' intuitions about individual objects match those of sortalism. Do people think that an individual's identity depends on the sortal category to which it belongs? Do they believe,
for example, that whether Cat-astrophe-at-10-years is the same as Cat-astrophe-at-5-years depends on membership in the cat category? Because this issue is about people's beliefs, it is one step removed from the metaphysical questions that inspire sortalism (e.g., What is an individual object? What determines its temporal and spatial boundaries?). It is possible that everyday beliefs about identity or individuation are wrong and that careful consideration of these issues reveals a highly counterintuitive theory to be the right one (see Parfit, 1984, chap. 11). To make room for this possibility, we can take the point at issue to be the status of psychosortalism: the doctrine that people think that identity and difference of individuals crucially depend on sortals.

Psychosortalism bears similarities to psychological essentialism in current theories of concepts and categories (Gelman \& Hirschfeld, 1999; Medin \& Ortony, 1989), since some sortalists maintain that membership in a particular sortal category provides an essence for individual instances (see, e.g., Gupta, 1980, on substance sortals). For example, membership in the cat kind may determine when Cat-astrophe's existence begins and ends via the principle of identity for cats, and if so, provides an essence for Cat-astrophe and other members of her species. Other proposals suggest that there may be two essences: one that determines identity and the other that determines category membership (Gutheil \& Rosengren, 1996). We note, however, that although psychological essentialists tend to express considerable skepticism about essentialism itself (see Gelman \& Hirschfeld, 1999; Medin \& Ortony, 1989), parallel doubts about sortalism have not appeared in psychological work on this topic.

Antisortalism

Opposed to sortalism is the view that certain objects maintain their identity and distinctness without support from categories. Suppose, for example, that an individual cat is the product of physical causes that bring the cat into existence and preserve her integrity across her life span. Similar causes will, of course, bring about other cats in accord with biological principles, but a cat's integrity and persistence depend only on the participating causes and not on its membership in the cat category. Following Ayers (1997), we can say that this antisortalist alternative sees an object (at least, a physical object, such as a natural kind or artifact) as a bottom-up product of its causal matrix, whereas sortalists claim that objects are always a top-down product of their categories. ${ }^{3}$ Antisortalism thus holds the position that Dummett (1981) attributes to Mill in the passage quoted earlier: Some objects, like loaves of airbread, come pre-sliced by causal factors and are then available for labeling with proper nouns.

We suspect that most psychologists take a similar bottom-up view of natural kind categories (the categories themselves, not their instances). They believe that species like cats or kumquats are kinds in nature, produced by
evolutionary and other causal forces. These species do not depend for their existence on human cognizing or language and could continue as kinds — might even exist more abundantly — if there were no humans at all. There is a fact of the matter as to whether a particular instance belongs to a kind, so that further scientific investigation can potentially resolve uncertain cases. We also suspect that the man-or-woman-in-the-street shares this view of kinds (see Rips, 2001, for a review of relevant research). Although they may not share a scientific evolutionary view of natural kinds, they nevertheless believe that kinds are a matter of fact rather than a human construct. For example, participants judge that an instance which is described as in between two natural categories (e.g., a fish that "seems to you to be sort of halfway between" an anchovy and a sardine) is "probably one or the other, but I don't know which," in preference to "you can think of it as either one" or "it can't really be either one, then" (Malt, 1990). We suspect, in fact, that realism about natural categories rather than essentialism per se is what most psycho-essentialists are tracking.

This type of hardcore realism with respect to natural categories may make plausible a similar antisortal realism with respect to natural individuals. Just as causal forces can shape a natural category as an independently existing species, so causal forces can shape a natural object as an independently existing individual. Physical events bring about Cat-astrophe's birth, segregate her from other background objects, ensure her persistence over time and space, and eventually cause her demise. Although some of these events are obviously similar to those responsible for other cats, it is possible to follow Cat-astrophe's life course by following a complex series of causes and effects, without essential reference to her membership in the cat species. Likewise, the free-standing character of Catastrophe gives her the credentials she needs to be counted.

Antisortalism of the type we have just described is not the only form of opposition to sortal theories. ${ }^{4}$ But as we mentioned a section ago, our aim is not to decide between sortalism and antisortalism. Instead we hope to make it plausible that everyday beliefs about natural objects might treat these objects as bottom-up and free-standing individuals, rather than individuals bound to specific sortal categories. In the rest of this paper, we present some evidence that this is so.

Antipsychosortalism

Bloom (2000) suggests two reasons for thinking that people do not behave as though they need sortals to have concepts of individuals. First, people can individuate, track, and talk about objects of dubious or unknown kinds. For example, one can follow the path of an object in the night sky without being certain as to whether it is a
planet, an airplane, or a UFO. Second, transforming an individual into a different kind of thing can preserve its individual identity. For example, people appear to be comfortable with statements like "this post-office used to be an elementary school" or "this bike trail used to be a railroad". Here, we provide a more systematic investigation of the way adults reason about identity of individuals undergoing transformations designed to alter their category membership.

Specifically, we are interested in whether people will use sortals to guide judgments of identity. In the case of a human, let's assume for now that the relevant sortal is person or some synonym. So the issue is whether judgments about an individual's identity depend on his or her membership in the category persons. Experiment 1 looks at judgments of both individual continuity and person continuity to see whether these judgments dovetail across possible transformations. For nonhuman objects, the sortal category may not be so obvious, but many common objects have a default category (probably the basic-level category) that people use in saying what the object is. Sortalists believe that this category is the sortal for the object (Wiggins, 1980, 1997), and we can therefore use category labeling as a way of identifying the sortal. Experiment 2 surveys a variety of natural kinds and artifacts to see whether individual continuity tracks sortal continuity for these items.

Our transformation method is similar to one that Liittschwager (1995) used to examine children's and adults' willingness to attribute the same name to people after a change in state. Liittschwager's participants heard stories and saw line drawings of children who were then said to undergo transformations to a variety of possible end states, from minimal transformations of temporary properties (a clean child to a dirty one) to more extreme category changes (a child to a rabbit or a child to smoke). The results of these experiments showed that both adults and children were less willing to give the original child's name (e.g., Ali) to the final product the greater the "transformational distance" between them (e.g., they were less likely to say that the smoke was Ali than that the dirty child was). However, there was no clear breakpoint on this continuum where naming fell off steeply-in particular, no elbow where the transformation crossed the basic-category level (e.g., child to adult vs. child to rabbit). Liittschwager concluded that the results "provided little evidence for the position of Macnamara (1986) and other philosophers that identity cannot be maintained across changes that alter basic-level kind [the presumed sortal]. Instead, subjects' responses indicate that people have flexible notions about identity that are based on a combination of different cues" (Liittschwager, 1995, p. v).

To obtain more positive evidence on this score, we ask participants for separate judgments of individual continuity (still the same individual?) and category continuity (still a person?) to see whether these judgments diverge (Liittschwager stipulated the outcome categories). For a given transformational distance, we also manipulate the way in which the transformation takes place in order to pin down the factors responsible for maintaining identity.

Experiment 1: Individual Continuity and Person Continuity

According to psychosortalists, whether or not a particular individual - let's call him "Jim" - is the same across possible changes should be a function of whether Jim remains a person during these changes. If Jim drops out of the person category, then Jim himself goes out of existence. For example, if Jim ceases to be a person at his death, then Jim himself ceases to exist at this point. (See Experiment 2 for norming data that confirm that person is the sortal.)

Antipsychosortalists can maintain, however, that Jim could undergo certain transformations that alter his status as a person but, at the same time, preserve his status as an individual. As one possibility, people may believe that as long as Jim's mind/brain continues to function as before, he's still the same individual (still Jim) even if he undergoes a radical transformation that would make him a nonperson. For example, we describe in Table 1 two scenarios about an accountant named Jim, who is the victim of a serious auto accident. As a result, Jim's brain is transplanted into a new body: either a robot body (Type 1 transplant) or a human body that is grown as a "spare part" for just such emergencies (Type 2 transplant). In both cases, Jim's original body is destroyed in the process.

We asked participants to decide whether the result of the operation was still Jim and also whether he was still a person. The main prediction is: If people use sortals to guide identity judgments, then there should be no interaction between whether Jim's brain's new home is a human or a robot body and whether the question of continuity is about being a person (category question) or about being Jim (identity question). In contrast, antipsychosortalists would predict that there would be a larger difference between answers to the two types of questions in the case of a robot transplant than in the case of a humanoid transplant. This interaction should be driven by a larger falloff in perceived category continuity than identity continuity between humanoid and robot recipients.

In addition to looking at effects of post-op body, we also investigated other factors that may contribute to judgments of identity continuity. For example, people may have an intuition that the continuity of persons depends
on the preservation of their autobiographical memories. Philosophers since Locke (1694/1979) have taken continuity of memory as necessary and often sufficient for identity preservation (Shoemaker, 1970). Our goal here is to see whether people are sensitive to memory continuity in judging identity. More importantly, if people use different kinds of information when judging identity and deciding category membership, then memory continuity may matter more for identity than for category judgments. In the experiment, each scenario has two versions: In one, Jim's memories survive intact, and in the other his memories are lost (as determined by whether the bracketed phrases in Table 1 appeared in the story).

At an extreme, people may believe that continuity of memory is sufficient for identity. That is, as long as Jim's memories are intact in the new setting, the resulting creature is still Jim. Developmental studies suggest that children learn at about age seven or eight that brains have an important role to play in preserving identity (Gottfried, Gelman, \& Schultz, 1999; Johnson, 1990). For example, second graders and older children tend to believe that if their brain was transplanted to a pig, the transplant recipient would tend to answer to the child's name and not the pig's. However, such a brain transplant inevitably entails the transfer of memories, so existing studies are not able to shed light on whether memories alone are sufficient grounds for identity continuity. In the present study, some participants were told about a brain transplant, while others were told that memories from the original brain were copied onto a computer. This computer was then placed in control of a robot or humanoid body. If memory continuity is sufficient for identity, then Jim should survive in this second condition despite lacking his original brain.

We gave all four versions of the scenarios in Table 1 to a group of participants ($\mathrm{N}=33$) and asked them to decide whether the resulting creature was Jim and whether it was a person. The characters in the four scenarios had different names (Jim, Ken, Edward, and Bill) in order to distinguish these problems, but the scenarios were otherwise the same as in Table 1. Each scenario appeared on a separate page of a booklet, and following the scenario was a page of questions. For each version, the questions asked participants to rate their agreement or disagreement with a statement about individual continuity ("After the operation, the Type 1 [2] transfer recipient is Jim") and a statement about person continuity ("After the operation, the Type 1 [2] transfer recipient is a person"). The ordinal position of the scenarios in the booklets was balanced across participants, and the questions appeared in a counterbalanced order, along with other questions about whether the post-op creature still had the same occupation
and gender. The participants made their ratings by circling a number on a 0 -to- 9 scale, whose endpoints were labeled "strongly disagree" $(=0)$ and "strongly agree" $(=9)$.

A second group of participants $(\mathrm{N}=31)$ received similar scenarios, but these stories differed in one important respect. Instead of the character's brain being transplanted to a new recipient, the character's memories were copied onto a computer, and the computer was then placed into a robot or a spare human body. For example, corresponding to the description of a "Type 1 transfer" in Table 1a, the new scenarios contained these sentences: "In a 'Type 1 transfer procedure,' a team of doctors copies the memories in Jim's brain and transfers them onto a state-of-the-art computer. The computer is placed in a highly sophisticated cybernetic body (robot). Jim's original body is destroyed in the operation." Similarly, corresponding to the "Type 2 transfer" in Table 1b, participants read, "In a 'Type 2 transfer procedure,' a team of doctors copies the memories in Jim's brain and transfers them onto a state-of-the-art computer. The computer is placed in a stock body. Jim's original body is destroyed in the operation."

The results indicated that participants gave very different agreement ratings to the statement that the postop creature was still Jim than to the statement that it was still a person. In determining whether the creature was still Jim, participants paid special attention to whether Jim's memories survived and paid somewhat less attention to whether the recipient of these memories had a robot or a human shape. In the brain-transplant condition, for example, when Jim's memories remained intact after the operation, participants gave a mean agreement rating of 6.6 (on the 0-to-9 scale) to the statement that the recipient was still Jim, but a rating of only 2.0 when Jim's memories were not the same. The difference due to the human versus robot form of the product was much closer. The mean rating for the human embodiment was 5.0 and for the robot embodiment 3.6. By contrast, when deciding whether the post-operative being was still a person, participants leaned much more heavily on whether it had the form of a robot or of a human than whether it preserved Jim's memories. The mean agreement rating for the statement that the recipient was still a person was 8.0 when the creature had a human body but 2.6 when it had a robot body. The means for the memory contrast, however, were 5.7 (memory intact) and 4.9 (memory not intact).

The result of these different response patterns was that in some conditions participants were more likely to agree that the creature was still Jim than that it was still a person; in others, they were more likely to agree that the creature was still a person than that it was still Jim. These effects from the brain-transplant condition appear in Figure 1, where the open circles represent the question about Jim and the filled circles the question about
personhood. Error bars indicate one standard error of the mean. The important condition is the one in which the resulting creature has the body of a robot but the memories of Jim. In this case, participants are more apt to agree that the creature is Jim than that the creature is a person. Conversely, when the creature has the body of a human but memories that differ from Jim's, then participants are more likely to agree that the creature is a person than that it is Jim. This double dissociation presents difficulties for psychosortalism, since this theory predicts that Jim's existence should come to a halt when he stops being a person. We find, however, that Jim continues to exist, though "out of sorts."

As can be gathered from Figure 1, planned comparisons between questions were reliable in both critical conditions. When the recipient had a human form but no memories were preserved, the personhood question received higher ratings than the question about $\operatorname{Jim}, F(1,233)=133.94, p<.0001$. The reverse was true when the recipient had a robot form but had intact memories-the question about Jim received higher ratings than the question about personhood, $F(1,233)=42.23, p<.0001$. Overall, participants who read that Jim's brain had been transplanted gave higher ratings than those who read that Jim's memories were copied to a computer $(F(1,62)=$ $19.77, p<.0001$); however, the pattern of results in the latter condition was otherwise similar to that in Figure 1.

In our participants' view, then, Jim can outlive his personhood when his memories are intact in a robot. This finding is at odds with psychosortalism on the assumption that Jim's sortal is person, since Jim's membership in the person category should determine how long he persists as an individual. (See also Blok, Newman, Behr, \& Rips, 2001, Experiment 2, for similar results involving scenarios like that in Table 1a). The following experiment generalizes our findings to individuals other than people.

Experiment 2: Transformations of Natural Kinds and Artifacts

To see whether individual natural kinds and individual artifacts can persist across changes in sortal categories, we used a variation on the procedure of Experiment 1. On each trial of the present study, we gave participants a picture and a short description for each of a set of common objects (e.g., a particular cat or cup), including a basic level sortal term (e.g., cat or cup) and a proper name for each item. For example, we told participants about "Jim's cat Bob. He is 2 years old and has a white coat. Jim inherited the cat from a former roommate. The cat is friendly but does not like it when anyone pets his belly." The participants also saw a drawing of a sci-fi device: either a "transporter" that we had described as transporting the object particle-by-particle to a new place and reassembling it, or a "copier" that made a new copy of the object (while the old object was destroyed by a
"disrupter ray"). The participants then saw a picture of the outcome of the transformation in the assembler portion of the device (the original picture disappeared), and it was either the same picture as before, a picture of a related object, or a picture of an unrelated one. In Bob's case, the after-picture either was exactly the same as the before-(cat)-picture, was a picture of a dog, or was a picture of a boat. We then asked participants to judge whether the outcome of the transformation was still the same individual (still Bob?) and whether it was still a member of the same sortal (still a cat?).

We assume that participants will believe that the outcome of the transformation is no longer a member of the original sortal when the transformation produces something that looks like a member of a distinct category (related or unrelated). If the transformed object comes out looking like a dog or a boat, participants will judge it no longer a cat. (People know that appearances can be deceiving when it comes to category membership, as many previous transformation experiments demonstrate; but in the absence of information to the contrary, appearance provides evidence of category status. See Medin \& Ortony, 1989.) The more interesting question is whether participants will take the new object to be the same individual. Since the same particles (or a copy of them) go into the new object and since there are no other obvious contenders for the continuation of the old object, participants may be more likely to see the new object as retaining its identity than as retaining its sortal status. For example, participants may judge that if the transformed object looks like a dog or a boat, it may still be Bob, though no longer a cat, contrary to psychosortalism. Bob's persistence should be more likely when the outcome object is related than unrelated, since it's easier to imagine Bob surviving as a dog than as a boat.

To select the stimulus objects for this experiment, we conducted a preliminary study in which we asked participants to identify pictures of common objects. Sortalists contend that sortals are the terms that answer the question What is it? for objects (Wiggins, 1980, 1997); so we can assume that if participants uniformly volunteer a particular term in answer to this question, then that term is likely to be the item's sortal. Twenty participants named pictures of 48 objects. In addition, participants rated the complexity of each object. We discarded objects for which more than 5% of participants produced a category that disagreed with the most commonly mentioned one, and from the remaining objects, we selected 20 items to serve as the beginning state of the transformations in the main experiment. We refer to these items as original objects for this reason. The original objects included 10 natural kinds (apple, plant, leaf, pineapple, tree, cat, robin, turtle, person, and mouse) and 10 artifacts (fire hydrant, hammer, comb, chair, cup, sewing machine, toaster, refrigerator, car, and house). We further divided each of these two
groups into simple and complex items, on the basis of the participants' complexity ratings in the preliminary study. The first five items in the parenthesized lists just mentioned were the simple natural kinds and artifacts; the last five were the complex items. We also selected an additional 20 items (again, 10 natural kinds and 10 artifacts) to be the final states of the transformations. For the main experiment, we arranged the selected objects into triples, each consisting of an original object, a related outcome object, and an unrelated outcome object. If the original object was a natural kind, the related object was a (different) natural kind and the unrelated object was an artifact. If the original object was an artifact, the related object was a (different) artifact and the unrelated object was a natural kind. For example, the picture of the cat was grouped with a picture of a dog (related object) and a picture of a boat (unrelated object); the picture of the cup was grouped with a picture of a strainer (related object) and a rose (unrelated object). Items in each triple were matched for complexity as far as possible, based on the participants' complexity ratings.

At the beginning of the main experiment, we told participants that they would be making judgments about a hypothetical device. The instructions informed one group of participants about the transporter: An object is placed in the part of the device called a "splitter" and broken down into particles that are then sent through a particle pipeline. The particles arrive at an "assembler" which reconstitutes the particles into an object. A second group of participants read about the copier: In this case, the object is placed in a "scanner," and a replica of the object is then formed in the "assembler," while a "disrupter ray" destroys the original object.

Participants then received 20 computer-controlled trials, each of which described a transformation that the device carried out on one of the original objects. Each trial consisted of an initial screen that showed one of the original objects in the splitter or scanner of the device and two follow up screens. The initial screen also contained a brief paragraph that described the object as a member of a particular category (e.g., cat or cup) and gave its proper name, as in the information about Bob the cat that we quoted earlier. (Most of our objects are not the kinds of things that customarily have proper names, but the paragraphs specified nicknames that their owners had given them. E.g., the cup's owner names it "Jane.") The category in the description was always the one that we had obtained from the norms of the preliminary study. A second screen then revealed the results of the transformation-a picture of the outcome object in the device's assembler and an empty space in the splitter or scanner where the original object had been. We provided no descriptive information about the outcome object, other than the picture itself. Whether the outcome object was the same, related, or unrelated was varied on a between-subjects basis. A third screen contained
two questions about the transformation. One question asked participants to rate their agreement with the statement After the transformation, the object in the assembler is a \qquad , where the blank was filled with the category name (e.g., cat or cup) that we had used to describe the original object. Participants made their rating on a 0-to-9 scale, where 0 was labeled "strongly disagree" and 9 was labeled "strongly agree." The second question asked participants to rate agreement with the statement After the transformation, the object in the assembler is \qquad _, where the blank was filled with the proper name (e.g., Bob or Jane) for the original object.

There were six conditions in this experiment, formed by combining the two device types (transporter or copier) and the three types of outcome (same, related, or unrelated outcome object). We randomly assigned six participants to each of these conditions.

The main issue in this experiment is whether participants would see the individual artifacts and natural kinds as outliving their sortals. If the object that is input to the transporter or copier is Bob the cat and the outcome object looks like a dog, are participants more likely to judge that the outcome object is Bob than that it is a cat? The results of the study provide evidence that this is so for related combinations like cat-dog and cup-strainer. Figure 2 shows the mean ratings that are most relevant to this issue. When the outcome object was the same as the original, participants judged the outcome to be a member of the same category but were less convinced that it was the very same individual. For example, even when the original and outcome objects were the same picture of a cat, participants were more likely to agree that the outcome was a cat than that it was Bob. Transporting or copying the objects' particles to a new place apparently threatens the objects' identity but not their category status. For transformations to related objects, however, the judgments reverse. Although participants' agreement ratings are lower overall, they are nevertheless more likely to agree that the outcome object is the same individual than that it is a member of the same category. When the original object is a cat picture and the outcome object a dog picture, for example, participants' agreement ratings are higher for the statement that the outcome is still Bob than that it is still a cat. This reversal is contrary to psychosortalism, as we have described it earlier. Finally, when the outcome object is unrelated to the original object, the agreement ratings are low and approximately equal for the identity and category questions. When the input is a cat picture and the output a boat picture, participants believe the thing is neither Bob nor a cat.

An analysis of these data showed there were no differences due to the type of device that performed the transformation-no difference between the transporter and the copier-and no interactions of device with the other
factors in the analysis. As is obvious from Figure 2, however, the results showed a significant effect of transformational distance: Agreement ratings decrease from same pictures to related picture and from related pictures to unrelated ones, $F(2,32)=46.64, p<.0001$. Finally, as the result of the cross-over in Figure 2, there is also an interaction with question type (identity vs. category continuity), $F(2,32)=9.13, p<.001$. Planned comparisons at each transformational distance show greater agreement with the category than the identity question when the pictures were the same $(F(1,32)=16.28, p<.001)$, marginally greater agreement with the identity than the category question when the pictures were related $(F(1,32)=3.05, p=.09)$, and no significant difference when the pictures were unrelated $(F<1)$.

The complexity of the original object modulated these results to some extent. Over all conditions, participants gave a mean agreement rating of 3.25 when the original object was simple (e.g., an apple or a cup), but 2.90 when it was complex (e.g., a cat or a refrigerator), $F(1,32)=19.74, p<.0001$. Thus, simple objects tend to weather the transformations more easily than complex ones. It seems reasonable to suppose that category membership is more fragile for complex items than for simple ones. If a transformed refrigerator comes out looking like a TV, it is hard to imagine it continuing as a fridge-in-good-standing. A hammer that reappears as a shovel, however, might due as a hammer in a pinch.

There was no main effect of whether the original object was a natural kind or an artifact and no significant interactions of type of category with (identity vs. category) questions. Category type did, however, interact with transformational distance, $F(2,32)=10.13, p<.001$. The essence of this interaction is that artifacts exhibited a greater fall off as a function of transformational distance than did natural kinds. This result was not one we had predicted, but our best current explanation is along the lines we have just suggested for complex objects: Natural kinds may be less able to withstand transformations than artifacts-even the transformation in the same conditionthus flattening the function for natural kinds over distance. Participants gave artifacts higher agreement ratings than natural kinds in the same transformation condition (7.23 vs. 6.72), and floor effects at greater transformational distances reduced this difference. One possibility that may bear further scrutiny is that artifacts and natural kinds are differentially sensitive to the types of transformations in these experiments. Natural kinds may better survive growth or grafting of body parts than artifacts, whereas artifacts may fare better under arbitrary transportation or copying of their molecules (see Hall, 1998, for related findings).

A possible objection to the results we have just described is that our use of a continuous rating scale may have led participants to make more fine-grained distinctions than they would have if we had simply asked for yes/no answers (e.g., Is the outcome of the transformation still Bob? Still a cat?). A reanalysis of the data suggests, however, that the effects in question are robust over dichotomous versus continuous responding. In this analysis, we re-scored the responses as 1 or 0 , with 1 assigned to all those ratings above the scale's midpoint and 0 assigned to ratings below the midpoint. An ANOVA of these data, similar to the one reported earlier, produced the same significant interaction between transformational distance and the individual versus category question, $F(2,32)=$ $7.43, p<.01$.

Another concern is that the interaction between question type and transformational distance was due to the relatively large difference between category and individual questions in the same-picture condition as opposed to being driven by the greater level of individual than category continuity in the related picture condition. Because the statistical difference between the two types of questions in the related condition was marginal $(\mathrm{p}=.09)$, we decided to recode the data in order to compare the proportions of items for which participants gave higher individual ratings than category ratings. For each participant, we computed the number of objects (out of 20 total) for which he or she rated individual continuity higher than category continuity. As expected, the mean number of objects that outlasted their respective categories was higher in the related-picture condition than in the same-picture condition $(M=8.67$ and 0.18 , for related and same conditions, respectively). This difference was reliable, $t(21)=3.32, p<0.01$. The mean for the unrelated condition was 1.75 . Thus, according to our participants, the individual outlived its category for roughly half the objects we tested in the related condition. This was a much greater proportion than in the same or the unrelated conditions.

Another possible objection, which applies to both experiments, is that our sci-fi task may have been too unnatural to capture participants' "genuine" beliefs about object identity. Safe to say, our undergraduate participants do not encounter in their everyday routines the sorts of grotesque transformations that we asked them to reason about in these experiments. Perhaps these unfamiliar and unrealistic scenarios led them to err in judgment; perhaps in a more natural terrain, their decisions would conform more closely to those of psychosortalists. We have already tried to head off a related objection in distinguishing sortalism from psychosortalism: Our concern here is not with expert metaphysical theories that derive from careful analysis, but with more immediate intuitions from novice judges. Still, is it reasonable to study intuitions in a context so far removed from the mundane?

Our rationale for using these transformations was to produce tests of the independence of individuals and their ordinary categories. We are interested in what is necessarily true of object identity, not just in what is customarily true; so some departure from business-as-usual is essential in order to check our hypotheses at all. Moreover, although we hope our participants have not experienced such transformations first hand, we believe that speculation about the effects of similar changes is quite natural and familiar. Closely related scenarios figure prominently in fiction and even in non-fiction. The cover of the most recent issue of Scientific American taunts, "Teleportation is simple. Ready for a real challenge?" Our participants could hardly avoid some acquaintance with such scenarios, and none of our participants complained of being unable to make sense of them.

Sorting Things Out

We've documented several cases in these experiments where an individual appears to survive its own sortal. In Experiment 1 if John's memories were programmed into a robot body, participants were more likely to agree the result is John than that the result is a person. In Experiment 2 if the transformed object had the outward appearance of a related natural kind or artifact, participants were more likely to agree that it was the same individual than that it was a member of the original sortal. For instance, when Bob the cat came out of the assembler looking for all the world like a dog, participants thought him more likely to be Bob than to be a cat.

These results seem to be bad news for psychosortalism, since according to this doctrine people think that the continuity and the continued existence of individuals depend on their sortal. Before saying goodbye to psychosortalism, though, we need to consider some possible variations that might get this theory out of trouble. The most obvious of these is that we simply picked the wrong categories. Although John can survive as the same individual after becoming a nonperson, maybe that's because John's sortal isn't person but something else. Ditto for Bob the cat. Maybe Bob's sortal is something other than cat. One initial hurtle for this objection is that we took pains in the preliminary study for Experiment 2 to elicit for each pictured object the name of the category that answered the question What is it? Since this is the sortal category according to sortalist theories (Wiggins, 1980, 1997), it isn't likely that we overlooked the correct category.

Physical Object as a Sortal

Another possibility for psychosortalists, however, is to suppose that an object can have more than one sortal and therefore more than one set of identity conditions. Although Bob's lower-level sortal is cat, perhaps he retains a higher-level sortal that can sustain his existence while he is having out-of-cat experiences. And here there
is an actual proposal to consider, thanks to developmental psychologists (e.g., Carey, 1995; Xu, 1997). The idea is that the category of physical object-"a three dimensional, bounded entity that moves on a spatiotemporally continuous path"-can function as a sortal to guide tracking of individuals when more specific sortals are not at hand. According to this view, infants lack lower-level sortals like cat or cup to help them recognize solid objects’ identity but instead use the concept of a physical object to follow perceived individuals in the environment. The same concept has been used to explain transformation cases somewhat similar to ours, such as how readers of the book of Genesis can understand Lot's wife's continued existence as a pillar of salt. Perhaps in a similar way, participants in our experiment thought that Bob the cat and John the person continue to exist (even when no longer cat or person) because they remain physical objects.

Xu's (1997) defense of physical object as a sortal is a valiant one (see the rejoinders by Ayers, 1997; Hirsch, 1997; and Wiggins, 1997), but we doubt that it is the right explanation for our findings. For one thing, the transformations in Experiments 1 and 2 did not necessarily respect the criteria for physical object that we quoted from Xu in the preceding paragraph. Recall that the scenarios in Experiment 1 specified that John's physical body is destroyed when his brain is transplanted to a new human or robot body. In one condition, John's brain is transplanted (see Table 1); in another, his brain is also destroyed and only his memories are downloaded to their new home. The result of the operation does not seem to be the same physical object as before (in the technical sense of same "three-dimensional bounded entity that moves on a spatiotemporally continuous path"), but participants nevertheless identified it as John. If participants are using a sortal to support their judgment, it can't be physical object. Although brain transplants produced overall higher ratings than memory downloads, even in the download condition participants seem willing to agree that the post-op result is still John when memories are preserved. What mostly seems effective in preserving John is the Lockean continuity of his memories and not the continuity of his body. The same conclusion follows from the results of the copier condition in Experiment 2.

Second, as Hirsch (1997) and Wiggins (1997) have pointed out, the notion of physical object that figures in Xu's proposal excludes things like trees, fire hydrants, houses, and many other objects that don't move and that aren't customarily detached from their surroundings. This could merely indicate that the concept in question isn't a faithful analysis of adults' everyday physical-object concept (assuming that people regard trees, houses, etc., as bona fide physical objects). But if we regard "physical object" as a technical term in this context that excludes trees and other stationary items, it then has trouble explaining why these items exhibited the same behavior in Experiment 2 as
moveables such as cars and cats. We deliberately included a fire hydrant, a tree, and a house among the original objects for this reason, and the means for these items closely match those for the whole data set in Figure $2 .{ }^{5}$ This again suggests that whatever is responsible for judgments of identity continuity in these experiments isn't the physical object concept.

Third, if what is preserving the identity of the Experiment 2 individuals is physical object, then there is no clear reason why identity judgments should decline between related and unrelated transformations. In both cases, the outcome of the transformation remains a physical object (omitting the stationary items just discussed) and is no longer a member of the lower-level sortal category. Hence, there is no explanation for why identity is judged more likely to be preserved across related than unrelated categories. ${ }^{6}$

Explanations of Other Sorts

Of course, psychosortalists have lots of room to maneuver between cats and physical objects. Perhaps some of the participants in Experiment 2 took Bob's sortal to be animal rather than cat, despite the results of our preliminary experiment and our assertion in the main experiment that Bob was a cat. In that case, when the outcome object happens to look like a dog, Bob's sortal is preserved and so is Bob's identity. Thus, superordinate sortals appear to do a better job at explaining these results than do basic level or physical object concepts. We're still left with puzzles, however. What superordinate sortal mediates John's continuity as a robot? Sentient being? What explains the fact that when the outcome object looks the same as the original object in Experiment 2 participants are in better agreement that the thing is a cat than that it is Bob?

Still, it is worth considering the possibility that people have multiple sortals at different hierarchical levels. It is clearly not possible for all predicates to function as sortals without giving up sortalists' key distinction between sortal and nonsortal predicates. Also, as we have just seen, very general sortals, such as physical object, are unlikely to explain the data. But what about the possibility that both basic-level categories like cat and superordinate categories like animal provide identity criteria for Bob? Some sortalist theories seem compatible with the idea of rival identity principles (Geach, 1962), and this possibility seems consistent with the form of the results in Figure 2. But as other sortalists have pointed out (Wiggins, 1980), it is difficult to formulate this multiple sortal notion consistently. What does it mean to say, for example, that a basic-level sortal like cat determines Bob's persistence if he can be resurrected simply by virtue of his dual membership in the superordinate animal? To be sure, you can say that Bob ceases to exist as a cat when he is no longer a cat. But this is equally true of all predicates, sortal and
nonsortal: Bob ceases to exist as dirty when he is given his bath. Attempts to set up multiple sortals at different taxonomic levels seem to deprive the lower-level categories of their sortal status.

Nonsortalist Explanations

We propose that psychosortalism is handicapped in explaining how people trace object identity because people use a different source of information for this purpose. As we have already suggested, we think people are realists about individuals in the sense of believing that external causal forces launch these individuals, support them during their careers, and finish them off in the end. It's usually the continuity of these forces that determines the continuity of the individuals, not the particular categories that the individuals happen to belong to. Thus, if causal conditions are right, John can be repackaged as a robot and Bob as a dog. At this point, though, psychosortalists have a predictable comeback that goes like this: "Sure, causal factors are important in determining individuals, but what kind of causal factors are you talking about? If causal factors are crucial, then according to your own experiments, it appears that what's important in insuring John's survival is the causal process that preserves John's memories, what's important in insuring Bob's survival is the causal process that preserves Bob's biological properties, and what's important in insuring Jane the Cup's survival is the causal process that preserves Jane's physical or material properties. You yourself have just argued that these processes can't be domain independent. It really looks as though the effective causal processes vary with the sort of object at issue, which is what we psychosortalists have been saying all along. So talk of causal properties merely begs the question against psychosortalists; it doesn't provide an alternative theory."

It's common ground that different causes are responsible for the survival of different individuals. An individual person and an individual french fry depend on different physical laws to maintain their existence and identity. This implies that, given sufficient flexibility about what counts as a category (given ad hoc categories in which any set of elements is a category), we could partition individuals into categories that have like individuating conditions. If we call these partitions "sortals," then sortals are perfectly correlated with the individuating processes. But a psychosortalism of this kind is vacuous. It's obvious in advance that we can partition objects into arbitrary groups that have the same identity conditions. Sortalism and psychosortalism are nontrivial claims because they assert that sortals are (metaphysically or psychologically) prior to the individuals they carve out. According to this top-down view, people have no conception of an individual before they've acquired an appropriate sortal. Sortals are therefore not generalizations that people discover on the basis of their experience with individuals or
individuation. This direction of conceptual priority also places limits on psychosortalists' freedom to pick and choose categories to serve as sortals in their theories. The game plan for psychosortalists is to specify sortals that could plausibly have this prior conceptual role and then to show that people's judgments about individuals are shaped by these sortals. What the experiments in this article imply, however, is that those categories that one might have thought have the best claim to cognitive priority—essentially basic-level categories that people use to answer What is it?-do not set the boundaries for the individuals that fall under them. We suspect this is because a purely top-down approach to individuation doesn't match the methods people ordinarily employ.

A related objection to our antipsychosortalist viewpoint is that causal relations seem to presuppose individuated objects-they presuppose a cause and an effect. Thus, causal relations can't be responsible for the very same objects. However, it is not necessarily the case that causes and effects are objects of the type whose individuation we are trying to explain. According to some theories of causation (e.g., Davidson, 1967), causes and effects are events-particular activities or accomplishments. Certainly, some causes are events (e.g., mutations in a protein or activities on an assembly line), and these may be all we need to explain individuation of the natural kinds and artifacts in question.

It's true, however, that we don't have on offer a detailed theory of people's beliefs concerning the individuation of specific entities. What we have are hints about the factors responsible for continuity in particular cases we have studied. With respect to persons, for example, Experiment 1 suggests that our participants attended to maintenance of memories, but also maintenance of substance, in deciding whether Transformed John is John. If so, commonsense beliefs about personal identity seem to be neither wholly physicalist nor wholly functionalist, but some mixture of these (see also Blok et al., 2001). It is also consistent with our position that there may be no closed set of factors underlying identity, but instead an open set whose membership depends on the range of possible continuations for a given individual-contenders for the future being of the individual—as Nozick (1981) suggested. The project of mapping this decision strategy, though, is one that goes beyond the scope of this paper (but see Rips, Blok \& Newman, 2004).

Concluding Comments

Some early models of categorization posited that people could do without information specific to categories, relying instead on information about exemplars of these categories and making inductive inferences when necessary to the entire set. The mental representation of cats, according to this story, consists of memories of
individual cats you've met, with no special summary information about cats as a group. These exemplar models did well in accounting for the data from experiments in which participants viewed small groups of novel exemplars (e.g., two groups of schematic faces) and then decided to which group each of a set of transfer exemplars belonged. However, exemplar models encountered difficulties in explaining commonsense judgments about everyday categories. To say that dodos are extinct, for example, doesn't seem equivalent to saying something about individual dodos. Extinct isn't the sort of predicate the applies to individuals, much less to ones you've met (Krifka, Pelletier, Carlson, ter Meulen, Link, \& Chierchia, 1995; see Rips, 1995, for a discussion of other problems with exemplar theories). Likewise, the results of the experiments we've reported here suggest that "exemplars" can sometimes free themselves from the bounds of even basic level categories, with the same exemplar being now a cat and now a dog. If so, then it is hard to see how knowledge of cats could be coextensive with knowledge of exemplars.

Psychosortalism is another attempt at specifying the relation between individual and category concepts, but from the opposite direction. On this approach, people have no representation of individuals apart from their representation as members of a category. "No individuation without classification" is the motto. There is no representation of Bob, for example, except as a member of the cat kind. This theory does not seem committed to the semantic gaffs of exemplar models, and sortalism has deep insights into the space of possible ways that stuff could be individuated. Despite its greater sophistication, though, psychosortalism, like exemplarism, seems to us to overstate the dependence of individual and category concepts. The category-hopping individuals in our studies are evidence that people don't believe that knowledge of categories reduces to knowledge of exemplars. But they're equally evidence against the idea that knowledge of categories dictates knowledge of exemplars.

References

Ayers, M. (1997). Is physical object a sortal concept? A reply to Xu. Mind \& Language, 12, 393-405.
Blok, S., Newman, G., Behr, J., \& Rips, L. J. (2001). Inferences about personal identity. Proceedings of the Twenty-third Annual Conference of the Cognitive Science Society, 80-85.

Bloom, P. (2000). How children learn the meanings of words. Cambridge, MA: MIT Press.
Carey, S. (1995). Continuity and discontinuity in cognitive development. In D. N. Osherson (Series Ed.) \& E. E. Smith \& D. N. Osherson (Vol. eds.), An invitation to cognitive science: Vol. 3 Thinking (2 ${ }^{\text {nd }}$ ed., pp. 101129). Cambridge, MA: MIT Press.

Carey, S. (2001). Cognitive foundations of arithmetic: Evolution and ontogenesis. Mind \& Language, 16, 37-55.
Davidson, D. (1967). Causal relations. Journal of Philosophy, 64, 691-703.
Dummett, M. (1981). Frege: Philosophy of language (2nd ed.). Cambridge, MA: Harvard University Press.
Feigenson, L., Carey, S., \& Spelke, E. (2002). Infants' discrimination of number vs. continuous extent. Cognitive Psychology, 44, 33-66.

Geach, P. T. (1962). Reference and generality (emended ed.). Ithaca, NY: Cornell University Press.
Gelman, S. A., \& Hirschfeld, L. A. (1999). How biological is essentialism? In D. L. Medin \& S. Atran (Eds.), Folkbiology (pp. 403-446). Cambridge, MA: MIT Press.

Gottfried, G. M., Gelman, S. A., \& Schultz, J. (1999). Children's understanding of the brain: From early essentialism to biological theory. Cognitive Development, 14, 147-174.

Grene, M. (1963). A portrait of Aristotle. London: Faber and Faber.
Gupta, A. (1980). The logic of common nouns: An investigation in quantified modal logic. New Haven: Yale University Press.

Gutheil, G., \& Rosengren, K. S. (1996). A rose by any other name: Preschoolers understanding of individual identity across name and appearance changes. British Journal of Developmental Psychology, 14, 477-498.

Hall, D. G. (1998). Continuity and persistence of objects. Cognitive Psychology, 37, 28-59.
Hirsch, E. (1997). Basic objects: A reply to Xu. Mind \& Language, 12, 406-412.
Hobbes, T. (1839-1845). De corpore. In W. Molesworth (Ed.), The English works of Thomas Hobbes (Vol. 1). London: John Bohn. (Original work published 1655)

Johnson, C. N. (1990). If you had my brain, where would I be? Children's understanding of the brain and identity. Child Development, 61, 962-972.

Kahneman, D., Treisman, A., \& Gibbs, B. J. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24, 175-219.

Krifka, M., Pelletier, F. J., Carlson, G. N., ter Meulen, A., Link, G., \& Chierchia, G. (1995). Genericity: An introduction. In G. N. Carlson \& F. J. Pelletier (Eds.), The generic book (pp. 1-124). Chicago: University of Chicago Press.

Kruschke, J. K. (1992). ALCOVE: An exemplar based connectionist model of category learning. Psychological Review, 99, 22-44.

Littschwager, J. C. (1995). Children's reasoning about identity across transformations. Dissertation Abstracts International, 55 (10), 4623B. (UMI No. 9508399).

Locke, J. (1694/1979). An essay concerning human understanding (P. H. Nidditch, Ed.). Oxford: Clarendon Press. (Original work published 1694).

Logan, G. D. (2002). An instance theory of attention and memory. Psychological Review, 109, 376-400.
Loux, M. J. (1991). Primary ousia: An essay on Aristotle's Metaphysics Z and H. Ithaca, NY: Cornell University Press.

Macnamara, J. (1986). A border dispute: The place of logic in psychology. Cambridge, MA: MIT Press.
Malt, B. C. (1990). Features and beliefs in the mental representation of categories. Journal of Memory and Language, 29, 289-315.

Medin, D. L. (1989). Concepts and conceptual structure. American Psychologist, 44, 1469-1481.
Medin, D. L., \& Ortony, A. (1989). Psychological essentialism. In S. Vosniadou \& A. Ortony (Eds.), Similarity and analogical reasoning (pp. 179-195). Cambridge, England: Cambridge University Press.

Medin, D. L., \& Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review, 85, 207238.

Nosofsky, R. M. (1986). Attention, similarity, and the indentification-categorization relationship. Journal of Experimental Psychology: General, 115, 39-57.

Nozick, R. (1981). Philosophical explanations. Cambridge, MA: Harvard University Press.
Parfit, D. (1984). Reasons and persons. Oxford, England: Oxford University Press.

Pierrehumbert, J. B. (2001). Exemplar dynamics: Word frequency, lenition and contrast. In J. Bybee \& P. Hopper (Eds.), Frequency and the emergence of linguistic structure. Typological studies in language, vol. 45. (pp. 137-157). Amsterdam: John Benjamins.

Quine, W. V. (1960). Word and object. Cambridge, MA: MIT Press.
Quine, W. V. (1969). Ontological relativity. In Ontological relativity and other essays (pp. 26-68). New York: Columbia University Press.

Rips, L. J. (1995). The current status of research on concept combination. Mind \& Language, 10, 72-104.
Rips, L. J. (2001). Necessity and natural categories. Psychological Bulletin, 127, 827-852.
Rips, L. J., Blok, S., \& Newman, G. (2004). Individual concepts. Manuscript in preparation, Northwestern University.

Rosch, E., Mervis, C. B., Gray, W., Johnson, D., \& Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382-439.

Shoemaker, S. (1970). Persons and their past. American Philosophical Quarterly, 7, 269-285.
Smith, E. R, \& Zarate, M. A. (1992). Exemplar-based model of social judgment. Psychological Review, 99, 3-21.
Wiggins, D. (1980). Sameness and substance. Cambridge, MA: Harvard University Press.
Wiggins, D. (1997). Sortal concepts: A reply to Xu. Mind \& Language, 12, 413-421.
Wilcox, T., \& Baillargeon, R. (1998). Object individuation in infancy: The use of featural information in reasoning about occlusion events. Cognitive Psychology, 37, 97-155.

Xu, F. (1997). From Lot's wife to a pillar of salt: Evidence that physical object is a sortal concept. Mind \& Language, 12, 365-392.

Xu, F. (in press). The development of objection individuation in infancy. In J. Fagen \& H. Hayne (Eds.), Progress in infancy research (vol. 3). Mahwah, NJ: Erlbaum.

Xu, F., \& Carey, S. (1996). Infants' metaphysics: The case of numerical identity. Cognitive Psychology, 30, 111153.

Table 1
Scenarios for Person Transformations, Experiment 1.
a. Brain transplant to robot recipient:

Jim is an accountant living in Chicago. One day, he is severely injured in a tragic car accident. His only chance for survival is participation in an advanced medical experiment called a "Type 1 transplant" procedure. Jim agrees.

It is the year 2020 and scientists have developed incredibly sophisticated computers and robots. In a "Type 1 transplant procedure," a team of doctors removes Jim's brain and carefully places it in a highly sophisticated cybernetic body (robot). Jim's original body is destroyed in the operation.

After the operation, all the right connections between the robot and the brain have been made, and the brain is able to control the robot. When the doctors turn on the robot, the robot appears to be human-like in its behavior. It has senses and can move and talk. The doctors scan the brain of the transplant recipient and note that the memories in it [NO memories in it] are the same as those that were in the brain before the operation. [Something must have happened during the transplant.]
b. Brain transplant to humanoid recipient:

Jim is an accountant living in Chicago. One day, he is severely injured in a tragic car accident. His only chance for survival is participation in an advanced medical experiment called a "Type 2 transplant" procedure. Jim agrees.

It is the year 2020 and scientists are able to grow all parts of the human body, except for the brain. A stock of bodies is kept cryogenically frozen to be used as spare parts in the event of an emergency. In a "Type 2 transplant procedure," a team of doctors removes Jim's brain and carefully places it in a stock body. Jim's original body is destroyed in the operation.

After the operation, all the right neural connections between the brain and the body have been made. The doctors test all physiological responses and determine that the transplant recipient is alive and functioning. The doctors scan the brain of the transplant recipient and note that the memories in it [NO memories in it] are the same as those that were in the brain before the operation. [Something must have happened during the transplant.]

Figure 1. Mean agreement ratings ($0-$ to- 9 scale) for the statements that the transfer recipient is "still Jim" (open circles) and "still a person" (filled circles). Results are from brain transplant condition. The x-axis represents the four versions of the Experiment 1 story (see Table 1). The error bars indicate one standard error of the mean, based on 64 observations per point.

Figure 2. Mean agreement ratings (0 -to- 9 scale) for the statements that the outcome object is still the same individual (open circles) and still a member of the same category (filled circles). The x -axis represents the three types of transformation (original and outcome objects shown as the same picture, related pictures, or unrelated pictures). The error bars indicate one standard error of the mean.

Footnotes

${ }^{1}$ We thank Jennifer Asmuth, Dan Bartels, Jennifer Behr, Douglas Medin, Ariela Lazar, Beth Lynch, Jeff Pasch, Andrea Proctor, Eyal Sagi, Russ Burnett and Elizabeth Spelke for their help on an earlier version of this paper. Thanks to Jeff Rice for the cute cat name. NSF Grant SES-9907414 supported this research. Correspondence about this paper should be sent to Lance Rips, Psychology Department, Northwestern University, Evanston, IL 60208. Email: rips@northwestern.edu.
${ }^{2}$ For the ancient version, see Grene (1963) and Loux (1991) on Aristotle's Metaphysics. For the modern versions, see the sources cited in the following paragraph.
${ }^{3}$ We use the terms bottom-up and top-down advisedly, since bottom-up in this context does not mean perceptual. Antisortalism need not contend that object individuation, enumeration, and persistence are purely perceptual matters, and as our reference to causal factors suggests, we think it likely that nonperceptual beliefs about mechanisms play a key role in the way (people think) objects are identified. The important distinction is whether object individuation depends on knowledge of the categories to which the object belongs (top-down) or, more directly, on knowledge of the exemplar itself (bottom-up).
${ }^{4}$ There are rival philosophical theories that do not tie individuation to sortals. For example, Quine's $(1960,1969)$ view of individuation makes it a matter of broader "analytical hypotheses" or "background theories," rather than something determined on a category-by-category basis. According to this view, sortal terms such as rabbit don't succeed in pinning down specific individuals, since there are alternative referents for these terms (the famous undetached rabbit part or rabbit time-slice) that are equally consistent with the evidence (given compensating adjustments in the meaning of other predicates). Because of these incompatible standards, there is no fact of the matter about what qualifies as an individual. Individuals are only identifiable relative to theories in which they play a role (as values of the theories' variables). Thus, although Quine's position reject sortalism, it is even further removed from the bottom-up position that we sketched above. (Another way of stating the antipsychosortalist view is that people believe-perhaps incorrectly-that one of the rival Quinean background theories is true.)
${ }^{5}$ For the three items in question (fire hydrant, tree, and house), the mean agreement ratings for identity continuity were 5.82 (same transformation), 2.06 (related transformation), and 0.69 (unrelated transformation). Means for category continuity were 8.39 (same), 0.61 (related), and 0.66 (unrelated). These can be compared to the overall means in Figure 2.
${ }^{6}$ Some psychologists (e.g., Carey, 2001; Feigenson, Carey, \& Spelke, 2002) have recently suggested that many empirical results on infant individuation and enumeration are best explained by attentional mechanisms, such as object files (Kahneman, Treisman, \& Gibbs, 1992). These infant findings are the same ones that originally prompted the psychosortalists to advance the claim that physical object is a sortal. One possibility is that lowerlevel attentional mechanisms remove the need for a physical object sortal. Another possibility is that object files somehow depend on a higher-level sortal. Sortal afficionados seem not to have resolved this issue.

